
Ubiquitous computing : vanishing the notion of application

P. Mathieu
Laboratoire d’Informatique

Fondamentale de Lille
Cité Scientifique 59655

Villeneuve d’Ascq Cedex
mathieu@lifl.fr

J.C. Routier
Laboratoire d’Informatique

Fondamentale de Lille
Cité Scientifique 59655

Villeneuve d’Ascq Cedex
routier@lifl.fr

Y. Secq
Laboratoire d’Informatique

Fondamentale de Lille
Cité Scientifique 59655

Villeneuve d’Ascq Cedex
secq@lifl.fr

ABSTRACT
This paper postulates that multi-agent systems are the right choice
for the design and implementation of pervasive frameworks.This
claim relies on the idea that the notion of application is a non-
sense in a pervasive environment because of its highly dynamic
characteristics. Instead, we propose the use of an interaction based
design, relying on multi-agent concepts like agents incrementally
built from skills, role decomposition, reification of interactions and
organizations. We will first give a brief overview of available con-
cepts and technologies to support pervasive computing, before in-
troducing our interaction-based design relying on our minimal agent
model.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design tools and techniques; I.2.11
[Distributed Artificial Intelligence]: Multiagent systems

General Terms
Design, Languages, Standardization

1. INTRODUCTION
Ubiquitous computing has been an old dream that is probably

born when people realized the potential of inter-connectedpersonal
computers. Some works were done in the late 80’s[2], that show the
early interest people had in this idea that computers could be faded
within our environment like writings and pictures. Nowadays, sev-
eral important factors have deeply changed the environment: de-
vices are really surrounding peoples (personal computers,note-
books, personal digital assistants, mobile phones), and networks
are omnipresent (internet, Bluetooth, GSM). What is important to
notice is that technologies and economical interest are driving to-
day massive developments on both hardware and software. Sadly,
these developments are generallyad hoc, and can not be reused or
extended. These solutions are tailored to suit clients needs and are
therefore closer to dedicated applications than to frameworks for
pervasive computing. Of course, all these economical and tech-
nological factors are important, but they are not sufficient; and to
provide some kind of methodology and software infrastructure is
necessary.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02:UbiAgents Workshop Bologna, Italy
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

2. MULTI-AGENTS PARADIGMS
Multi-agent systems (MAS) rely on some key concepts : the no-

tion of agent, the notion of society and finally the notion of or-
ganization. We will not give here definitions of these notions, as
there are actually no formal definitions available. Instead, we will
describe our propositions for these notions.

An agent should be seen as an empty shell that has only two
abilities : communication and evolution[3]. The first ability allows
us to interact with the agent, while the second one is necessary in
order to tailor the agent to its tasks. Then, all agents are equal
at birth, and evolve by acquiring new skills. These skills enable
them to fulfill the roles they have been assigned in the society they
belongs to. This notion of minimal generic agent is important as it
defines a system level that has not yet been identified in the MAS
field: there are a lot of agent models and agent platforms, butthere
is not a lot of work to identify a common infrastructure amongthese
propositions. Our thesis is that this notion of minimal generic agent
allows us to build any kind of agent model by providing the model
as a skill. Developers only have to define the fundamentals oftheir
agent model through skills.

This notion is strongly related to the notion of role : an agent
can handle multiple roles, and the behavior of these roles are im-
plemented through skills. Software engineering practiceshave pro-
moted the notion of modularization. A skill can be seen as a com-
ponent that accepts and produces some particular kinds of mes-
sages. Then, a skill can be described as a set of couples of mes-
sages. Each couple represents a valid incoming message and its
corresponding answer. A message is defined in an XML language,
and is identified by its grammar and its main tag. As a skill canbe
deployed in several runtime environments, it is important to uncou-
ple its interface from its implementation. Definitions given above
describe the interface of a skill : messages accepted as input and
their answers. The implementation of a skill will depend of the
underlying component model and the runtime environment.

The representation of these informations should be done through
a language independent description. The language we have cho-
sen is DAML+OIL1. From a technical point of view, DAML+OIL
can be thought as a RDF language relying on first order logic to
describe its semantic. Thus, DAML+OIL is the ideal languageto
describe ontologies that can be complex but that remain tractable
in terms of inferences that can be done.

Working with one agent is one thing, but it is of course when
we have to deal with multiple agents that this approach givesits
meaning. An organization is necessary to structure interactions be-
tween roles within the system. This notion brings several important
features : a default communication path between agents, a mean to
logically organize agents, its reification provides a hook to monitor
�

http://www.daml.org

and improve agents interactions. This notion of organization can
be seen as the topology of acquaintances graph. For example,in a
hierarchical organization it will look like a tree, while ina group
based one it will be a sparse graph. Another important feature of
organizations is that they can dynamically evolve to enhance flows
of interactions. This dynamicity of the organization ease the burden
of the designer and provide more reliability to the system.

