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Overview

At the end of this session you should understand:

Why introducing explicit real-time constraints in a synchronous
language is useful;

How we can deal with both logical-time and real-time;

The implications of the introduction of real-time in the language
structure and compilation.
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Reactive system (reminder)

reactive system

physical environment

outputsinputs

React to inputs:
1 Acquire inputs on sensors;
2 Compute;
3 Produce values on actuators.

Actions impact the environment, thus subsequent inputs;

Response time must be bounded, due to environment evolving
autonomously.
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Real-time system

Definition
Real-time systems must guarantee response within strict time
constraints, often referred to as “deadlines”.
(Wikipedia)

Similar to reactive systems;

Several, predefined time bounds.
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Example: UAV control

Real-time constraints:
GPS (input): 1 frame every 250 ms.

Deadline miss⇒ frame lost (current position), wrong trajectory.

Attitude regulation (output): consolidate actuator orders every
60ms

Deadline miss⇒ loss of control.

Failure detection (internal): check inconsistencies every 200ms
Deadline miss⇒ crash with motors on.

...
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Classic model

Program=a set of tasks (threads) τi :

Oi , oi.0

Ci

di.0Di

oi.1

Ci

di.1Di

oi.2

0

Ti Ti

Ti : period;

Di : relative deadline
(Di <= Ti );

Ci : worst-case execution
time (WCET);

Oi : initial release date;

τi.p: pth job of τi .
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Deadlines and periods

Deadline: respond before some specified time;

Period: processes are recurring at regular time intervals;

The period is often an implicit deadline (non-reentrant tasks);

Choice of the periods/deadlines:

Lower-bound: physical constraints of the sensors/actuators;
Lower-bound: computation time;
Upper-bound: too slow can lead to an unsteady system.
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Execution times

Evaluating the execution time of some process is HARD
Depends on the content of the memory;
Depends on the content of the pipeline;
Depends on the values processed;
Other processes may interfere;
OS may interfere...

Validating temporal behaviour with variable execution times is
complex;

⇒ Execution times are (largely) over-evaluated by a Worst-Case
Execution Time (WCET).
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Real-time multi-tasking

Some classic problems:

Scheduling policy: define an algorithm that finds an execution
order (a schedule), that respects all deadlines;

Schedulability analysis: ensure before execution that
deadlines can and will be met (for a given policy);

Data-dependencies⇒ scheduling policy for dependent tasks +
synchronization primitives (e.g. semaphores, buffers, . . . );

Shared resources⇒ problems similar to communication
synchronizations.
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Scheduling: multi-processor example

τB(TB = 9,CB = 5) and τA(TA = 3,CA = 1):

0 3 6 9
A A A

0 3 6 9
B
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Scheduling: mono-processor example

τB(TB = 9,CB = 5) and τA(TA = 3,CA = 1):

Without preemption:

0 3 6 9
A A

Deadline miss

B

With preemption:

0 3 6 9
A A AB B
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Scheduling policy example: Rate-Monotonic

Fixed-task priorities: a fixed priority is assigned to each task;

Task with smaller relative deadline (=period) gets a higher
priority;

Works only when Di = Ti ;

This policy is optimal among the fixed-task priority policies.

⇒What does optimal mean ?
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Rate-Monotonic analysis

Sufficient schedulability test:

m∑
i=0

Ci

Ti
≤ m(21/m − 1)

' 0.8 for m = 2 and tends towards 0.7 for big m.

⇒What does sufficient mean ?

NB: More general cases (Di ≤ Ti , multi-core, ...) are in many
cases NP.
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Okay...

But, we were told to ignore real-time !

(cf )
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Yet, knowing real-time constraints is useful

Based on real-time constraints we can:

Schedule better:

Optimize processor utilization (do not execute tasks more
frequently than required);
Ensure temporal correction by assigning priorities based on
deadlines.

Statically analyze the real-time behaviour: check before
execution that the system will not become overloaded/late;

As a side effect, this also enables a better dimensioning of the
hardware platform.
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So...

