
Artifacts for Time-Aware Agents ∗

Cédric Dinont
USTL/LIFL and ISEN

59655 Villeneuve-d’Ascq, France

cedric.dinont@lifl.fr

Emmanuel Druon
ISEN 41 Bd Vauban

59046 Lille Cedex, France

emmanuel.druon@isen.fr

Philippe Mathieu
USTL/LIFL

59655 Villeneuve-d’Ascq, France

philippe.mathieu@lifl.fr

Patrick Taillibert
Thales Aerospace Division
78951 Elancourt, France

patrick.taillibert@fr.thalesgroup.com

ABSTRACT
Time-aware agents are agents capable of reasoning about
their tasks duration and deadlines, and, more generally, to
manage the temporal aspects of the execution of their tasks.
We first focus on the case of agents in charge of long dura-
tion computations, sustaining that it is not acceptable for an
autonomous agent to remain unaware of its environment for
too long. We then consider deadline meetings when several
time-aware agents share the same CPU. To achieve these
goals, we recognize the importance of the artifact concept
[16]. We introduce computational artifacts for long dura-
tion tasks and a coordination artifact for managing the CPU
agenda and acting as an intermediary when agents negoti-
ate CPU power. Control of computational artifacts is done
thanks to a set of operating instructions dynamically com-
puted by the coordination artifact.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms
Algorithms

Keywords
Coordination, CPU sharing, Artifacts

1. INTRODUCTION
The context of this paper is the design of intelligent agents

that make use of algorithms stemming from Artificial Intelli-

∗This work is partially financed by Thales Aerospace Divi-
sion and the région Nord-Pas-de-Calais.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06 May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

gence research. For example, planification problems in cog-
nitive agents make use of complex algorithms, often heuristic
in nature.

Using such algorithms with very high complexity leads to
execution times highly variable. A problem search space
can have critical regions: for a small variation of input
data, the computing time necessary to find the solution can
tremendously vary and even become prohibitive. Processor
resources needs are thus very fluctuating and difficult to an-
ticipate. That concerns a lot of problems which are solved
by using more or less powerful heuristics.

The implementation of such systems should take into ac-
count the following difficulties:

(i) agents may “lose consciousness”. Even if involved in
long duration tasks, agents should stay permanently
aware of their environment and should be able to pro-
cess information sent by others. On the contrary, an
agent that have to execute long duration algorithms
would be deconnected from the outside world and would
not even realize that its calculation has become use-
less if a received but not processed message had said
so. It would unnecessarily use CPU power that could
be useful to other tasks or other agents.

(ii) agents may be unable to meet their commitments. The
notion of commitment is essential to the rationality of
agents in a multi-agent context. When time is con-
cerned, an agent must be able to guarantee results
within a given deadline, even if it means modifying
its strategy, using an alternative algorithm or giving a
solution of less quality, while respecting its deadlines.

(iii) agents may share the same CPU. This is most often
the case that several agents of a MAS run on the same
CPU and therefore have to share CPU power. In that
case, it is very difficult to ensure that time constraints
will be respected. Solution have to be found since it is
generally unacceptable to assume that agents do not
share the same CPU.

A natural solution to the previous difficulties would be to
split agents having to achieve long duration computation in
two or more parts:

(i) a “main agent”, that would remain aware of its envi-
ronment all the time and hence open to information
coming from other agents,

(ii) one or more “computational agents” in charge of the
long duration computations, the initial agent was con-
cerned with.

It sounds like a good approach, but one may ask if these
computational agents are really autonomous? Their pur-
pose is to work on potentially long computations, so they
can stay away from their environment for long periods of
time. Worse, in order to manage the CPU sharing, the main
agent would need some control facilities allowing it to sus-
pend, restart or even completely stop the execution of its
associated computational agents if necessary.

So even if this solution is technically the good one, one
may legitimately be reluctant to call an agent an entity with
such a damaged autonomy. The solution is to rely upon the
notion of artifact proposed in [20, 17] in place of computa-
tional agents. An artifact is a first class entity of any MAS
giving some kind of functionality that agents use to achieve
their goals.

We will recall artifacts and their modeling in section 2.1
and explain in section 2.2 the way they are used for em-
bodying our computational agents. We can already mention
that even if it will solve the first difficulty previously stated
(avoiding agent “lost of consciousness”), meeting deadline
commitments and sharing CPU still remain an open prob-
lem. This is why we propose in section 3 to use a coordi-
nation artifact which will be in charge of determining time
slices allocated to each computational artifact and provid-
ing the main agent with a set of operating instructions to
control its artifacts. Section 4 explains the way the coor-
dination artifact behaves. Section 5 gives results obtained
on our implementation and section 6 discusses related and
future works in the context of time management in MAS.

