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Abstract. In this paper we study Classical Iterated Prisoner’s Dilemma
(CIPD) dynamics of pure strategies in a discrete and determinist sim-
ulation context. We show that, in some very rare cases, they are not
quiet and ordered. We propose a classification of ecological evolutions
into categories which represent complex dynamics, such as oscillatory
movements. We also show that those simulations are very sensitive to
initial conditions. These experimentations could call into question clas-
sical conclusions about interest of cooperation between entities playing
CIPD. They may be used to explain why it is not true that cooperation
is always the convergent phenomenon observed in life.

1 The Classical Iterated Prisoner’s Dilemma

When they were at the RAND Corp. Merill M. Flood and Melvin Dresher

tried to introduce some kind of irrationality in Game Theory, [13, 11]. They
introduced a simple two person, non zero-sum, non cooperative and simultaneous
game, [6]. This game, very simple to describe, covers a large scale of real life

situations and seems to catch the definition of conflicts of interests. Thus a lot of
different kind of work has been done on it, involving not only mathematicians,
but also social, zoological, biological as well as computer scientists. The game
becomes the most used theoretical model for studying the cooperation and the
evolution of cooperation in population of agents.
The game, called the Prisoner’s Dilemma, could be described very simply in
the following way: let us meet two artificial agents having two choices (two
strategies):

– COOPERATE, let us write C, and say to be nice

– DEFECT, let us write D, and say to be naughty

The payoff of each player depends on the moves played by the two agents. Tab.
1 names the score of each case.
The dilemma comes when exploitation of one by the other (T ) is better payed
than cooperation between the two (R), which itself pays more than a case where



Table 1. CIPD payoff matrix. Row player score are given first.

Cooperate Defect

Cooperate
R = 3, R = 3

Reward

for mutual cooperation

S = 0, T = 5
Sucker ’s payoff

Temptation to defect

Defect
T = 5, S = 0

Temptation to defect
Sucker ’s payoff

P = 1, P = 1
Punishment

for mutual defection

the two tried two exploite each other (P ), which finally is a better choice than
to be exploited (S). This can be formalised as:

S < P < R < T (1)

The dilemma stands on the fact that individual interest (Nash equilibrium)
differs from collective one (Pareto issues).
The one shot game, involving rational agents and pure strategies, is solved in
Game Theory by the Nash equilibrium, which is to always betray its partner:
choosing the D strategy. In an iterated version players meet each other more than
one time. The payoff of an agent is then simply the sum of each of its meeting’s
payoff. The game is called the Classical Iterated Prisoner’s Dilemma (CIPD).
In order to favour cooperation over defection the following constraint is added:

S + T < 2R (2)

A classical choice of payoff values, mainly introduced by [1], is given in Tab. 1.
With such an iterated game what the opponent did on previous moves clearly
influences the way an agent will play on next ones. It is then possible to define
more strategies than with the one shot version. Let us define some simple ones,
some of which will be used in our experimentations :

all c corresponds to the C strategy of the one shot game: it always plays C
all d corresponds to the D strategy of the one shot game: it always plays D
tit for tat cooperates on the first move then plays opponent’s previous move.
per cd plays periodically C then D, let us note (CD)∗
per ddc plays (DDC)∗
per ccd plays (CCD)∗
per ccccd plays (CCCCD)∗
soft majo plays opponent’s majority move, cooperating in case of equality
prober plays (DCC), then it defects in all other move if opponent has cooperated

in move 2 and 3, and plays as tit for tat in other cases

The main problem in CIPD study is not only to find good strategies, but also to
understand the dynamic of populations of agents using fixed strategies.



2 Ecological tournaments and other simulations

Two kinds of experimentation are used in litterature to evaluate strategies for
the CIPD:

– The basic one, is to make a two-by-two round robin tournament between
strategies. The payoff of each one would be the total sum of each iterated
game1. A ranking could then be computed according to the score of each
strategy.
The higher a strategy is ranked, the better it is.
As shown in previous work, [4], some cycles between strategies may be found
(A better than B, which is better than C which is better than A), the order
created by this method cannot be considered as total.