Did we break it ?

No, but we need more to cover the development cycle.
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Programming in the large: Aeronautics
system design
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Aeronautics system design
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Aircraft functions

Example:

Thruster control;

Flight plan control;

Aircraft control on ground;

Transition air/ground;
Deceleration;
Direction control on ground;
. . .

. . .
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Aeronautics system design
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Aircraft systems

Example: Ground deceleration is made up of:

The “thrust reversal” function of the motor control system;

The “spoiler control” function of the flight command system;

The wheel brake system.
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Aeronautics system design
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Aeronautics system design
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Synchronous languages in the design

On the “system” level:

Functional level (SCADE, LUSTRE);
Software architecture level ?

Timing requirements:

Attached to blocks (software architecture);
Abstracted on functional level: blocks are mono-periodic.

⇒ Can we introduce the synchronous paradigm at the software
architecture level and deal with timing requirements there ?
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Synchronous approach (reminder)

Real-time is replaced by a simplified, abstract, logical time.

Instant: one reaction of the system;

Logical time: sequence of instants;

The program describes what happens at each instant;

Synchronous hypothesis: computations complete before the
next instant. If so:

⇒ We can ignore time inside an instant, only the order matters;
⇒ We are only interested in how instants are chained together.
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A question of semantics

Zero-time ?

In the semantics, the execution of one instant takes no time,
everything happens simultaneously;
When implemented, the execution of one instant does take time;
The point is, when writing a synchronous program, we do not care
about real-time.

Synchronous hypothesis validation:

In aeronautics design (and in many other cases), the periodicity of
a block (LUSTRE program) sets the bound for the duration of an
instant;
At the end of the implementation process, the synchronous
hypothesis must be validated, i.e. “do we have Ci ≤ Ti ?” (WCET
analysis)
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Multi-rate in LUSTRE/SCADE

Example

period = 10ms

F
period = 30ms

S8ms >

Program (base period=10ms)

node m u l t i r a t e ( i : i n t ) r e tu rns ( o : i n t )
var v f : i n t ; c lock3 : bool ; vs : i n t when clock3 ;
l e t

( o , v f )=F( i , cu r ren t (0 fby vs ) ) ;
c lock3=everyN ( 3 ) ;
vs=S( v f when clock3 ) ;

t e l
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Multi-rate in LUSTRE/SCADE

Behaviour:
vf vf0 vf1 vf2 vf3 vf4 vf5 vf6 . . .
vf when clock3 vf0 vf3 vf6 . . .
vs vs0 vs1 vs2 . . .
0 fby vs 0 vs0 vs1 . . .
current (0 fby vs) 0 0 0 vs0 vs0 vs0 vs1 . . .

Program (base period=10ms)

node m u l t i r a t e ( i : i n t ) r e tu rns ( o : i n t )
var v f : i n t ; c lock3 : bool ; vs : i n t when clock3 ;
l e t

( o , v f )=F( i , cu r ren t (0 fby vs ) ) ;
c lock3=everyN ( 3 ) ;
vs=S( v f when clock3 ) ;

t e l
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What’s missing ?

For the programmer: not immediate to see that
vf when clock3 is 3 times slower than vf;

For the static analyses: clocks = Boolean expressions⇒
compiler does not see that ”some clock is 3 times slower than
another”;

For the code generation: computations must all complete
during one base period (10ms).
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Objective: multi-Rate Synchronous

time

F F F F F F

S S

Scale 2: fast instants (10ms)

Scale 1: slow instants (30ms)

Requirements:

Define several logical time scales;

Compare different logical time scales;

Transition from one scale to another.
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Bridging the gap

Main ideas:

Arithmetic clocks: clocks defined, compared and transformed,
using numbers and/or operations on numbers;

Multi-threaded execution: not all operations must be executed
within the same base period.
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N-Synchronous

Motivation: implementing real-time streaming applications (e.g.
video systems);

Multi-rate systems;
Combine flows that are “nearly synchronous”, i.e. the same
production rate on a period of time, but not at the same instants.

