Ubiquitous computing : vanishing the notion of application

P. Mathieu
Laboratoire d’'Informatique
Fondamentale de Lille
Cité Scientifique 59655
Villeneuve d’Ascq Cedex
mat hi eu@i fl.fr

ABSTRACT

This paper postulates that multi-agent systems are thecfgiice
for the design and implementation of pervasive framewoilkas
claim relies on the idea that the notion of application is a-no
sense in a pervasive environment because of its highly dignam
characteristics. Instead, we propose the use of an iniendzased
design, relying on multi-agent concepts like agents inenatally
built from skills, role decomposition, reification of ineations and
organizations. We will first give a brief overview of availakzon-
cepts and technologies to support pervasive computingydéfi-
troducing our interaction-based design relying on our maliagent
model.

Categories and Subject Descriptors

D.2.2 [Software Engineering: Design tools and techniques; 1.2.11
[Distributed Artificial Intelligence]: Multiagent systems

General Terms
Design, Languages, Standardization

1. INTRODUCTION

Ubiquitous computing has been an old dream that is probably
born when people realized the potential of inter-conneptzdonal
computers. Some works were done in the late 80's[2], thatshe
early interest people had in this idea that computers coailiddbed
within our environment like writings and pictures. Nowadagev-
eral important factors have deeply changed the environmeat
vices are really surrounding peoples (personal computerte-
books, personal digital assistants, mobile phones), ahdonks
are omnipresent (internet, Bluetooth, GSM). What is imgatrto
notice is that technologies and economical interest akéndrito-
day massive developments on both hardware and softwardy, Sad
these developments are generaitihoc, and can not be reused or
extended. These solutions are tailored to suit clientssiaed are
therefore closer to dedicated applications than to framiesvéor
pervasive computing. Of course, all these economical acid-te
nological factors are important, but they are not suffigiamd to
provide some kind of methodology and software infrastmecis
necessary.

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS 02: UbiAgents Workshop Bologna, ltaly

Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

J.C. Routier
Laboratoire d’Informatique
Fondamentale de Lille
Cité Scientifiqgue 59655
Villeneuve d’Ascq Cedex
routier@ifl.fr

Y. Secq
Laboratoire d’'Informatique
Fondamentale de Lille
Cité Scientifique 59655
Villeneuve d’Ascq Cedex
secq@ifl.fr

2. MULTI-AGENTS PARADIGMS

Multi-agent systems (MAS) rely on some key concepts : the no-
tion of agent, the notion of society and finally the notion of o
ganization. We will not give here definitions of these nosioas
there are actually no formal definitions available. Insteael will
describe our propositions for these notions.

An agent should be seen as an empty shell that has only two
abilities : communication and evolution[3]. The first atyilallows
us to interact with the agent, while the second one is nepegsa
order to tailor the agent to its tasks. Then, all agents atmleq
at birth, and evolve by acquiring new skills. These skillside
them to fulfill the roles they have been assigned in the sptiety
belongs to. This notion of minimal generic agent is impadr&sit
defines a system level that has not yet been identified in th& MA
field: there are a lot of agent models and agent platformsthiene
is not a lot of work to identify a common infrastructure amahegse
propositions. Our thesis is that this notion of minimal genagent
allows us to build any kind of agent model by providing the mlod
as a skill. Developers only have to define the fundamentatisenf
agent model through skills.

This notion is strongly related to the notion of role : an agen
can handle multiple roles, and the behavior of these rolesnar
plemented through skills. Software engineering practices pro-
moted the notion of modularization. A skill can be seen asma-co
ponent that accepts and produces some particular kinds f me
sages. Then, a skill can be described as a set of couples ef mes
sages. Each couple represents a valid incoming messagésand i
corresponding answer. A message is defined in an XML language
and is identified by its grammar and its main tag. As a skilllsan
deployed in several runtime environments, it is importantricou-
ple its interface from its implementation. Definitions givabove
describe the interface of a skill : messages accepted at amou
their answers. The implementation of a skill will depend loé t
underlying component model and the runtime environment.

The representation of these informations should be dooedr
a language independent description. The language we have ch
sen is DAML+OIL. From a technical point of view, DAML+OIL
can be thought as a RDF language relying on first order logic to
describe its semantic. Thus, DAML+OIL is the ideal languéme
describe ontologies that can be complex but that remaitetvbe
in terms of inferences that can be done.

Working with one agent is one thing, but it is of course when
we have to deal with multiple agents that this approach giges
meaning. An organization is necessary to structure intiersbe-
tween roles within the system. This notion brings severalrtant
features : a default communication path between agentsaa toe
logically organize agents, its reification provides a hankibnitor

'http://ww. dam . org

and improve agents interactions. This notion of orgarmzatan
be seen as the topology of acquaintances graph. For example,
hierarchical organization it will look like a tree, while agroup
based one it will be a sparse graph. Another important featfir
organizations is that they can dynamically evolve to enbdiuws
of interactions. This dynamicity of the organization edmeliurden
of the designer and provide more reliability to the system.

