
Dynamic Skills Learning : a Support to Agent Evolution

JC. Routier ; P. Mathieu ; Y. Secq
Laboratoire d’Informatique Fondamentale de Lille
Cité Scientifique 59655 Villeneuve d’Ascq Cedex

froutier,mathieu,secq g@lifl.fr

Abstract

In this paper, we show that every agent can be built from an atomic agent through dynamicskill acquisition, a skill being
a coherent set of abilities. At first, we propose a definition of anatomic agentand then we present the skill notion. In
our work, since an agent is defined by the set of roles he can play according to the skills he has learned, we can consider
that skills are the backbone of agents. We propose that the learning be dynamic and thus agents can effectively evolve
during their “life”. That means that the roles he plays can change. This approach promotes evolutivity, reusability and
modularity.
These concepts have been applied to our own multi-agent system model, called MAGIQUE. It is based on hierarchies of
agents (or agents recursively built from agents depending on the vision). This organisation provides an automatic dele-
gation of the exploitation of skills between agents, that contributes to the simplicity and adaptability of MAS building.
An API that implements these ideas has been developed and of the corresponding API that. It provides an easy to use
framework to build multi-agent applications where agents effectively dynamically evolve.

1 Introduction

The agenthood in an application is often hidden inside
the programmer’s mind (Shoham (1993); Travers (1996)).
This has contributed to the rise of various definitions of
the agentterm (see Franklin and Grasser (1996)), and it
is not a difficult task to collect a great amount of different
definitions. The intersection between all these definitions
is often not empty but they differ, sometimes slightly, by
some functionalities that are basic for each model.

Starting from this observation, we want to try to pro-
pose a basis above which every other definitions could be
settled. Our purpose is to define anatomic agentwhich
can evolve dynamically in different ways in order to match
the different notions that are introduced.

Our central point is the notion ofskill. It denotes a
coherent set of abilities that can be “given” to an agent.
The principle is to start from an atomic agent and then to
teachhim some skills in order to build the wanted agent.
The “result” depends on the teached skills and therefore
different kinds of agents can be reached. Moreover the
teaching can also be done during the agent activity and
thus an agent can evolve dynamically, that means that the
role he plays changes.

From a programming point of view, this approach pro-
motes reusability and modularity because once a skill has
been developed, it can be used many times in different
contexts. Indeed, in this vision, a skill can be considered
as a software component (for one other approach building
agents from components see Horling and Lesser (1998)
for example).

We claim that the different concepts for agents can be

developped from that basis. As an illustration we have ap-
plied it to our own multi-agent model named MAGIQUE
1 (Bensaid and Mathieu (1995, 1997)). It is based on a
hierarchic (or recursive) vision of a multi-agent systems.
MAGIQUE is a multi-agent framework. We insist on the
term framework: MAGIQUE is not a multi-agent system
(MAS) but a support to build MAS. And as this, it allows
the programmer to define his own policies for agent and
MAS building since MAGIQUE gives to him the primi-
tives to do it. In particular, MAGIQUE is based on the
previously mentioned principle of building agent through
skill acquisition. And then MAGIQUE provides the tools
required to develop multi-agent applications where the
agents dynamically evolve through skill acquisition. How
the learning is done is the application part. Consequently,
the ideas that issues from learning/acquisition works can
be effectively put into concrete form with MAGIQUE.

Before we continue, a precision must be made. Through-
out the following we are going to use the term “skill learn-
ing”. This term could lead to confusion. Maybe the terms
“skill acquisition” or “skill exchange” would be more fit-
ted. We do not mean with the term “skill learning” that the
agent learns from observation or some convergence algo-
rithm. Rather, we mean that the agent has acquire a new
skill that has been given to him by another agent (called
the teacher, this can or not lose the skill when he gives it).

Thus, we present first a model, where the agents are
dynamically built by dynamic skill acquisition and sec-
ond an application framework, where multi-agent appli-

1Magique stands for the french “Multi-AGent hi´erarchIQUE” that
(obviously) means... “hierarchical multi-agent”.

cations can be built according to this model. This pro-
vides the tools to perform the dynamic skill exchange and
acquisition between agent. Let us note, that since it is a
framework, the application part, such as the policies used
to decide when a skill must be acquire or not, is left to the
user.

The first section presents definitions: skills and agents.
In the second one we give a brief description of our model
MAGIQUE. The third should give an idea of the corre-
sponding API that provides an easy to use framework to
build applications where agents effectively dynamically
evolve. Last we write some words about an application
example where dynamic evolution of roles through skill
is used.

2 Agent from Atomic Agent

2.1 Definitions

2.1.1 Skills

An agent isone who acts. In order to perform some ac-
tivity, he must have theskill to do it. We define a skill as
follows:

Definition 1 A Skill is a coherent set of abilities.