2. COMPUTATIONAL ARTIFACTS
We are interested in time-aware agents when they have to

run one or several long duration tasks while being able to
meet the deadlines they are committed to. It requires that
the long duration tasks are run in processes separated from
the one running the agent since, in the other case, the agent
might lose control over its own behaviour, obliged to wait
for the end of the tasks before taking any decision.

A straightforward (but costly) solution would be to run
each task on a separate processor. Nonetheless, in most of
the cases, CPU has to be shared and hence the agent must
be able to control the tasks, that is to decide when to start,
suspend, restart or cancel them in order to meet its own
deadlines. Long duration tasks could be implemented as
agents but one can legitimately wonder about the autonomy
of an agent that can be externally controlled!

That every item of a multiagent system can be imple-
mented as an agent is a point that has already been raised by
Ricci, Viroli and Omicini [20, 17, 16], especially in the case of
coordination agents. Their answer was to introduce artifacts
as a first-class abstraction used to design and program those
aspects of multiagent systems for which the agent abstrac-
tion is not suitable. We suggest that the same approach has
to be adopted for the time-aware agents we are concerned
with.

The following section 2.1 summarizes the artifact concept,
directly borrowing from [20] the process algebra based for-
malism they introduced. Section 2.2 proposes the computa-

tional artifact as an abstraction for implementing the com-
putational activities of time-aware agents.

2.1 The Notion of Artifact
As presented in [20], if agents are conceived as goal-gover-

ned or goal-oriented systems, an artifact is an entity an agent
uses to achieve its goals. Artifacts provide a certain function
that can be exploited as a service.

An artifact is characterized by:

– a usage interface (UI): defined in terms of a set of
operations. These operations are of two kinds: action
execution and perception about the completion of an
action.

– a set of operating instructions (OI): the (formal) de-
scription of how agents can use the artifact.

– a behavior specification: the (formal) description of the
internal behavior of the artifact.

Note that, taking the agent point of view, to exploit a
coordination artifact means to follow its operating instruc-
tions, on a step-by-step basis. Thus, the agent does not have
to know how the functionality is implemented.

We now briefly present the formal model introduced in
[20] that makes use of a process algebra to express operating
instructions. An instruction I ∈ I is expressed as:

I ::= 0 |!α | α |?π | I; I | I + I | (I||I) | D(t1, . . . , tn)

It is defined out from atomic instructions through struc-
tured instructions. Atomic instructions include the void be-
havior (0), the execution of an action α (!α), an action α
being started but not yet completed (α) and a perception
π of action completion (?π). Structured instructions are
the sequential composition of two instructions by operator
“;”, choice by “+”, and parallel composition by “||”. An
instruction can also be an invocation D(t1, . . . , tn) of an-
toher operating instruction. Several structural congruence
rules that we do not mention here express commutativity
and transitivity of previous operators.

Operating instructions evolve as the agent interacts with
the artifact. The possible interaction acts δ ∈ ∆ are the
execution of action α (α) and the perception π of the com-
pletion of α (α : π):

δ ::= α | α : π

This language can be given operational semantics. In the

following rules, notation I
δ
−→I I ′ means that OI state I ∈ I

moves to new state I ′ ∈ I by the occurrence of interaction
act δ ∈ ∆. Notation [t/t′] is used to indicate the substitution
of t by t′ in the continuation of instructions.

I||I ′′ δ
−→I I ′||I ′′ if I

δ
−→I I ′ [PAR]

I + I ′ δ
−→I I ′′ if I

δ
−→I I ′′ and I ′ δ

9I I ′′′ [ECH]

I + I ′ δ
−→I I ′′ + I ′′′ if I

δ
−→I I ′′ and I ′ δ

−→I I ′′′ [LCH]

!α; I
α′

−→I α′; [α/α′]I [ACT]

α; ((?π; I) + I ′); I ′′ α:π′

−−−→I [π/π′](I; I ′′) [COMP]

Rule [PAR] specifies that only one OI is followed at a given
time. Rule [ECH] defines the semantics of exclusive choice:
if I is executed, choices inside I ′ are excluded. Rule [LCH]

instead defines late choice: if interaction δ allows multiple
choices, δ is executed and the choice is deferred to a forth-
coming interaction. Rule [ACT] specifies that if α is the
next action to execute, a specialization α′ of α can be ex-
ecuted, propagating the corresponding substitution in the
continuation of instructions. Rule [COMP] similarly deals
with perception of the completion of an action.