– The second kind of experimentation is a kind of imitation of the natural
selection process, and is closely related to population dynamics, but in a
completely discrete context. Let us consider a population of N players, each
one adopting a particular strategy. At the beginning we consider that each
strategy is equally represented in the population. Then a tournament is
made, and good strategies are favoured, whereas bad ones are disadvantaged,
by a proportional population redistribution. This redistribution process, also
called a generation, is repeated until an eventual population stabilisation, i.e.
no changes between two generations.
A good strategy is then a strategy which stays alive in the population for
the longest possible time, and in the biggest possible proportion. This kind
of evaluation quotes the robustness of strategies.
This looks like prey-predator model, but is not. The number of involved
species is not limited to two, interactions between, or into, species are much
more complex, and global population is fixed. Once a population has disap-
peared it has no way to reappear: there is no stochastic perturbations nor
in population distribution, nor in strategies description.

Let us detail the computation method for ecological evolution involving 3 strate-
gies. This will be used to compute results detailed later in this paper.
Suppose that, initially, the population is composed of 3 strategies A, B, C.
At generation n each strategy is represented by a certain number of individuals:
Wn(A) using A, Wn(B) using B and Wn(C) using C.
The payoff matrix of two-by-two meeting between A, B and C is computed and
is thus known. V(A|B) is the score of A when it meets B, etc.
Let us suppose that the total size of the population is fixed and constant. Let
us note it Π .

∀i ∈ [1,∞[, Π = W i(A) + W i(B) + W i(C)

The computation of the score (distributed points) of a player using a fixed strat-
egy, at generation n is then :

1 In our experiments every meeting has the same length (1000 moves), but strategies
can’t guess it.



g
n
(A) = W n(A)V (A|A) + W n(B)V (A|B) + W n(C)V (A|C) − V (A|A)

g
n
(B) = W n(A)V (B|A) + W n(B)V (B|B) + W n(C)V (B|C) − V (B|B)

g
n
(C) = W n(A)V (C|A) + W n(B)V (C|B) + W n(C)V (C|C) − V (C|C)

Let us quote that because of the substractions, computation of g cannot be
simplified. The total points distributed to all involved strategies are :

t(n) = W n(A)g
n
(A) + W n(B)g

n
(B) + W n(C)g

n
(C)

The size of each sub-population at generation n + 1 is finally:

W n+1(A) =
ΠW n(A)g

n
(A)

t(n)
(3)

W n+1(B) =
ΠW n(B)g

n
(B)

t(n)
(4)

W n+1(C) =
ΠW n(C)g

n
(C)

t(n)
(5)

All divisions being rounded to the nearest lower integer.
Classical results on the problem, which have been emphasized by Axelrod in
[1], show that to be good a strategy has to:

– be nice, i.e. not be the first to defect2

– be reactive
– forgive
– not be too clever, i.e. to be simple in order to be understood by its opponent

The well-known tit for tat strategy which satisfies all those criteria, has, since
Axelrod’s book, been considered to be one of the best strategies not only for
cooperation but also for evolution of cooperation.
It is widely accepted that cooperation seems to be the more general adopted
behavior with this model. However it is also clear that there is a gap between
those classical results and what appears in the life-as-it-is. There are not only
nice people. Cooperation, as choice of collective fitness against individual one,
is not the emergent stable behavior in all ecosystems.
The model carries those contradictions in some way. For instance, it is possible
for a naughty strategy population to evoluate better than a nice one, and thus
to win an ecological simulation, as seen in the example set up in Fig. 1.
Cooperation has been thought as a global convergency point of (artificial) living
systems. Definition of ecological evolution, i.e. without any mutation of individu-
als ; simplicity, and small size, of studied population set ; limitation of computing
power, may be explanations of the differences found between formal results and
practical constatations.

2 whereas naughty strategies defects spontaneously at least one time
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Fig. 1. Defectors may be strong

We think that the simplicity criteria in the strategy definition is not good, [5],
and we have thus introduced a strategy called gradual3, which illustrates our
point of view, [2]. We have evaluated it in large environments, [3].
The strategy’s point of view is however not the only one to be taken into account
when trying to understand evolution of cooperation. Population dynamics play
a major role too. So we think it is important to understand it well. In particular
it is important to know if chaotic dynamics are possible.
It may seem easy to find a particular round robin payoff matrix which could
imply complex dynamics in ecological evolutions. But verifying such a matrix
corresponds to some strategy sets, and defining those strategies, is harder. The
only useful way to study dynamics is then to make systematic exploration.
Previous works, [10, 9, 8], have shown that with stochastic strategies, or under
evolutionary conditions, oscillations in evolution of population could often be
found. In those particular cases, the stochastic, i.e. non deterministic, element
could be one of the main explanations to the oscillatory dynamics observed.
Other analytic results are widely spread in the case of population dynamics
computed in a not discrete way, see for instance [7].
As we think that to understand complex cases one has to first understand well
the behavior of simple, we studied the simplest ones. Thus all strategies we will
use in this paper, unlike in [10], are pure in the Game Theory meaning. That is
they are deterministic.