Then, a skill is a set of functionalities that can be ex-
ploited by an agent. We want everything being defined in
term of skills, even the way an agent manages his skills.
One could speak of meta-skills in this case, and even these
should be able to dynamically evolve as explained before.

From a more pragmatic view, a skill should be seen as
a software component whose public interface constitutes
the abilities a capable agent can use.

The granularity and degree of complexity of a skill
can not be definitively stated. The ability to parse an XML
message or the ability to add two integers can each rep-
resent a skill although their complexities will probably be
considered as being of different levels.

Moreover, whether you must group the four basic op-
erations (addition, subtraction, multiplication and divi-
sion) of integers in one skill or separate them in four skills,
can not be definitively established. However it should be
possible to reach a general agreement by saying that XML
parsing and addition should be set in two different skills.
That is what the “coherent” means in the previous defini-
tion.

Stated that to a skill should correspond only one abil-
ity (or conversely) could seem reasonable, but answer is
not so easy, and in any case this will probably not with-
stand the confrontation with the reality of programmers...
The problems that arise here are some common ones en-
countered in software engineering, and in OOP in partic-
ular, concerning (object) decomposition.

2.1.2 Agents

Now, the following definition should be able to receive a
rather general agreement:

Definition 2 An Agentis an entity gifted of skills.

Any property commonly linked to the agent notion –
such as proactivity, interactivity, intelligence, etc. – can
indeed be expressed in term ofskills. Therefore, it seems
reasonable to say that all agent definitions, as those cited
in Franklin and Grasser (1996), can be obtained from this
one: the differences between two given agent definitions
come from the basic functionalities assigned to the agents,
that is from their skills.

However, for that reason, this definition can also be
taxed as being too nebulous since it allows many inter-
pretations depending on the skills attached to the agent.
Thus we are going to precise it by stating a minimal set of
skills.

We assert that only two prerequisite skills are neces-
sary and sufficient to define anatomic agentfrom which
every other agent definition can be established. These
skills are: first, one skill that allows the agent to acquire
new skills, and second, one skill for communications (with
other agents – who could be human or software agents).

These skills are indeednecessary. Without the “skill
acquirement” skill, such an agent is just an empty shell
unable to perform any task. Without the interaction skill,
an agent is isolated from the “rest of the world” and there-
fore loses any interest. Moreover without communication
an agent will not be able to learn new skill from others.

They aresufficienttoo since it suffices to an agent
to use his interactive skill to get in touch with a gifted
agent and then to use his acquirement skill to acquire
some new talent. Then every aptitude can be given to an
agent through learning from a “teacher”.

Consequently we propose the following new agent def-
inition:

Definition 3 An atomic agentis an entity gifted of two
skills: one to interact and one to acquire new skills. An
agent is an atomic agent who has acquired skills from
communications.

We claim that every agent proposed by the various ex-
isting definitions match this definition. Thus an agent us-
ing KQML is an agent gifted of such a “KQML under-
standing” skill; another who can encrypt his messages is
an agent gifted of a code/decode skill (whatever algorithm
is used), etc. At a more conceptual level, the notions of
role and group, that are the core of the Aalaadin model
Ferber and Gutknecht (1998), can also be translated in
term of skills and this model could then be described in
such terms (you must have skills to join or leave a group,
to communicate inside a group, etc.).

Let us note that this is not the skills themselves that
are important but rather their functionalities. Thus, we

can imagine that the interactive skill used by an agent can
change during his life cycle, because he learns a new one
for example. The important point is not that the agent
have a particular interactive skill, but that the agent al-
ways has the ability to communicate (and similarly for
the “learning” skill).

With no intention to enter into a philosophical de-
bate, we can meanwhile note that this definition applies
to the “human agent” who, since he can communicate
and is able learn new knowledge, can evolve step by step
through interactions with others (human and environment)
agents. And communication (through only the five senses
at the beginning and, after some times of evolution, with
the contribution of the language later) and learning abili-
ties seems to be effectively its sole attributes at the begin-
ning of his life, and they allows a complete and variable
education. Moreover, people who suffers from commu-
nication or learning troubles have difficulties to join the
community (the “human MAS”).

2.2 Agent Education

Thus we can consider that all agents are at birth (or cre-
ation) similar (from a skill point of view): a shell with
only the two above previously described skills.

Therefore the differences between agents issue from
their education, i.e. the skills they have acquired dur-
ing their “existence”. These skills can either have been
given during agent creation by the programmer, or have
been dynamically learned through interactions with other
agents2.

2.3 Advantages

This paradigm, dynamic construction of agent from skills,
has several advantages from a programming point of view.

development becomes easierBuilding an agent is teach-
ing him some skills. Then agent programming is
“reduced” to skill programming, but once a skill
have been developed it can be used in different con-
texts.

