Gauging Agent-Based Trading of a Single Financial Asset
Definition of an Absolute Distance to the Best Behaviour
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Obtaining good (even acceptable) performances with aoctaeagement strategies in finance is a fairly hard
challenge. Theoretically speaking, tenants of the efftaiearket hypothesis claim, with strong arguments,
that a rational investor should stick to a simfiy and Hold” strategy for a correctly diversified portfolio
(see for example Sharpe (1991) or Malkiel (2004)). Saidedéfitly, an active management, linked to hy-
pothetical skills allowing managers to make appropmateket timingandstock pickingdecisions, would
mostly generate transaction costs without real benefiteMbeless, this debate among theoreticians is far
from being closed (see for example Brock, Lakonishok, anBaten (1992), Shen (2003)) as well as the
whole discussion on the profitability of activersuspassive portfolio management styles.

In this paper, we do not discuss the opportunity of such adtvategies based anarket timingnor we
describe an operational process allowing fund managersdodiit how to identify states in the market
where "buying” or "selling” is particularly appropriate.&weither propose a method that rank various active
strategies in terms of risk-return performance (althoughfamework could be extended to this bi-criteria
framework). We rather propose a new method deliveaingbsolute performance indicatgeared towards
the evaluation of a wide range of trading strategies.

We restrict our analysis to the evaluation of strategieslinng the trading of a single asset (which could
be a portfolio or a market index as well). The baseline in tesearch is to identify the maximum profit
one can obtain in trading some financial commodity, undeedgfined set of trading constraints and with
a complete knowledge of its price motion. We show that thisstjon is far from being trivial, even if this
target immediately evokes many popular models that moguéetly prove to be completely inefficient.
Once this optimal strategy identified, we propose to compudistance towards this best behaviour for any
given investment strategy. One potential applicationtfits tiistance is to gauge tlex-postperformance of
investment algorithms or fund management principles theaf@mulatedex-antethe realisation of prices
over which these are deployed. It also provides an altem#dithe classical relative rankings of investment
behaviours delivered by traditional methods. We also elieis scientifically interesting to merely know
this maximum profit even if, to our knowledge, this task hagenéeen clearly proposed before.

We show that this best investment behaviour can be defined) aslinear programming framework and
solved with a Simplex approach. Nevertheless, if this mgtiedheoretically correct, it suffers from severe
limitations in terms of computability (the underlying alifbm being non-polynomial in the worst case). We
therefore propose to embed this question in a graph theamédwork and show that the determination of
the best investment behaviour is equivalent to the ideatitio of an optimal path in an oriented, weighted,
bipartite network. We illustrate these results real dataelsas simulated algorithmic trading methods.
This paper is organised as follow. We first briefly review titerature to present where our research can be
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placed in the existing theoretical landscap®t present in the log abstract versiarla a second section,
we formalise the framework we start from, and give sometitat®ns of the complexity of the optimisation
task. In a third section we present the mathematical framesior solving the problem as well as a new
algorithm for the identification of the best investment babar. In a last section we discuss this latter algo-
rithmic method and provide a series of practical implemiémta to gauge the absolute performance of a set
of automatic trading methods.

1 Elements of the game, formalisation and examples

Consider the idealised situation in which one investor @sdomplete knowledge of a finite series of
financial pricesp’ = {p:|t € [0, n]}, for example daily closing prices for one given stock, indegortfolio.

Let’s admit these prices, defined over a time window= 1,¢t = n],n € N are those at which this
investor has the opportunity to rebalance his portfolid’sieow posit a price-taker frameworke., agent’
decisions cannot affect these closing prices and suffiaritlity at these prices is assumed. We now define
the rules of a game for this investor, or said differentlyedes of rules constraining her behaviour:

e At datet = 1 —beginning of the game —, the investor’'s wealth eqii}sand is completely composed
of cashC1; no financial asset is holddg = 0). In other termsC; = W7.

e Having the knowledge of the entire price series, the idedliavestor must decide for eatke (1,n)
one specific action with regards to the her portfolio, “bugkll” and “stay unchanged”, resp. codBd

S andU. In other terms, the investor has to compose a "sentenceZz®hausing characters i, U, B.

The interpretation of each of these actions is as follows:

Buy: One can writeB if and only if W;,_; = C;_1. If Bis written at date, all the investor’s cash is
converted into assets (delivering a new quantity Agr=# 0). Assuming transaction costs at%
rate,A; = %. Additionally, the first character in any sentence musBbe

Sell: ifand only if A;_; # 0, the investor can writ& and convert his position into cash. Considering
an identical rate of transaction cos{’; = A;—1 X (pr X (1 —¢))

Stay unchanged: Whatever the naturélgf ; (cash or assets), he can also decide to vidiad let his
position unchanged at date W, = W, _;.

e This "sentence” is one investment strategjyover p’ chosen in a set of strategi€s’}.

Each instancé; can be gauged in terms of relative performance using:;. What we propose here is
to determine an absolute performance indicator for eachese instances with respect to the best possible
strategy in{.S} in terms of maximum profitV;,, — W;. As we will show later, this best strategy, denoted
S, is relatively easy to identify when transaction costs areimplemented. On the contrary, when this is
the case, this identification is far more complex.