Viroli and Ricci proposed in [20] an extension to the pre-
vious algebra to take into account the notion of timeout in
OIs. The definitions of instructions and interaction acts are
extended as follows:

I ::= . . . | T (n) | ε δ ::= . . . | τ (m)

T (n) is the timeout instruction, with parameter n being the
duration of the timeout. ε is an error state the OI moves
to when a timeout has expired while the OI was waiting for
an interaction. τ (m) is the perception of m clock ticks. As
for previous instructions, following rules give an operational
semantics to the timeout instruction.

T (n); I
τ(m)
−−−→I T (n − m); I if n > m [T-A-PASS]

T (m); I
τ(n)
−−−→I ε if n ≥ m [T-A-EXP]

α; T (n); I
τ(m)
−−−→I α; T (n − m); I if n > m [T-P-PASS]

α; T (m); I
τ(n)
−−−→I ε if n ≥ m [T-P-EXP]

T (n); !α; I
α′

−→I α′; [α/α′]I [T-ACT]

α; T (n); ((π; I) + I ′); I ′′ α:π′

−−−→I [π/π′](I; I ′′) [T-COMP]

Rule [T-A-PASS] deals with time passing when a timeout
is not yet expired and an action is to be made. When the
timeout actually expires, rule [T-A-EXP] makes the OI mov-
ing to the error state ε. Rules [T-P-PASS] and [T-P-EXP]
have the same purpose when a perception is expected: [T-
P-PASS] deals with time passing and [T-P-EXP] makes the
OI moving to error state ε when the timeout expires. Rule
[T-ACT] removes the timeout when the agent decides to ex-
ecute specialization α′ of action α. Rule [T-COMP] acts
the same way when a perception is made before the timeout
expires.

2.2 Computational Artifacts Properties
A generic computational artifact (CA) is an artifact that

is given a computational job to do on some input data, giving
back either results or failure, depending on the input data.
Such a computational artifact needs to be controlled during
its processing by the agent it is associated with. We define
the minimal usage interface as follows: possible actions are
start(input data), pause, restart, stop and possible per-
ceptions are finished(result) and failure(error info).
According to the capabilities of the computational artifacts
really being implemented in some application, we may ex-
tend this basic model. For example, if we want agents to
have the possibility to ask the progress report of the task
currently being executed or being regularly informed of the
progress, the following action and perception will be added:
query progress report, progress report.

As we will see when trying to have several artifacts sharing
the same CPU, we need mechanisms for time representation
and manipulation. Timeouts proposed in [20] intuitively
mean that the agent has to do an action or that a perception
must occur before a given point in time. We also need the

possibility to state that the agent has to do an action after
a given point in time.

Hence, as for the timeout, we extend the definition of
an instruction with the new atomic instruction W (n). The
following operational rules are added:

W (n); I
τ(m)
−−−→I W (n − m); I if n > m [W-T-PASS]

W (m); I
τ(n)
−−−→I I if n > m [W-T-EXP]

Rule [W-T-PASS] deals with time passing when the waiting
time is not over. Rule [W-T-EXP] deals with the expiration
of the delay imposed before being able to deal with next
instruction. Note that there is no [W-ACT] rule. In the
timeout case, an action can be started before the timeout
has expired with rule [T-ACT]. Here, the agent cannot start
an action before the end of the waiting time.

To clarify these notions, here is the example of an OI that
may be used to control and interact with a computational
artifact:

OI := W(10); !start(data);

((T(5); !pause; W(10); !restart; T(5); !stop)

+ ?finished(result)

+ ?failure(error_info))

The agent has to wait 10 time ticks before ordering the arti-
fact to start its task with input data. Then, it has to order
the artifact to pause within 5 time ticks and to restart no
less than 10 time ticks later. Finally, if the work did not fin-
ish (normally or with an error) within 5 time ticks, the agent
has to order the artifact to stop its computational task.