Compiled into classic synchronous code + buffering
mechanisms.
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N-Synchronous (2)

Example

l e t node resync x = o where
rec x1 = x when (10)
and x2 = x when (01)
and o = ( b u f f e r x1 ) + x2

Operators

x when (01): drop value, keep value, drop value, keep value,
. . . ;

buffer(x1): buffer values to enable clock “resynchronization”.
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N-Synchronous (2)

Example

l e t node resync x = o where
rec x1 = x when (10)
and x2 = x when (01)
and o = ( b u f f e r x1 ) + x2

flow clock
x 5 7 3 6 2 8 . . . (1)
x1 5 3 2 . . . (10)
buffer(x1) 5 3 2 . . . (01)
x2 7 6 8 . . . (01)
o 12 9 10 . . . (01)

40 / 78
Logical time and real-time in the Synchronous approach



Real-time Multi-rate system design Synchronous real-time PRELUDE Conclusion

N-Synchronous (3)

Rate relations are more explicit;

Better static analyses;

More general (too general ?) than purely multi-periodic systems
(e.g. clock (10110));

Semantics still requires computations to fit within an instant.
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CCSL

(Presented previously by AG).

Very expressive: periodic, sampled, alternation, etc;

Targeted mainly for simulation/verification;

Too general for efficient compilation (?)
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Strictly Periodic Clocks

Definition: Clock (n,p) is a clock of period n and phase p;

Example: (120,1/2) activates at dates 60, 180, 300, 420, . . .

Rate transformations:

α/.k : divide frequency;
α ∗. k : multiply frequency;
α→. q: offset activations.

α

α ∗. 2
α/.2

α→.
1
2
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Strictly Periodic Clocks(2)

Strictly periodic clocks are dedicated to multi-periodic real-time
systems;

Strictly periodic clocks are a sub-class of Boolean clocks and of
N-Synchronous clocks;

This restriction enables to compile real-time aspects more
efficiently.
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Relaxed Synchronous hypothesis

Classic Synchronous hypothesis
All computations complete before the end of the instant.

Relaxed Synchronous hypothesis
Computations complete before their next activation.

Relaxed: mere reformulation of classic;

Classic: particular case of relaxed;

Relaxed: supports several logical time scales;

Relaxed: fits with periodicity constraints “a task instance
must complete before the next task release”.
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Automated code distribution into threads

(Presented previously by AG-not the same).

Approach 1: Automatically split the code into several threads:

In Signal: split code based on clocks;

In Lustre: split code based on inputs/outputs;

Add buffers to communicate between threads.
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Automated code distribution into threads (2)

More general than periodic systems, thus:

Buffer dimensioning is harder;

Temporal analyses is harder;

The user must specify the distribution criteria.
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Lustre with Futures
Approach 2: Explicit thread encapsulation.

Example

node s l o w f a s t ( ) = ( y : f l o a t )
var b ig : bool ; y f , v : f l o a t ; ys : f u t u r e f l o a t ;
l e t

b ig = everyN ( 3 ) ;
ys = ( async 0 .0 ) fby ( async slow ( y when big ) ) ;
y f = f a s t ( v whenot b ig ) ;
y = merge b ig ( ! ys ) ( y f ) ;
v = 0.0 fby y ;

t e l

async encapsulates a node inside a thread;

The value of an asynchronous flow is fetched using operator !.

NB The values and clocks of !x and x are exactly the same.
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t e l

big true false false true false . . .
!ys 0.0 3.14 . . .
yf 1.0 2.0 4.14 . . .
y 0.0 1.0 2.0 3.14 4.14 . . .
v 0.0 0.0 1.0 2.0 3.14 . . .
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Lustre with Futures (2)

Good multi-thread support;

No real-time constraints attached to threads.
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Prelude

Approach 3: Thread assembly language.

Each node invocation is encapsulated inside a thread;

Targeted for the software architecture level;

Real-time characteristics are associated to each node/thread.
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Prelude: a real-time synchronous language

Initial question: how to program systems with multiple real-time
constraints in a synchronous style ?