Basic illustration.
Let’s consider the following (arbitrarily chosen) priceiss:
{100, 120, 90, 160, 126, 150, 140, 160, 110, 170, 168, 180}

It can be illustrated simply on this example that, when nodeation cost minor the benefits one can expect
from trading, the best strategy consists in cumulatingadiitive spreads the price sequence. This strategy
is denotedS1* in Table 1. When transaction costs are implemented, the stnaiegy turns to be far less
interesting (se&'4, Table 1). Some of the trades are simply not profitable indbigext of high transaction
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costs. The optimal strategy when such costs are supportggii¢see same Figure and Table). One can
observe it does not consist in realising all profitable tea@®soon as they are observed in the price sequence
(for example “Buy” in position 9 and “Sell” in position 10}t iis obviously not the same as in the situation
where there is no transaction costs. Notice that which is similar toS2*, but in a transaction-cost free
framework, is not as interesting 43 *.

Table 1. Some Strategies among i’ potentialsentences

t 1 2 3 4 5 6 7 8 9 10 11 1, - W,
p: 100 120 90 160 126 150 140 160 110 170 168 180

‘ﬁSl* B S B S B S B S B S B S 48061
oS4 U UB S B U U S B U U S 36941
=S2*U UB S B U U S B U U S 20233
1 S3B S B S B S B S B S B S 14418
©S5U UBUUUU U U U U S 163.64

A trivial method to solve this problem is to generate all plolessentences and to compute the net
earning one can obtain with them to identHy. This set is of finite siz&"™. As we will show now, there are
at least two ways to improve efficiently the determinationha&f optimal strategy', whatever the level of
transaction costs. One is based on a simplex method, theistbhased on the search of an optimal path in

an oriented bipartite network.

2 Mathematical models : a linear programming method and seath in graphs

In this section, we show that the identification$f can be described as a linear programming problem with
a classical Simplex solution. Unfortunately, this apptoaaelatively inefficient since the Simplex algorithm
is non-polynomial in the worst cased, one can lack the necessary computing resources to obtasul r

as soon as the size gf becomes important.)

Initial simplification

Before formal results are presented, we introduce two #rasithat are necessary to find the solution of the
Sx determination problem. These preliminary elements ainsgaplifying the solution we propose. These
simplifications are not presented in the short version papgesy allow to transform the price sequenge

in a filtered price sequengfg only containing extremum points g (that is,peaksandtroughsThe second
—
simplification allow to identify infp two vectors of prices fopotential’buy” and "sell” actions respectively
— —_—
denotedfpg and fps. These simplifications are grounded on theorems we prove.

A linear programming method for the identification of S* —not present in the short version—

Embedding the identification of S* in a Graph structure

Let each price irf—;; be depicted as a vertex in a network. We can construct a liggantiented and weighted
networkJ\/(E, fre, fps) connecting points irfpp (where one can only "buy*cf. theorem 1}-and fps
(where one can only "sel-idem-).
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The S * —determination algorithm

In this section we develop a new algorithm adapted to theuhtation of S« in the graph framework. This
algorithm derives from a technique exposed by Floyd (198&)first introduce some notations and present
the Floyd shortest-path algorithm; then we exposesthe-determination algorithm itself.

(i) Identifying the shortest path itV with the Floyd algorithm-not present in the short versian—
(ii) Towards theS x —determination algorithm

If the Floyd algorithm is performed with traditional maxigation instead of minimisation operation, this
algorithm will produce thenaximum longest path

However, we must consider that the absence of an arc mustdrpiieted as a lengthoo, whereas in the
shortest-path problem the absence of an arc is interpretediength of+oo. Thus, for the longest path
problem, the matrixD? initialising the procedure consists of arc lengths ang wherever no arc appears.
In order to simplify the algorithm, edges among elemen% with length 0 are allowed. This convention
is necessary to find the longest path between not every paiertites in the graph, but the longest path
between the first vertex ing> to every other vertex.

The other modification we introduce is to prohibit backwarods in the network.

The pseudo-code of the x —determination algorithm is as follows:

for k=1 to n
for j=k to n
path[ O] [j]=max ( path[O][j], path[O][k]+path[k][j])

(i) Operating theS « —determination algorithm—not present in the short versian—
3 Discussion and Empirical illustrations

We provide a series of illustrations on how to determtireover various financial time series (a series of
stocks observed on EURONEXT-NYSE at time scales ranging firdra-day tick-by-tick data to weekly
data). Figure 1 presents« computed using the closing value of the Dow-Jones indexwaadteach day be-
tween 2/12/1980 and 20/02/2009. One can notice the enorpwtestial profit one could obtain in behaving
optimally in this time window. This is mainly due its lengthdato the perfect knowledge one have over the
price sequence. Obviously, what is really hard for investisrthat the do not have such a perfect knowledge
of the future. Therefore they just can build their own s&té using expectations or predictions. Therefore,
one cannot blame ex-ante trading rules not to perform asasadk-post optimisation techniques such as the
one we develop in this paper. Nevertheless, one can rematrk {f) even if they have had access to such a
perfect knowledge, it is not so evident investors would Haeteave optimally (identifying'« being far from

a trivial task), (ii) even the best trading rules, the begbathmic trading methods, should be gauged with
respect to this maximum profit rule to judge how they abstjygerform.

From a practical point of view, thg x —determination algorithm can be used to select automatic
trading agents on a short-range investment horizon (lessdhe year). We therefore illustrate the absolute
performance of a series of autonomous artificial agentsddiio perform as well as possible over the same
time series using various techniques (mainly chosen inghefg¢echnical trading rules).
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