3. A COORDINATION ARTIFACT FOR CPU
SHARING

In this section, we investigate the necessary coordination
between agents to ensure meeting deadlines when they share
a single CPU. We need an entity that can manage the CPU
schedule and that can be used by agents to agree on the
use of CPU power. As said before, this is typically where
artifacts are useful. We thus define a coordination artifact
called CPU Resource Sharing Artifact (CRSA) that gener-
ates operating instructions agents have to use to ensure all
artifacts can meet their deadlines and which acts as an in-
termediary when agents negotiate CPU power.

Figure 1 reports the detailed definitions of the CRSA op-
erating instructions. Def CA Management is the OI used by
agents to interact with the CRSA when they have a com-
putational job to give to a computational artifact, while
Def Negotiation Initiator is the OI used during the pre-
vious process if the CRSA detects inconsistencies raised by
adding the new computational task to the agenda. In this
case, the Def Negotiation Participant OI is engaged so
that other agents can propose to sacrifice a part of the CPU
power they use.

Def CA Management. An agent which wants to delegate a
computational job to a computational artifact first executes
action request(r content). We consider that r content is
a term with four variables: an identifier id, an estimation
load of the CPU power needed to finish the task, a list t c

of timing constraints the work has to respect and ca oi, the
OI that is the object of the request and which is bounded
by the CRSA when no inconsistencies were found in the
scheduling process. It waits for an answer from the CRSA

Def_CA_Management :=

!request(r_content);T(r_timeout);

((?accepted(r_content);((r_content.ca_oi+0)||Def_CA_Management)+

(?rejected(i_rejection);Def_Negotiation_Initiator(i_rejection));

Def_CA_Management));Def_CA_Management

Def_Negotiation_Initiator(i_rejection) :=

!start_negotiation(i_negotiation, i_rejection); T(n_timeout);(

?negotiation_failed+

?negotiation_succeeded(i_negotation))

Def_Negotiation_Participant :=

!get_sacrifice_request;(?finished+(?new_sacrifice_request(s_content);(

T(s_timeout)+

!refuse(s_content)+

(!propose_sacrifice(s_content);(

?commit_sacrifice(s_content)+

?cancel_sacrifice(s_content))))));Def_Negotiation_Participant

Figure 1: CRSA Operating Instructions

Action Precondition

request B possible(r content) & ¬B have oi(r content)

start negotiation B work importance(r content.id, s content.imp)

& B remain work load(r content, s content.load)

get sacrifice request -

refuse B ¬more important(s content, my work)

propose sacrifice B more important(s content, my work)

& B can sacrifice work load(s content.load)

Perception Effect

accepted B have oi(r content.ca oi)

rejected -

negotiation failed B ¬possible(r content)

negotiation succeeded B have oi(i negotiation.r content)

new sacrifice request -

commit sacrifice -

cancel sacrifice -

Figure 2: Semantic link between CRSA OI and agents mental state

for r timeout time ticks. Answer can be an acceptance or
refusal. In first case, the agent can decide or not to follow the
OI r content.ca oi created by the CRSA. When a refusal
is received, the agent tries to negotiate with other agents by
following the OI Def Negotiation Initiator. In each case,
a new call to Def CA Management is made so that the agent
can do a new computational job request.

Def Negotiation Initiator. To simplify the negotiation pro-
cess, we consider that agents have a common means of ex-
pressing the importance of a computational work, so that
an agent that receives a proposal to sacrifice some CPU
power can compare the importance of its works with the
importance of the work it is asked to sacrifice for. The term
i negotiation contains the information of r content and
the information imp, calculated by the agent, that represents
the importance of the requested work. The agent simply ex-
ecutes action start negotiation and waits for an answer
for n timeout time ticks. If negotiation succeeds, the CRSA

generates an OI to control the computational artifact and
binds it to ca oi in i negotiation. Note that the initia-
tor does not have any view on the negotiation process: is it
managed by CRSA internal behavior.

Def Negotiation Participant. A participant to the negoti-
ation protocol executes in a recursive way the action get -

sacrifice request. The perceptions associated to this ac-
tion are finished, indicating that the participation of the
agent to the protocol is over; and new sacrifice request,
indicating that a new sacrifice request s content is avail-
able. The term s content contains information from i nego-

tiation and information s result, calculated by the par-
ticipant, on the sacrifice it can make. When a new sacrifice
request is received, the agent has s timeout time ticks to
answer. It can refuse to sacrifice itself or it can accept, pro-
viding a proposal that will be used by the CRSA to verify
if, with the sacrifice, the new task could be allocated. De-

pending on the case, the CRSA asks the agent to commit or
to forget the proposed sacrifice.

