Thèse de Aymeric Blot

Réagir et s'adapter à son environnement : Concevoir des méthodes autonomes pour l'optimisation combinatoire à plusieurs objectifs

Les problèmes d’optimisation à grande échelle sont généralement difficiles à résoudre de façon optimale. Des algorithmes d’approximation tels que les métaheuristiques, capables de trouver rapidement des solutions sous-optimales, sont souvent préférés. Cette thèse porte sur les algorithmes de recherche locale multi-objectif (MOLS), des métaheuristiques capables de traiter l’optimisation simultanée de plusieurs critères. Comme de nombreux algorithmes, les MOLS exposent de nombreux paramètres qui ont un impact important sur leurs performances. Ces paramètres peuvent être soit prédits et définis avant l’exécution de l’algorithme, soit ensuite modifiés dynamiquement. Alors que de nombreux progrès ont récemment été réalisés pour la conception automatique d’algorithmes, la grande majorité d’entre eux ne traitent que d’algorithmes mono-objectif et l’optimisation d’un unique indicateur de performance. Dans cette thèse, nous étudions les relations entre la conception automatique d’algorithmes et l’optimisation multi-objective. Nous passons d’abord en revue les stratégies MOLS possibles et présentons un framework MOLS général et hautement configurable. Nous proposons également MO-ParamILS, un configurateur automatique spécialement conçu pour gérer plusieurs indicateurs de performance. Nous menons ensuite plusieurs études sur la conception automatique de MOLS sur de multiples problèmes combinatoires bi-objectifs. Enfin, nous discutons deux extensions de la configuration d’algorithme classique : d’abord l’intégration des mécanismes de contrôle de paramètres, pour bénéficier de multiples prédictions de configuration; puis l’utilisation séquentielle de plusieurs configurations.

Jury

Directeurs de thèse : JOURDAN Laetitia, KESSACI Marie-Éléonore Rapporteurs : BATTITI Roberto, SAUBION Frédéric Examinateurs (rices) : DE CAUSMACKER Patrick, MATHIEU Philippe, STÜTZLE Thomas

Thèse de l'équipe ORKAD soutenue le 21 septembre 2018

Retour vers les autres thèses