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Obtaining good (even acceptable) performances with activemanagement strategies in finance is a fairly hard
challenge. Theoretically speaking, tenants of the efficient market hypothesis claim, with strong arguments,
that a rational investor should stick to a simple”Buy and Hold” strategy for a correctly diversified portfolio
(see for example Sharpe (1991) or Malkiel (2004)). Said differently, an active management, linked to hy-
pothetical skills allowing managers to make appropriatemarket timingandstock pickingdecisions, would
mostly generate transaction costs without real benefit. Nevertheless, this debate among theoreticians is far
from being closed (see for example Brock, Lakonishok, and LeBaron (1992), Shen (2003)) as well as the
whole discussion on the profitability of activeversuspassive portfolio management styles.
In this paper, we do not discuss the opportunity of such active strategies based onmarket timingnor we
describe an operational process allowing fund managers to find out how to identify states in the market
where ”buying” or ”selling” is particularly appropriate. We neither propose a method that rank various active
strategies in terms of risk-return performance (although our framework could be extended to this bi-criteria
framework). We rather propose a new method deliveringan absolute performance indicatorgeared towards
the evaluation of a wide range of trading strategies.
We restrict our analysis to the evaluation of strategies involving the trading of a single asset (which could
be a portfolio or a market index as well). The baseline in thisresearch is to identify the maximum profit
one can obtain in trading some financial commodity, under a predefined set of trading constraints and with
a complete knowledge of its price motion. We show that this question is far from being trivial, even if this
target immediately evokes many popular models that most frequently prove to be completely inefficient.
Once this optimal strategy identified, we propose to computea distance towards this best behaviour for any
given investment strategy. One potential application for this distance is to gauge theex-postperformance of
investment algorithms or fund management principles that are formulatedex-antethe realisation of prices
over which these are deployed. It also provides an alternative to the classical relative rankings of investment
behaviours delivered by traditional methods. We also believe it is scientifically interesting to merely know
this maximum profit even if, to our knowledge, this task has never been clearly proposed before.
We show that this best investment behaviour can be defined using a linear programming framework and
solved with a Simplex approach. Nevertheless, if this method is theoretically correct, it suffers from severe
limitations in terms of computability (the underlying algorithm being non-polynomial in the worst case). We
therefore propose to embed this question in a graph theory framework and show that the determination of
the best investment behaviour is equivalent to the identification of an optimal path in an oriented, weighted,
bipartite network. We illustrate these results real data aswell as simulated algorithmic trading methods.
This paper is organised as follow. We first briefly review the literature to present where our research can be
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placed in the existing theoretical landscape–not present in the log abstract version–. In a second section,
we formalise the framework we start from, and give some illustrations of the complexity of the optimisation
task. In a third section we present the mathematical frameworks for solving the problem as well as a new
algorithm for the identification of the best investment behaviour. In a last section we discuss this latter algo-
rithmic method and provide a series of practical implementations to gauge the absolute performance of a set
of automatic trading methods.

1 Elements of the game, formalisation and examples

Consider the idealised situation in which one investor has the complete knowledge of a finite series of
financial prices−→p = {pt|t ∈ [0, n]}, for example daily closing prices for one given stock, indexor portfolio.

Let’s admit these prices, defined over a time window[t = 1, t = n], n ∈ N are those at which this
investor has the opportunity to rebalance his portfolio. Let’s now posit a price-taker framework,i.e., agent’
decisions cannot affect these closing prices and sufficientliquidity at these prices is assumed. We now define
the rules of a game for this investor, or said differently, a series of rules constraining her behaviour:

• At datet = 1 –beginning of the game –, the investor’s wealth equalsW0 and is completely composed
of cashC1; no financial asset is hold (A1 = 0). In other terms,C1 = W1.

• Having the knowledge of the entire price series, the idealised investor must decide for eacht ∈ (1, n)
one specific action with regards to the her portfolio, “buy”,“sell” and “stay unchanged”, resp. codedB,
S andU. In other terms, the investor has to compose a ”sentence” of size n using characters inS,U,B.
The interpretation of each of these actions is as follows:
Buy: One can writeB if and only if Wt−1 = Ct−1. If B is written at datet, all the investor’s cash is

converted into assets (delivering a new quantity forAt 6= 0). Assuming transaction costs at ac%
rate,At = Wt−1

pt×(1+c) . Additionally, the first character in any sentence must beB.
Sell : if and only if At−1 6= 0, the investor can writeS and convert his position into cash. Considering

an identical rate of transaction costsc, Ct = At−1 × (pt × (1 − c))
Stay unchanged: Whatever the nature ofWt−1 (cash or assets), he can also decide to writeU and let his

position unchanged at datet : Wt = Wt−1.
• This ”sentence” is one investment strategySi over−→p chosen in a set of strategies{S}.

Each instanceSi can be gauged in terms of relative performance usingSj,j 6=i. What we propose here is
to determine an absolute performance indicator for each of these instances with respect to the best possible
strategy in{S} in terms of maximum profitWt+n − Wt. As we will show later, this best strategy, denoted
S∗, is relatively easy to identify when transaction costs are not implemented. On the contrary, when this is
the case, this identification is far more complex.

Basic illustration.

Let’s consider the following (arbitrarily chosen) price series:

{100, 120, 90, 160, 126, 150, 140, 160, 110, 170, 168, 180}

It can be illustrated simply on this example that, when no transaction cost minor the benefits one can expect
from trading, the best strategy consists in cumulating allpositive spreadsin the price sequence. This strategy
is denotedS1∗ in Table 1. When transaction costs are implemented, the samestrategy turns to be far less
interesting (seeS4, Table 1). Some of the trades are simply not profitable in thiscontext of high transaction
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costs. The optimal strategy when such costs are supported isS3∗ (see same Figure and Table). One can
observe it does not consist in realising all profitable trades as soon as they are observed in the price sequence
(for example “Buy” in position 9 and “Sell” in position 10). It is obviously not the same as in the situation
where there is no transaction costs. Notice thatS4, which is similar toS2∗, but in a transaction-cost free
framework, is not as interesting asS1∗.