Operating instructions, given alone, are not sufficient to
agents. This is indeed necessary to give to agents enough
information to understand the OI. We thus provide a link
between the operating instructions and the agents mental
state. Figure 2 describes this link in the case of our coordi-
nation artifact CRSA. We use the mentalistic semantics to
actions and perceptions described in [20]. Preconditions in
terms of agent beliefs are attached to OI actions and effects
on agent beliefs to OI perceptions.

Preconditions of actions. An agent issues a request to the
CRSA if it believes that it is possible to achieve the task
(Bpossible(r content)) and if it does not have an operat-
ing instruction to interact with the computational artifact
yet (¬Bhave oi(r content)). Before starting a negotiation,
it fills some fields in the s content term (the importance
and the needed load on CPU of its work). An agent refuses
to sacrifice itself if it believes that its work is more important
than the one in the request (B¬more important(s content,

my work)). On the contrary, it proposes to sacrifice itself if
it believes that its work is less important. The proposition
it does in this case depends on its beliefs of how much work
load it can sacrifice (Bcan sacrifice work load(s content.

load)).
Effects of perceptions. If an agent gets the perception that

its request has been accepted or that the negotiation has
succeeded, it believes that r content.ca oi is bound to a
valid OI it can use to interact with a computational artifact
(Bhave oi(r content)). In case the negotiation failed, it
updates its mental state not to believe it is possible to do
the requested task (B¬possible(r content)).

4. CRSA BEHAVIOR SPECIFICATION
In this section, we describe the internal behavior of the

CRSA. It mainly consists of a scheduling algorithm used to
create the operating instructions it will return to agents. We
overview the properties of such an algorithm, we give some
information about how the scheduling is done and we give
some examples of real generated operating instructions.

The scheduler that we need must have particular proper-
ties. It is constructed on top of the operating system sched-
uler. It can take into account (at its level) that several tasks
can be carried out in parallel. It must manage differently
agents, that are always active, and computational artifacts
whose tasks have deadlines and therefore may be paused
to ensure that other computational artifacts can meet their
deadlines.

We consider that it is interesting to begin tasks as soon as
possible. The behavior of a scheduler like Earliest Deadline
First (EDF) [12], which will entirely execute the task whose
deadline is the earliest and then turn to the next task, is
not adapted to the resolution of a problem by various agents
running different heuristics in parallel. In this kind of ap-
plication, it is interesting to start the various heuristics as
soon as possible and to stop the resolution as soon as one
has found the required solution.

We model this scheduling problem with intervals and sub-
intervals that split the scheduling horizon[4]. Each subinter-
val is characterized by the tasks which are allowed to run
in it. In a subinterval containing n tasks, each task receives
a share of 1/n of the CPU power in this subinterval. The
scheduling problem is reduced to fixing the duration of each

subinterval and is expressed as a linear program solved by
the simplex algorithm.

DL1 DL2 DL3

100%

0%
T0

Processor usage

Time

T1

CA 1

CRSA

AG1

CRSA

AG1

CA3

CRSA

AG1

CA3

CA2

CRSA

AG1

CA 2

CA 1

CA 3

T2

Figure 3: Schedule example

Figure 3 shows an example of such a schedule. There is an
agent, the CRSA and 3 computational artifacts CA1, CA2
and CA3. Each computational artifact is assigned a task
with respective deadlines DL1, DL2 and DL3. We see that
the main agent and the CRSA are considered to be always
running (they are supposed to be fully time-aware), as they
appear in each subinterval. The scheduler has determined
that computational artifacts CA2 and CA3 could run until
T1 while ensuring that CA1 could respect its deadline DL1.
Here is the code of the OI generated by the CRSA for this
example of schedule1.

OI CA1 := W(T0);!start(input data);(

(T(DL1);!stop)

+?failure(error info)+?finished(result))

OI CA2 := W(T0);!start(input data);(

(T(T1);!pause;W(DL1);!restart;T(DL2);!stop)

+?failure(error info)+?finished(result))

OI CA3 := W(T0);!start(input data);(

(T(T1);!pause;W(DL1);!restart;T(T2);!stop)

+?failure(error info)+?finished(result))

As this is not the main concern of the paper, we do not
explain here all the details of the algorithm. The interested
reader may find in [4] the algorithm details, explanations
of implementation concerns and other examples of obtained
schedules.