Context:

Defined and developed at ONERA (first during speaker thesis);
Motivated by collaborations with Airbus and Astrium (satellites).

Main principles:

Strictly periodic clocks;
Relaxed synchronous hypothesis;
Fully multi-threaded;
At the software architecture level.
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Operations

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >
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Operations: imported nodes

Operations of the system are imported nodes;

External functions (e.g. C, or LUSTRE);

Declare the worst case execution time (wcet) of the node.

Example

imported node F( i , j : i n t ) r e tu rns ( o , p : i n t ) wcet 2 ;
imported node S( i : i n t ) r e tu rns ( o : i n t ) wcet 10;
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Real-time constraints

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >
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Real-time constraints: clocks and deadlines

Real-time constraints are specified in the signature of a node;

Periodicity constraints on inputs/outputs;

Deadline constraints on inputs/outputs.

Example

node sampling ( i : r a te ( 10 , 0 ) ) re tu rns ( o : ra te (10 ,0 ) due 8)
l e t

. . .
t e l

Input/output rate can be unspecified, the compiler will infer it.
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Multi-rate communications

Multi-rate system

period = 10ms

F
period = 30ms

S8ms >
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Multi-rate communications: rate transition
operators

Example

node sampling ( i : r a te (10 , 0 ) ) re tu rns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

Rate transition operators:

Sub-sampling: x/ˆ3 (ck(x)/.3);

Over-sampling: x ∗ˆ3 (ck(x) ∗. 3).
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Multi-rate communications: rate transition
operators

Example

node sampling ( i : r a te (10 , 0 ) ) re tu rns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

date 0 10 20 30 40 50 60 70 80 ...
vf vf0 vf1 vf2 vf3 vf4 vf5 vf6 vf7 vf8 ...
vf/ˆ3 vf0 vf3 vf6 ...
vs vs0 vs1 vs2 ...
0 fby vs 0 vs0 vs1 ...
(0 fby vs)*ˆ3 0 0 0 vs0 vs0 vs0 vs1 vs1 vs1 ...
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And...

That’s all folks !

60 / 78
Logical time and real-time in the Synchronous approach



Real-time Multi-rate system design Synchronous real-time PRELUDE Conclusion

And...

That’s all folks !
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Formal semantics: Strictly Periodic Clocks

Flow values are tagged by a date: f = (vi , ti)i∈N;

Clock = sequence of tags of the flow;

Value vi must be produced during time interval [ti , ti+1[;

A clock is strictly periodic iff:

∃n ∈ N∗, ∀i ∈ N, ti+1 − ti = n

n is the period of h, t0 is the phase of h.

Eg: (120,1/2) is the clock of period 120 and phase 60.
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Formal semantics: operators

Example

+#((v , t).s, (v ′, t).s′) = (v + v ′, t).+#(s, s′)

(v , t).s: denotes value v produced at time t and followed by
sequence s;

op#(f , f ′) = (v1, t1).(v2, t2) . . . denotes the flow produced when
applying op to flows f and f ′.

Warning:

The semantics is ill-defined for asynchronous flows;

⇒ Static analyses required to check that program semantics is
well-defined before further compilation.
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Formal semantics: classic operators

fby #(v , (v ′, t).s) = (v , t). fby #(v ′, s)

when #((v , t).s, (true, t).cs) = (v , t). when #(s, cs)

when #((v , t).s, (false, t).cs) = when #(s, cs)
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Formal semantics: rate transitions

∗̂ #((v , t).s, k) =
k−1∏
i=0

(v , t ′i ).∗̂
#(s, k)

(with t ′0 = t and t ′i+1 − t ′i = π(s)/k )

/ˆ#((v , t).s, k) =

{
(v , t)./ˆ#(s, k) if k ∗ π(s)|t
/ˆ#(s, k) otherwise
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Compilation overview

program

static analysesstop

task extraction

real-time tasks

schedulability analysis

stop

code generation

multi-threaded C code

succeed

fail

succeed

fail

semantics
preserved
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Static analyses