3
gradual cooperates on the first move, then after the first opponent’s defection defects
one time, and cooperates two times, after the second opponent’s defection defects
two times and cooperates two time, . . . , after the n

th opponent’s defection defects
n times and cooperates two times



3 Unexpected dynamics

In most cases, ecological evolutions look like monotonous convergence, which
means that population’s evolution curves are always increasing or decreasing.
The ranking seems to be determined after few steps. In some cases, however,
complex oscillations can be observed. For instance, one can obtain oscillatory
movements, which could be attenuated, increasing or periodic. We have under-
taken to systematically seek such cases, and we have found some which seems
to be at some kind of “edge of chaos”. It is easier to find oscillations with many
strategies but we will see that such oscillations can be found with few ones. In
this paper we have chosen to present only situations with three pure strategies
involved. After having analysed thousands of evolutions, we propose to classify
the phenomena observed in five groups.

3.1 Monotonous convergence

The first of the five groups corresponding to a great majority of cases (99%
in our experiments) and which is often thought to be the only one, is that
of monotonous convergence. Population’s size after such evolution (no or little
change in the movement) stabilizes itself completely (see Fig. 2).
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Fig. 2. Monotonous convergence

3.2 Attenuated oscillatory movements

The second case is the attenuated oscillatory movement one. The size of the
population oscillates with a decreasing amplitude, which leads at the end of the



evolution, as in the first case, to a population stabilization, but this time after
many reversals.
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Fig. 3. Attenuated oscillatory movements

Fig. 3 illustrates this case. Three populations of strategies per ccd, per ddc

and soft majo are conflicting themselves with many oscillations during the first
100 generations and then, gradually, find an equilibrium which is reached with
generation 420 from which no more modification occurs.

3.3 Periodic movements

The third case is the periodic movements one. Population size of the strate-
gies after a potential phase of hesitation recurringly evolves reproducing after
several generations the same combination, without stabilizing (see Fig. 4). On
this example, population size comes at the same point every 37 generation. The
oscillation is never stabilized.
It seems that such phenomena involves strategies which made a cycle in tour-
nament : A is better than B, which is better than C which is better than A. The
nature of those relation may be an explanation of those periodic movements.
Such a phenomenon was recently quoted in [12] in the living world and relates to
populations of lizards. Even if it is not sure that those results could be applied
in the CIPD model, it is useful to notice the coincidence between our three
strategies population periodic movements on the one hand, and the real world
of terrestrial life on the other hand.
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Fig. 4. Periodic movements

3.4 Increasing oscillations

The fourth case, is the increasing oscillations with rupture. The case represented
by Fig. 5 is similar to the precedent one, except that now oscillations are growing.
It leads at the end to a break.
The break is done in profit of per ddc which remains alone, after many oscilla-
tions. This kind of dynamics shows that violent oscillations can allow the survival
of non-cooperative strategies which benefit of the general disorder.
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Fig. 5. Increasing oscillations



3.5 Disordered oscillations

The fifth kind of dynamics gathers the cases which don’t get into the fourth
previous ones. Movements seem disordered. In our experiments these disordered
movements do not last long, therefore we hesitate to use the chaos term. On
Fig. 6, after a strong instability during 250 generations where each of the three
strategies comes very close to death, an equilibrium point is reached.
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Fig. 6. Disordered oscillations

4 Sensitivity to initial conditions

In order to try to complete our opinion on the chaotic aspect of those dynamics
we studied its sensitivity to initial conditions. We found that very small varia-
tions of initial parameters could imply important changes in the phenomenom
observed.