5. APPLICATION
We used the CPU resources sharing artifact previously

described in a MAS which aim is to localize boats from an
airplane by the sole use of the signal coming from the boat
radars; it is then possible for the plane to stay hidden from
the boats, which remain unaware of being spied. This pro-
cedure is called passive localization. It is useful in several
practical situations such as the prevention of oil dumping
from oil tankers – and also of course in lots of military ap-
plications.
1Note that, in this example, for simplicity reasons, we abuse
notations for timeout and wait instructions by using abso-
lute values of time points instead of durations as arguments
to T and W. For example, we would rather use T(DL1 − tα)
instead of T(DL1) in OI CA1, with tα being the absolute
time the last action was taken at.

The plane (the agent) gets the bearing of the boats on
a regular basis corresponding to the periodicity of the boat
radars. The bearings measured are imprecise of several de-
grees and possibly missing, due to the harsh operating condi-
tions which generally prevail. This approach is comparable
to goniometry but boats and plane are moving, which makes
things really more difficult. The computation of a location
for the plane is only possible when the plane is faster than
the boats, which hopefully is generally the case. This speed
difference is exploited by an interval propagation algorithm
on continuous domain [10] which progressively narrows the
possible area of the boats in combining measurements as
and when they arrive. Interval propagation is especially
well adapted for this task since it allows the incremental ad-
junction of constraints at each new measurement and also
the use of non-linear constraints, in our case trigonometrical
formulas.

Time-awareness is very important for an agent using such
an algorithm since the duration of the computation might
change dramatically due to possible slow convergence occur-
ring in the propagation process [11]. Actions must be taken
to avoid blocking the agent for a long time. Computational
artifacts are a solution since they allow the uncoupling of
the cognitive part of the agent and the time-unpredictable
computation tasks it must carry out. It is then possible for
the agent to decide whether or not the computation must
be stopped, whether or not a new measurement must be
considered...

Our system uses a proprietary Prolog-based interval con-
straint propagator (Interlog [3]) which makes it possible to
specify a time contract when initiating a resolution step.
When the contract expires, if the processing is not already
achieved, Interlog stops and returns the present (interval)
location of the corresponding boat. The agent can decide
whether to resume the propagation and possibly improve
the accuracy of the localization, or to introduce new con-
straints depending on the arrival or not of new measure-
ments. Assuming that the period of the radar is known
(which is practically the case after few measurements) it
should be possible to meet the deadline requiring that the
artifact is available when a new measurement arrives. Such
a requirement is relevant since a new measurement conveys
a more accurate information taking into account the last po-
sition of the boat and the plane. The new measurement is
thus to be considered as soon as possible.

The problem is that the plane has to monitor several boats
at the same time and hence several artifacts are competing
for accessing the CPU. The number of boats under consid-
eration can be chosen by the agent in order to ensure that
all the required processing is feasible. Nonetheless, because
of the de-synchronization between the radars of the boats
(they all have their own period and run independently), it is
impossible to guarantee the meeting of the deadlines with-
out the use of a coordination mechanism such as the one
proposed by the CRSA to manage the CPU.

More formally, the problem is the following:
Let Bi be the boats, the number of which can change over
time, and pi the period of the Bi radar (it is actually an
upper bound since signals might be missing but it becomes
more and more certain in the course of time).

When a new measurement j arrives for boat Bi, a new
task Ti,j is created, the deadline of which is:

DLi,j = T + τi,j , with T the time of arrival and τi,j the
processing duration.

Since few is known about processing duration, the same
value PD is taken and used as a time contract (in CPU
time) for the interval propagator for each new task. Hence:
∀i∀j : τi,j = PD.

At the end of the contract, a result is always available
because, thanks to the monotonicity of the narrowing pro-
cedure used by the interval propagator, there is at anytime
a valid interval encompassing the actual position of the boat
that can be returned.

We ran experiments in a simplified version of the applica-
tion described above to exhibit the benefits of the use of the
CRSA in this application. We compared results obtained in
the following cases:

– when no coordination mechanism is used to manage the
CPU power allocated to computational artifacts. There
is no guarantee that the computation for a measure-
ment will be finished before a new measurement ar-
rives. When this is the case, the artifact continues its
computation until the time contract is reached and the
new measurement is ignored.

– when the CRSA services are used. When the CRSA ac-
cepts to schedule a task, it guarantees that the compu-
tation will finish before the new measurement arrives.
If the new task cannot be inserted in the schedule, the
corresponding measurement is ignored.

We calculated in these two cases the percentages of mea-
surements that were ignored. We used the following values
for the parameters presented above:

– number of boats: 10,
– pi: 5 to 30 seconds (real time),
– PD: 2 seconds (CPU time).

