
Real-time in the Synchronous approach

Practical session:

Prelude and SchedMCore

Julien Forget∗

January 17, 2014

The goal of this practical session is to illustrate how real-time constraints can be
handled in a synchronous language context.

1 Basics of Prelude

The first exercise is based on the sampling_loop example of Prelude distribution.
Its structure is recalled in Figure 1.

sensor i

1500 ms500 ms

actuator o
swap id

o

vfi

vs

sampling

Figure 1: Sampling loop

1.1 Build with Prelude compiler

• Copy the sampling example1 to your home directory. Compile the file with
preludec -node sampling sampling.plu.

The compiler creates two files in a directory named sampling_c: sampling.h and
sampling.c. The latter includes a file sampling_includes.h, which must be provided
by the user and defines the C prototypes for the imported nodes, the sensors, and the
actuators. Imported nodes have the same name in Prelude and C. The functions
for sensors are prefixed with input_ in C, and the functions for actuators are prefixed
with output_.

Several options are available to print the results of the static analyses. Try the
following:

∗Based on a practical session by Wolfgang Puffitsch, Julien Forget, Eric Noulard and Claire Pagetti
1Located in /usr/local/prelude-1.3/Examples/sampling_loop.

ENS Lyon 1/4



Prelude & SchedMCore
Practical session:

Prelude and SchedMCore

• preludec -node sampling -print_types sampling.plu.

• Same with -print_clocks.

1.2 Simulation with SchedMCore

The actual implementation of the imported nodes can be found in the file
sampling_includes.h. This file and the file sampling.c have to be compiled and
linked together in a shared library. As this part is tedious to perform manually and
has little educational value, it can be left to a build tool like cmake.

The following steps are necessary to set up building with cmake:

• Create a build directory and go there: mkdir build; cd build

• Run cmake to create the actual Makefile:
cmake -DPRELUDE_PATH_HINT=<path_to_prelude> \

<path_to_prelude_lab>/sampling_loop

• Build a library that is used to execute the example: make. In case you are
interested in the precise commands executed by make, you can alternatively use
make VERBOSE=1.

The build created the shared library libsampling-endoced.so, which implements
the model and contains the necessary information for SchedMCore. After these
steps, simply execute make to re-build the library.

The library can be executed with lsmc_run-nort -l ./libsampling-encoded.so.
The duration of a tick can be controlled with the option -b <N>. Set the duration to
one milisecond (-b 1000) as the default is far too slow for our example. By default,
SchedMCore uses EDF scheduling, but for simulation any scheduler fits.

Exercise 1 Try some simple modifications of the example:

• Change the input period to 300, execute, then retry with a period of 200;

• Fall back to the initial period of 500 and modify your program so that it prints 5
times the same value instead of 3 times;

• Play with the clock calculus, for instance, see what happens when the factors of
*^ and /^ are different;

• Change the sensor so that it counts from 9 to 0 and again.

Exercise 2 Prelude can automatically add tracing information to the gener-
ated code. Modify the file CMakeLists.txt in the folder sampling_loop. Add
TRACING values (if you want to see the values exchanged) or TRACING instances (if
you want to see additionally which task instance produced a value) after NOENCODING.
Re-build the example and execute it.

ENS Lyon 2/4



Prelude & SchedMCore
Practical session:

Prelude and SchedMCore

2 Modeling with Prelude

Exercise 3 (Simplified flight control) We consider the simplified Flight Control
System of Fig. 2. This system controls the attitude, the trajectory and the speed of an
airplane. It consists of 7 tasks which execute repeatedly at a periodic rate. The fastest
sub-system executes at 10 ms, it acquires the state of the system (angles, position,
acceleration) and computes the feedback law of the system. The order is then sent to
the flight control surfaces. The intermediate sub-system is the piloting loop, it executes
at 40 ms and determines the angle to apply. The slowest sub-system is the navigation
loop, it executes at 120 ms and determines the acceleration to apply. The required
position of the airplane is acquired at the slow rate.

Navigation Law
(NL)

Navigation Filter
(NF )

Piloting Law
(PL)

Piloting Filter
(PF )

Feedback
Law
(FL)

Feedback
filter
(FF )

Acceleration
position
acquisition
(AP )

Observed
Position
(pos o)

Required
Position

(pos c)

Observed
Acceleration
(acc o)

Required
Acceleration

(acc c)

Observed
Angle

(angle o)

(acc i)

(pos i)

Required
Angle

(angle c)

order

angle

acceleration

(acc)

position

120 ms 40 ms 10 ms

Figure 2: Flight control system

In directory fcs, you find a project that contains a cmake file and C files to imple-
ment the (imported) nodes of the case study and simulate the sensors/actuators.

Table 1: Task parameters

Task NL NF PL PF FL FF AP

Period 120 120 40 40 10 10 10
WCET 6 5 4 4 1 1 1

• Edit the file fcs.plu to implement the flight control system as shown in Figure 2.
Use the task parameters shown in Table 1; assume that the WCET of all sensors
and actuators is 1 ms. Assume moreover that the actuator order has a deadline
of 7 ms. In this first step, use direct communication between the nodes, i.e., do
not use fby.

ENS Lyon 3/4



Prelude & SchedMCore
Practical session:

Prelude and SchedMCore

• Prelude modifies the deadlines of tasks to enforce precedences. Use the op-
tion -print_deadlines to display the deadlines for the encoded task set. Is the
system schedulable ?

• The fby operator can be used to break direct dependencies. Use this operator
to delay the flows from NL to PL and from PL to FL. Use an initial value of
1. Again, use -print_deadlines to examine the deadlines for the task set with
encoded precedences.

• Examine the output of the Prelude compiler when using the option
-print_protocols. How large are the buffers between the different tasks?

• Execute the task set with the SchedMCore runner.
lsmc_run-nort -l ./libfcs.so -b 10000 -c2 (we will see later why we
need option -c2). Note that if you want to reuse the same build folder,
you must remove the file CMakeCache.txt. What output is generated by the
program?

3 Schedulability analysis with converter

The SchedMCore converter can be used to check the schedulability of a task set
generated by Prelude (or encoded in other formats). The task set is translated into
a C model and the execution of this model tells us whether the system is schedulable
or not.

The lsmc_converter supports several policies, which can be specified with the
option -p (including the classic gedf, gllf, llref, along with some more specific
policies).

Exercise 4 Perform a schedulability analysis of the flight control system for EDF
scheduling on a uniprocessor with the C model.

• Generate the model: lsmc_converter -c 1 -m c -p GEDF -l ./libfcs.so

• Compile the model: gcc -o model libfcs.so_GEDF.c

• Run the model: ./model. Is the task set schedulable?

• If you want some details on the execution, compile with the option
gcc -o model -DDEBUG libfcs.so_GEDF.c and run again;

• Try again, with two cores (-c 2).

ENS Lyon 4/4


	Basics of Prelude
	Build with Prelude compiler
	Simulation with SchedMCore

	Modeling with Prelude
	Schedulability analysis with converter