Table 1.Some Strategies among all2
12 potentialsentences

t 1 2 3 4 5 6 7 8 9 10 11 12W12 − W1

pt 100 120 90 160 126 150 140 160 110 170 168 180

c
=

0 S1∗ B S B S B S B S B S B S 480.61
S4 U U B S B U U S B U U S 369.41

c
=

0
.1 S2∗ U U B S B U U S B U U S 202.33

S3 B S B S B S B S B S B S 144.18
S5 U U B U U U U U U U U S 163.64

A trivial method to solve this problem is to generate all possible sentences and to compute the net
earning one can obtain with them to identifyS∗. This set is of finite size2n. As we will show now, there are
at least two ways to improve efficiently the determination ofthe optimal strategyS∗, whatever the level of
transaction costs. One is based on a simplex method, the other is based on the search of an optimal path in
an oriented bipartite network.

2 Mathematical models : a linear programming method and search in graphs

In this section, we show that the identification ofS∗ can be described as a linear programming problem with
a classical Simplex solution. Unfortunately, this approach is relatively inefficient since the Simplex algorithm
is non-polynomial in the worst case (i.e., one can lack the necessary computing resources to obtain a result
as soon as the size of−→p becomes important.)

Initial simplification

Before formal results are presented, we introduce two theorems that are necessary to find the solution of the
S∗ determination problem. These preliminary elements aims atsimplifying the solution we propose. These
simplifications are not presented in the short version paper. They allow to transform the price sequence−→p ,
in a filtered price sequence

−→
fp only containing extremum points of−→p (that is,peaksandtroughs.The second

simplification allow to identify in
−→
fp two vectors of prices forpotential”buy” and ”sell” actions respectively

denoted
−−→
fpB and

−−→
fpS . These simplifications are grounded on theorems we prove.

A linear programming method for the identification of S∗ –not present in the short version–.

Embedding the identification ofS∗ in a Graph structure

Let each price in
−→
fp be depicted as a vertex in a network. We can construct a bipartite, oriented and weighted

networkN
(

E,
−−→
fpB,

−−→
fpS

)

connecting points in
−−→
fpB (where one can only ”buy”–cf. theorem 1–) and

−−→
fpS

(where one can only ”sell”–idem–).
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The S ∗ −determination algorithm

In this section we develop a new algorithm adapted to the determination ofS∗ in the graph framework. This
algorithm derives from a technique exposed by Floyd (1969).We first introduce some notations and present
the Floyd shortest-path algorithm; then we expose theS ∗ −determination algorithm itself.

(i) Identifying the shortest path inN with the Floyd algorithm–not present in the short version–.

(ii) Towards theS ∗ −determination algorithm

If the Floyd algorithm is performed with traditional maximisation instead of minimisation operation, this
algorithm will produce themaximum longest path.
However, we must consider that the absence of an arc must be interpreted as a length−∞, whereas in the
shortest-path problem the absence of an arc is interpreted as a length of+∞. Thus, for the longest path
problem, the matrixD0 initialising the procedure consists of arc lengths and−∞ wherever no arc appears.
In order to simplify the algorithm, edges among elements of

−−→
fpB with length 0 are allowed. This convention

is necessary to find the longest path between not every pair ofvertices in the graph, but the longest path
between the first vertex in

−−→
fpB to every other vertex.

The other modification we introduce is to prohibit backward loops in the network.
The pseudo-code of theS ∗ −determination algorithm is as follows:

for k=1 to n
for j=k to n

path[0][j]=max ( path[0][j], path[0][k]+path[k][j])

(iii) Operating theS ∗ −determination algorithm–not present in the short version–.

3 Discussion and Empirical illustrations

We provide a series of illustrations on how to determineS∗ over various financial time series (a series of
stocks observed on EURONEXT-NYSE at time scales ranging from intra-day tick-by-tick data to weekly
data). Figure 1 presentsS∗ computed using the closing value of the Dow-Jones index as itwas each day be-
tween 2/12/1980 and 20/02/2009. One can notice the enormouspotential profit one could obtain in behaving
optimally in this time window. This is mainly due its length and to the perfect knowledge one have over the
price sequence. Obviously, what is really hard for investors, is that the do not have such a perfect knowledge
of the future. Therefore they just can build their own strategy S using expectations or predictions. Therefore,
one cannot blame ex-ante trading rules not to perform as wellas ex-post optimisation techniques such as the
one we develop in this paper. Nevertheless, one can remark that : (i) even if they have had access to such a
perfect knowledge, it is not so evident investors would havebehave optimally (identifyingS∗ being far from
a trivial task), (ii) even the best trading rules, the best algorithmic trading methods, should be gauged with
respect to this maximum profit rule to judge how they absolutely perform.

From a practical point of view, theS ∗ −determination algorithm can be used to select automatic
trading agents on a short-range investment horizon (less than one year). We therefore illustrate the absolute
performance of a series of autonomous artificial agents trained to perform as well as possible over the same
time series using various techniques (mainly chosen in the set of technical trading rules).



Gauging Agent-Based Trading of a Single Financial Asset 5

1e
+

03
1e

+
06

1e
+

09
1e

+
12

1e
+

15

Date

P
or

tfo
lio

 V
al

ue

1980 1985 1990 1995 2000 2005 2010

S*_00

S*_05

Dow−Jones

Fig. 1.S∗ with resp.c = 0% andc = 0.5% and Dow-Jones Index (y axis in log scale)
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