In the first case, 42% of measurements are ignored. Be-
cause of the de-synchronization between the radars, there
are times when many measurements arrive almost at the
same time, increasing the number of ignored measurements;
some time later the CPU can be idlind for some seconds,
all computations being finished and no new measurement
arriving. The use of the CRSA coordination mechanism
brings a significative improvement, with only 7% of ignored
measurements and the CPU being constantly used.

6. RELATED AND FUTURE WORKS
In this section, we explore related work in time manage-

ment in intelligent agent systems with the prospect of im-
proving the notions and (formal) models that were used in
this paper.

Time management is a transverse and vast concept in
MAS [7]. From our point of view, it can be split into three
concerns: (i) temporal reasoning, in which planning and
scheduling are the two topics that interest us most, (ii) ex-
ecution and monitoring and (iii) the link between these two
phases. Item (i) is pointless if nothing is done to manage
point (ii) and the most difficult problem is to unify these
two viewpoints so that the modules that manage them can
interoperate.

Time management already was a key point in Agent-0 [18]:
the language allows agents to schedule commitments they

have to fulfill in the future and the framework is responsi-
ble of calling the corresponding actions when necessary. In
Agent-0, there is a single control loop. On the contrary,
InteRRaP [13] introduced several control layers that are re-
spectively in charge of reactive behavior, planification and
cooperation. There is a clear distinction between the three
points of time management we cited before. To bridge the
gap between temporal reasoning and execution and to allow
temporal verifications, Concurrent MetateM[6] uses agent
specifications that are directly executable, but is limited to
reactive agents.

Several work as also been done to manage unpredictable
hard and soft deadlines that are only known at execution
time. The approach proposed by Adelantado et al. [1]
to this problem uses two levels: a reactive meta-level that
makes the agent aware of its environment and that controls
the base level, which is anytime based. To our point of view,
their approach cannot be applied to a wide range of applica-
tions because of the difficulty to find anytime algorithms for
a particular problem. Moreover, our approach is based on
continuous meta-level reasoning, which can give more flexi-
bility than reactive approach, and the goal of computational
artifacts is to embed legacy code that can have bad temporal
properties.

To deal with this problem of deadline unpredictability,
Lalanda et al. [9] propose to provide run-time flexibility to
agents with multiple choices to realize an action. Agents
have goals with hard or soft deadlines and goals have dif-
ferent priorities. The agents continually reason about their
deadlines to choose the next action that they will execute.
This reasoning is based on a scheduler that ensures deadlines
meeting and a threshold based decision process to interleave
the execution of the agent plans. Lalanda et al. applied their
techniques to an office robot application. The robot is given
tasks as book fetching and delivery, environment learning or
environment inspection. The robot can decide to degrade its
performance if it cannot fulfill all its goals. Our approach
is more or less similar except that the tasks of our agents
are computational tasks. We view time passing as the CPU
time consumed by artifacts. They compete to use the CPU
and agents have to cooperate to obtain the CPU power they
need to meet their deadlines.

Omicini et al. describe in [15] an extension of the Re-
SpecT language to manage time in coordination artifacts.
An extension of the well known dining philosopher problem
is given as example. It manages the case when philosophers
do not release back the chopsticks. The final coordination
policy constraints the maximum time an agent can use the
shared resources. Their approach is to allow coordination
artifacts programs to contain timed instructions (wait, time-
outs, timed insertions/deletions of reactions), while our ap-
proach is to allow agents reason about computation time
passing and cooperate to achieve their goals.

An interesting field of research to improve this work is the
one initiated by IMPACT [2] and extended by Temporal
Agent Programs [5]. Interesting notions like checkpoints
and history could be usefully exploited in our framework.
More generally, having a formal model of algorithms used in
computational artifacts is of great importance. This is the
idea behind anytime computation [22]. However, finding
an anytime algorithm to solve real-world problem is often
impossible. Finding adaptable algorithms is nevertheless the
good way to follow [8, 19]. Moreover, we must go towards

flexibility. Agents must not be in a situation where they are
unable to do anything. They need to have several choices
to respect their temporal constraints and have the means to
do the right choice [21, 14].

Last, but not least, MAS are distributed in nature. We
have thus to extend our CPU Resource Sharing Artifact so
that it can give information to agents about the load of other
CPUs in order to let them decide to migrate.