4.1 Sensitivity to population’s size

The transition from a periodic movement to a monotonous one can be made
when the initial size of the population varies from one unit.
In the first experiment of Fig. 7, the CIPD parameters are the classical ones
(the one represented on Tab. 1, T=5, R=3, P=1 and S=0), each match is 1000
meeting long, there are 300 agents using per ccd, 100 using soft majo and 244
using per ddc. Populations evoluate in a periodic movement.
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Fig. 7. Sensitivity of dynamics to population’s size. All parameters are identical except
for the initial size of per ddc which is 244 on the left and 245 on the right

If only one per ddc agent, which is a naughty one, is added then the evolution
is a monotonous convergence.
Variation of one unit in the initial population of a strategy can also change the
winner of the ecological evolution.
In the experiment of the Fig. 8, the conditions are the same as for the previous
ones, except for the size of population. There are 100 per ddc, 159 soft majo,
and 100 per cd. The winner is per ddc. If only one soft majo is added, then
the winner is per cd. It could be noticed that the modified strategy never wins
in any cases.
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Fig. 8. Sensitivity of winner to population’s size. All parameters are identical except
for the initial size of soft majo which is 159 on the left and 160 on the right.

4.2 Sensitivity to game length

A change of the kind of dynamic can be created by the variation of the length
of game (number of iteration of the Prisoner’s Dilemma), which is fixed but
unknown by strategies.
In the experiment of Fig. 9 the CIPD is used (5,3,1,0). There are 300 per ccd,
100 soft majo, and 244 per ddc. When the game lasts 7 moves the dynamic is



a periodic movement and becomes an attenuated oscillary one when the game
is 6 moves long.
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Fig. 9. Sensitivity to game length. All parameters are identical except for the game
length which is 7 moves on the left and 6 on the right.

4.3 Sensitivity to CIPD payoff

A change in the Prisoner’s Dilemma payoff matrix, with respect to inequations
1 and 2, may change the kind of dynamic.
In the experiment of Fig. 10 there are 300 per ccd, 100 soft majo and 244
per ddc. Games last 1000 moves. R, P, and S are the same as in the classi-
cal choice of the Tab. 1, but T=4.6. The dynamic is an increasing oscillation
movement. When T=4.7 then it comes to a periodic one.
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Fig. 10. Sensitivity to CIPD payoff. All parameters are identical except that T=4.6
on the left and T=4.7 on the right.

4.4 Sensitivity to repartition computation method

Dynamics can change with the individual repartition method used in ecological
evolution between two generations (rounding computation method).



In the experiment of Fig. 11 the CIPD parameters are the classical one (5,3,1,0),
games are 1000 moves long, there are 300 per ccd, 100 soft majo and 200
per ddc. If we round the number of individuals as in equations 3, 4 and 5 the
dynamic is a periodic movement, whereas if we use real values (populations are
no more discrete), it comes to an attenuated oscillation one.
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Fig. 11. Sensitivity to repartition computation method. All parameters are identical
except that repartition on the left is done by rounding and uses real value on the right.

Another proof of this sensitivity to rounding computation method is that when
multiplying all proportions by a constant factor, dynamic changes.
In the experiment of Fig. 12, the CIPD parameters are the classical ones (5,3,1,0),
games are 1000 moves long, there are 450 per ccd, 100 soft majo and 1000
per ddc. Dynamic is an attenuated oscillating movement. If all populations are
divided by 10, it becomes an increasing one.
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Fig. 12. Sensitivity to repartition computation method. All parameters are identical
except that populations on the right are divided by 10.

We also note that small modifications in the composition of strategies sometimes
involve the disappearance of the oscillation, or change the winner of an increasing
oscillation. In most of the cases the shape of the curves is different.



5 Conclusion

In some very rare and particular cases, ecological evolution comes to disordered
population dynamics, which we classify into 5 categories. In the periodic cases,
with attenuated or increasing oscillations, there are always some naughty strate-
gies involved, as expected. Sometimes, during the break of an attenuated oscil-
lation the winner is a naughty one. It seems that disorder gives more chance to
not nice strategies and is unfavourable to cooperative ones.
Instability to initial conditions, and the fact that the winner is not always a nice

one, makes the way the population evolves almost unpredictable if using only
round robin tournament results and ecological evolution equations.
It is possible that with highly complex strategies, what seems exceptionnal here
becomes more frequent. If it is the case, this would mean that, unlike the most
accepted interpretation of CIPD, cooperation is not the most frequent attractor
state, when agents with complex behavior are involved.
Social relations would then be unstable by nature because of oscillatory dynamics
leading to break, which benefits to aggressive strategies.
Simulation software with many strategies is already available for all plateforms,
through our web site at http://www.lifl.fr/IPD or by anonymous ftp at
ftp.lifl.fr in pub/projects/IPD.
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