3. INTERACTION-BASED DESIGN
The main idea is to reify the notion of interaction to give to de-

signers a global view of the interaction on all aspects : coordi-
nation, messages exchanged, skills needed. Thus, an interaction
is made of three components : roles that are involved, messages
that are exchanged, services that are necessary to handle these mes-
sages. Then, an interaction can be seen as an oriented graph where
each node represents a state of the conversation, and edges repre-
sent messages exchanged between these states. Each state islinked
with the service that should handle this part of the conversation,
while edges are typed by the nature of messages. To illustrate these
notions, let us take the example of a simple e-commerce interac-
tion. The figure 1 illustrates what the developer should see while

<xupdate:element name=’cardinfo’>

 $card−info
</xupdate:element>

</xupdate:append>

<xupdate:append select=’/payment’ child=’last’>

<request>

</request>

 <card/>

<card>

 <user>

</card>

 </user>
<number =’5’/>

card−info=/card

<payment>
 <price =’$price’>

<acknowledge/>

</payment>

Debtor BankerCreditorRoles :Interaction : MakePayment

Goal : At the end of the interaction, the client haschoosen an available product

Initiator : Creditor

Ontology : BankOntology

Figure 1: The interaction describing a payment
designing its system : a global view of the coordination and side
effects of an interaction. Regardless of the formalism thatwill
be used to specify interactions (enhanced Dooley graphs, Colored
Petri Nets[1]), the key idea is to keep informations about coordina-
tion and messages handling in one representation.

This representation of the interaction is made of all necessary
informations : the name of the interaction, the roles involved in this
interaction, initiator(s) role(s), ontology that contains the definition
of all messages exchanged, a description of the interactionflow,
and skill interfaces.

In the figure 1, we have chosen a to represent the interaction be-
tween aCreditor, aDebtor and aBanker. The key point of this de-
scription is that all necessary informations are available: roles in-
volved, nature of messages exchanged, skill interfaces necessary to
handle messages, and informations that have to be extractedor in-
serted. It should be noticed that this description is language agnos-
tic, as everything is expressed through XML languages : messages
definition (through DAML+OIL), extraction and insertion ofinfor-
mations (through XPath for localization and XUpdate for modifica-
tions). This global view will be broken down in relation withroles,
so we will be able toinstantiate directly this interaction within the
multi-agent system.

Keeping the global view of interactions is important for design-
ers, but to effectively add the interaction within the system, we need
to define how interactions will be processed in such a way thatde-
velopers should have as little work as possible. Therefore,we have
defined a projection mecanism that can transform the global view
of an interaction into local views for each role. Thus, an agent does
not have to know the whole interaction, he just has to handle infor-
mation that are relative to its role.

This projection is done in relation with roles : it is possible to
build partial view of the global interaction such that agents know
when a new interaction process happens, and which rules should be
applied for this kind of interaction. Figure 2 illustrates the projec-
tion of the MAKEPAYMENT interaction in relation with theCred-
itor role. For this interaction, theCreditor knows that he has to
send a request to receive credit card informations from theDebtor.
Then, he can ask to theBanker to be paid, before receiving an ac-
knowledgement.

<xupdate:element name=’cardinfo’>

 $card−info
</xupdate:element>

</xupdate:append>

<xupdate:append select=’/payment’ child=’last’>

<payment>
 <price =’$price’>

</payment>

<card>

 <user>

</card>

 </user>
<number =’5’/>

card−info=/card

<request>

</request>

 <card/>
<acknowledge/>

Creditor Debtor BankerInteraction : MakePayment Roles :

Goal : At the end of the interaction, the client haschoosen an available product Ontology : BankOntology

Initiator : Creditor

Figure 2: The payment interaction seen by the Creditor role

Despite the simplicity of this e-commerce process example,it
identifies some key features : the process can be described interms
of interactions and can be kept abstract. The main advantageof
such a description is that the developer keeps a global view of the
interaction and delegates to the system the spreading of coordina-
tion handling code.

4. CONCLUSION
Pervasive computing is becoming a reality because of the hard-

ware environment that surrounds people more and more. But, this
availability that provides the user with multiple devices is a major
outcome for designers. They have to develop ad hoc solutionsthat
are time and money consuming, because tools and concepts that
are available today do not fit. We argue that multi-agent systems
concepts are the right metaphors to build pervasive systemsand to
address all these factors. Pervasive computing is inherently based
on interactions.

Thus, multi-agent concepts like : the idea of empty agent that
can evolve, the notion of skill that can be dynamically addedor
removed, the notion of role that allows designers to specifythe
behavior in terms of skills, the notion of interaction, thatgives to
designers a global view of messages flows between entities ofthe
system, are the right metaphors for managing the dynamicityand
complexity of communications in pervasive systems. Specifically,
the notion of interaction gives to the designer a global viewof role’s
interactions, and eases the deployment of new interactionsin the
system. It also vanishes the notion of application, which isreplaced
by an incremental development of the system.

5. REFERENCES
[1] R. Scott Cost, Ye Chen, Timothy W. Finin, Yannis Labrou, and

Yun Peng. Using colored petri nets for conversation modeling.
In Issues in Agent Communication, pages 178–192, 2000.

[2] J. S. Brown M. Weiser, R. Gold. The origins of ubiquitous
computing research at parc in the late 1980s.IBM Systems
Journal, 1999.

[3] JC. Routier, P. Mathieu, and Y. Secq. Dynamic skill learning:
A support to agent evolution. InProceedings of the AISB’01
Symposium on Adaptive Agents and Multi-Agent Systems,
pages 25–32, 2001.