3. INTERACTION-BASED DESIGN

The main idea is to reify the notion of interaction to give & d
signers a global view of the interaction on all aspects : disor
nation, messages exchanged, skills needed. Thus, anciibeara
is made of three components : roles that are involved, messag
that are exchanged, services that are necessary to haeskerttes-
sages. Then, an interaction can be seen as an oriented gnaph w
each node represents a state of the conversation, and extges r
sent messages exchanged between these states. Eachlistieel is
with the service that should handle this part of the continsa
while edges are typed by the nature of messages. To illagtrase
notions, let us take the example of a simple e-commerceaiciter
tion. The figure 1 illustrates what the developer should skeidew

Interaction : MakePayment Roles : <> Creditor D Debtor O Banker Initiator : Creditor

Goal : At the end of the interaction, the client haschoosen an available product

Ontology : BankOntology

card—info=/card

O =2

<card/> <user>
<Irequest>

<xupdatezappend select="/payment’ child="last">
<xupdate:element name="cardinfo’>
</xupdate:element>
</xupdate:append>
<payment> \
o o)]

$card-info
</payment>

<number ='5"/>
</card>

Figure 1: The interaction describing a payment

designing its system : a global view of the coordination aidé s
effects of an interaction. Regardless of the formalism thidit
be used to specify interactions (enhanced Dooley grapHsyé&b
Petri Nets[1]), the key idea is to keep informations abowirdma-
tion and messages handling in one representation.

This representation of the interaction is made of all neagss
informations : the name of the interaction, the roles inedlin this
interaction, initiator(s) role(s), ontology that contsithe definition
of all messages exchanged, a description of the interaéitbon
and skill interfaces.

In the figure 1, we have chosen a to represent the interaction b
tween aCreditor, aDebtor and aBanker. The key point of this de-
scription is that all necessary informations are availablaes in-
volved, nature of messages exchanged, skill interfacesssacy to
handle messages, and informations that have to be extracted
serted. It should be noticed that this description is lagguegnos-
tic, as everything is expressed through XML languages : agess
definition (through DAML+OIL), extraction and insertion wffor-
mations (through XPath for localization and XUpdate for ifiod-
tions). This global view will be broken down in relation witbles,
so we will be able tonstantiate directly this interaction within the
multi-agent system.

Keeping the global view of interactions is important for iges
ers, but to effectively add the interaction within the systeve need
to define how interactions will be processed in such a waydbat
velopers should have as little work as possible. Therefeechave
defined a projection mecanism that can transform the gldeal v
of an interaction into local views for each role. Thus, amagles
not have to know the whole interaction, he just has to hamdte-
mation that are relative to its role.

This projection is done in relation with roles : it is possilib
build partial view of the global interaction such that agekmow
when a new interaction process happens, and which rulesdsheu
applied for this kind of interaction. Figure 2 illustraté®tprojec-
tion of the MAKEPAYMENT interaction in relation with th€red-
itor role. For this interaction, th€reditor knows that he has to
send a request to receive credit card informations fronDestor.
Then, he can ask to tHganker to be paid, before receiving an ac-
knowledgement.

Interaction : MakePayment

Roles <>(‘1r:d|[m D Debtor O Banker Initiator : Creditor

Goal : At the end of the interaction, the client haschoosen an available product Ontology : BankOntology

ild="last’> !

card-info=/card

OO0~ 5m0
' <user> <price = $price’>
' </payment>

| : <acknowledge/> :
<card/> 1
<Irequest> |
<fuser>
<number ='5'/>

<leard>

Figure 2: The payment interaction seen by the Creditor role

Despite the simplicity of this e-commerce process example,
identifies some key features : the process can be descriltedrs
of interactions and can be kept abstract. The main advarthge
such a description is that the developer keeps a global vigheo
interaction and delegates to the system the spreading oflicae
tion handling code.

4. CONCLUSION

Pervasive computing is becoming a reality because of the har
ware environment that surrounds people more and more. st, t
availability that provides the user with multiple devicesai major
outcome for designers. They have to develop ad hoc solutiats
are time and money consuming, because tools and concepts tha
are available today do not fit. We argue that multi-agentesgst
concepts are the right metaphors to build pervasive sysaehso
address all these factors. Pervasive computing is inHgreased
on interactions.

Thus, multi-agent concepts like : the idea of empty agerit tha
can evolve, the notion of skill that can be dynamically added
removed, the notion of role that allows designers to spettiéy
behavior in terms of skills, the notion of interaction, tigates to
designers a global view of messages flows between entititgeof
system, are the right metaphors for managing the dynamacity
complexity of communications in pervasive systems. Speglfj,
the notion of interaction gives to the designer a global waévole’s
interactions, and eases the deployment of new interaciiotise
system. It also vanishes the notion of application, whiakBaced
by an incremental development of the system.

5. REFERENCES

[1] R. Scott Cost, Ye Chen, Timothy W. Finin, Yannis Labronda
Yun Peng. Using colored petri nets for conversation modelin
In Issues in Agent Communication, pages 178-192, 2000.

[2] J. S. Brown M. Weiser, R. Gold. The origins of ubiquitous
computing research at parc in the late 198881 Systems
Journal, 1999.

[3] JC. Routier, P. Mathieu, and Y. Secq. Dynamic skill léagn
A support to agent evolution. IRroceedings of the AISB’'01
Symposium on Adaptive Agents and Multi-Agent Systems,
pages 25-32, 2001.