7. CONCLUSION
In this paper, we investigated one aspect of time-awareness

in multi-agent systems: being able to meet deadlines on
heavily computational tasks in a context of CPU sharing,
while remaining aware of the environment. We showed that
modeling computational tasks with agents in this context is
not satisfying. We used the notion of artifact developed in
[20] to introduce computational artifacts, entities that pro-
vide computational functionalities to agents that use them
to achieve their goals. As this is not sufficient to ensure
deadlines meeting, we also introduced a coordination arti-
fact (the CPU Resource Sharing Artifact) which purpose is
to manage the CPU agenda and to act as an intermediary
when agents need to negotiate to share the available CPU
power. It is worth noting that the CRSA only centralizes
information on the CPU agenda but does not decide any-
thing when a conflict appears in the schedule. Agents keep
entire control on the sacrifice decision process.

8. REFERENCES
[1] M. Adelantado and S. de Givry. Reactive/anytime

agents - towards intelligent agents with real-time
performance. In IJCAI’95 Workshop on Anytime
Algorithms and Deliberation Scheduling, 1995.

[2] K. A. Arisha, F. Ozcan, R. Ross, V. S. Subrahmanian,
T. Eiter, and S. Kraus. IMPACT: A platform for
collaborating agents. IEEE Intelligent Systems,
14(2):64–72, 1999.

[3] B. Botella and P. Taillibert. Interlog : Constraint logic
programming on numeric intervals. 3rd Int. Workshop
on Software Engineering, Artificial Intelligence and
Expert Systems for High Energy and Nuclear Physics,
1993.

[4] C. Dinont, E. Druon, P. Mathieu, and P. Taillibert.
CPU sharing for autonomous time-aware agents. In
COGIS’06, 2006.

[5] J. Dix, S. Kraus, and V. S. Subrahmanian. Temporal
agent programs. Artificial Intelligence, 127(1):87–135,
2001.

[6] M. Fisher. Concurrent METATEM - a language for
modelling reactive systems. In Parallel Architectures
and Languages Europe, pages 185–196, 1993.

[7] M. Fisher, D. Gabbay, and L. Vila, editors. Handbook
of Temporal Reasoning in Artificial Intelligence.
Elsevier, 2005.

[8] E. Horvitz and G. Rutledge. Time-dependent utility
and action under uncertainty. In Proceedings of the
7th conference on Uncertainty in artificial intelligence,
1991.

[9] P. Lalanda and B. Hayes-Roth. Deadline management
in intelligent agents. Technical report, Knowledge
Systems Lab, 1994.

[10] O. Lhomme. Consistency techniques for numeric
CSPs. In IJCAI’93, 1993.

[11] O. Lhomme, A. Gotlieb, and M. Rueher. Dynamic
optimization of interval narrowing algorithms. Journal
of Logic Programming, 19-20, 1994.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time
environment. Journal of the ACM, 20(1):46–61, 1973.

[13] J. Muller and M. Pischel. The agent architecture
InteRRaP: Concept and application, 1993.

[14] N. Muscettola. Incremental maximum flows for fast
envelope computation. In ICAPS, pages 260–269,
2004.

[15] A. Omicini, A. Ricci, and M. Viroli. Time-aware
coordination in ReSpecT. In J.-M. Jacquet and G. P.
Picco, editors, Proc. of COORDINATION 2005,
volume 3454 of Lecture Notes in Computer Science,
pages 268–282. Springer, 2005.

[16] A. Omicini, A. Ricci, M. Viroli, C. Castelfranchi, and
L. Tummolini. Coordination artifacts:
Environment-based coordination for intelligent agents.
In AAMAS’04, 2004.

[17] A. Ricci, M. Viroli, and A. Omicini. Programming
mas with artifacts. In ProMAS’05, 2005.

[18] Y. Shoham. Agent-oriented programming. Artificial
Intelligence, 60(1):51–92, 1993.

[19] R. Vincent, B. Horling, V. Lesser, and T. Wagner.
Implementing soft real-time agent control. Technical
report, 2000.

[20] M. Viroli and A. Ricci. Instruction-based semantics of
agent mediated interaction. In AAMAS’04, 2004.

[21] T. Wagner. Toward Quantified, Organizationally
Centered, Decision Making and Coordination. PhD
thesis, University of Massachusetts, 2000.

[22] S. Zilberstein and A. I. Mouaddib. Reactive control of
dynamic progressive processing. In Proceedings of the
16th IJCAI, 1999.