Typing: no run-time type error;

Causality analysis: no cyclic data-dependencies;

Clock calculus: values are only accessed when they should be.
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Clock calculus: example

Example

node under sample ( i ) r e tu rns ( o )
l e t o= i / ˆ 2 ; t e l

node poly ( i : i n t r a te (10 , 0 ) ; j : i n t r a te (5 , 0 ) )
r e tu rns ( o , p : i n t )
l e t

o=under sample ( i ) ;
p=under sample ( j ) ;

t e l

Result inferred by the clock calculus

under sample : ’ a−>’a / . 2
po ly : ( ( 1 0 , 0 ) ∗ (5 ,0))−> ( (20 ,0) ∗ ( 1 0 ,0 ) )
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Task graph extraction

Program

node sampling ( i : r a te (10 , 0 ) ) re tu rns ( o )
var vf , vs ;

l e t
( o , v f )=F( i , (0 fby vs ) ∗ ˆ 3 ) ;
vs=S( v f / ˆ 3 ) ;

t e l

Task graph

F
/ˆ3

fby. ∗ˆ3
S

i
o
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Real-time characteristics

Oi

Ci

Di

Ci

Di

0

Ti Ti

For each task:

Repetition period: Ti = π(cki) ;

Relative deadline: Di = Ti by default or explicit constraint (eg
o: due 8);

Worst case execution time: Ci , declared for each imported node;

Initial release date: Oi = ϕ(cki).
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Multi-rate data-dependencies

For each task dependency:
1 Data can only be consumed after being produced⇒

precedence constraints for the scheduler;

2 Data must not be overwritten before being consumed⇒
communication protocol.

Example

A
/ˆ2→ B:

A A

B B

(1): B0 after A0 (2) keep A0 available
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Communication protocol

Tailor-made buffering mechanism;

For each dependency, computes:

Size of the buffer;
Where each job writes/reads;

Independent of the scheduling policy;

Requires a single central memory.
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Communication protocol

Ex: B(A(x)*ˆ3/ˆ2), ie A
∗̂ 3./ˆ2→ B:

Semantics
date 0 10 20 30 40 50 60 70 80 ...
A(x) a0 a1 a2 ...
A(x)*ˆ3 a0 a0 a0 a1 a1 a1 a2 a2 a3 ...
A(x)*ˆ3/ˆ2 a0 a0 a1 a2 a3 ...

Lifespans

A

B
spA,B(0) spA,B(2)

spA,B(1) spA,B(3)
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Communication protocol (2)

Lifespans

A

B
spA,B(0) spA,B(2)

spA,B(1) spA,B(3)

Buffer of size 2;

Write in the buffer cyclically;

Read from the buffer cyclically;

Do not advance at the same pace for reading and writing.
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Scheduling: problem parameters

A set of recurring tasks with:

Periods, deadlines, wcets, release dates;
Multi-rate precedence constraints.

Hardware architecture:

Mono-core;
Multi-core (with a single central shared memory).

Scheduler class:

On-line/off-line;
Static/dynamic priorities;
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Summary

What you should remember:

When we deal with multi-periodic systems, we need explicit
real-time constraints;

Explicit RT constraints enable:

Static real-time analyses;
Optimized processor utilization and platform dimensioning.

Real-time constraints can be introduced without breaking the
synchronous paradigm;

Mixing real time and logical time can be done by using real-time
as a “dimension” for logical time.
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My sources

Some inspirations for this course:

Frédéric Boniol (ONERA Toulouse), Modélisation et
programmation des systèmes embarqués critiques : la voie
synchrone, course at Ecole Polytechnique de Montreal, 2013

Emmanuel GROLLEAU (LIAS/ISAE-ENSMA),
Ordonnancement et ordonnançabilité monoprocesseur, Ecole
d’Eté Temps Réel (ETR’2011), Brest, 2011
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