Skills can be seen assoftware components, with all
the advantages linked to this notion : modularity,
reusability, etc.

efficiency An agent can decide to delegate the achieve-
ment of some task to another one (if this one ac-
cepts it). But this has a cost (due to communication
for example) and is dependent upon the “good will”
of the other. That’s why in some case, if he has to
often perform the same task, an agent can “prefer”
to learn a skill and thus remove the need to delegate
its achievement.

2now if we consider the programmer as an agent, the first case is
included in the second one

On the other side, if an agent “feels” he is over-
whelmed by requests from others to exploit one of
his skills, he can choose to teach it to some other
agent(s) (those could be agent he has created and
teached in this specific goal), to lighten his burden.

robustness If for some reason an agent has to disappear
from the MAS and he owns some critical skill, he
can teach it to some other agent in the MAS and
thus warrant the continuity of the whole MAS.

autonomy and evolutivity During his “life” a given skill
of an agent can evolve and be improved, and new
skills can be added. Then the agent increases his
abilities and his autonomy.

dynamic evolution When a skill of an agent need to be
changed (a priori “improved”), you do not have to
achieve the classical (and boring) cycle: “stop it,
change source, compile and restart”. The new skill
can be dynamically teached to the agent (who must
forget the older one). This could be particularly im-
portant for a “long life” agent who is dedicated to
some role that does not withstand any interruption.

size optimisation If you consider an agent with low mem-
ory (like on organisers or cellular phones), you can
chose to load your agent with only the skills re-
quired at a given time (and unload others).

2.4 Role evolution

With this dynamic evolution, the important point is that it
is in fact the roles the agent can play inside the MAS that
change. So the MAS in its whole evolves and can adapt
according to the current flow between agents.

With this possibility of dynamic evolution of agent,
you can no more use the term of “class” of agents. Even
if you start from a common basis for different agents, as
they can (and probably will) receive a different education
due to their “experience”, they will soon differ and it will
eventually be impossible to consider them as belonging
to a same “class”. This notion has definitively no more
meaning in this context. This constitutes a strong differ-
ence between such an agent oriented programming and
the object-oriented programming.

2.5 Conclusion

We have presented our vision of agents built from an atomic
agent through a dynamic skill learning. We will now
present how this principle can effectively be applied to
describe a MAS model. This will be illustrated using our
own model, called MAGIQUE.

3 MAGIQUE

We will describe briefly our proposition of organisation
for multi-agent systems. It is called MAGIQUE and is

based on the notion of hierarchies of agents (this could
be seen as well as an agent recursively made of agents,
see figure 1 Mezrura et al. (1999)). More details could
be found in Routier et al. (2000); Routier and Mathieu
(2001)3.

Figure 1: Two visions of the same MAS (or agent).
Left: hierarchic vision. Right: “agent made of agents”
vision.

The hierarchical organisation of agents allows a de-
fault automatic skill delegation mechanism that facilitates
development of agents and of MAS. The used agents are
the one described in section sec:atomic.

3.1 Hierarchies

A hierarchy is a tree whose root is labelled by an agent
and whose childs, when any, are hierarchies too:

MAS = Hierarchy�

Hierarchy =

8>>>><
>>>>:

Agent

Agent

Hierarchy ... Hierarchy

Leaf agents are called “specialists” and others “super-
visors”, these must be able (i.e. have the skill) to manage
the “team” of agents (the sub-hierarchy) they are the root
of).

A hierarchy characterises the basic structure for the
routing of messages between agents. A hierarchical link
denotes a communication channel between the implied
agents, and when two agents of a same structure are ex-
changing a message, by default this passes along the tree
structure. This corresponds to someverticalcommunica-
tion.

With only those communications, the model would
probably be too strict. That’s why, Magique offers the
possibility to create direct links (i.e. outside the hierarchy
structure) between agents. We call them “acquaintance
links”.

The decision to create such links depends on the agent
policy. However the intended goal is the following: after
some times, if some request for a skill occurs frequently

3and athttp://www.lifl.fr/MAGIQUE

between two agents, the decision to dynamically create an
acquaintance link for that skill can be taken. The interest
is of course to promote the “natural” interactions between
agents at the expense of the hierarchical ones. These links
constitute thehorizontalcommunications.

Then, in Magique, there is a default communication
organisation that is the hierarchy. But this structure is
doomed to evolve according to the dynamicity of the MAS
in order to promote the most often used relations. Then
after some times, the MAS should look more like a graph.

3.2 Mechanism for skill delegation

When an agent has a task to achieve, this requires the ex-
ploitation of some skills that the agent can directly know
or not. In both cases the way he invokes the skills is the
same. If the realisation of a skill must me delegate to an-
other, this is done transparently for him. This delegation
is performed thanks to the hierarchical structure. Here
follows the principle of skill invocation:

� if the agent knows the skill, he uses it directly,

� if he does not, several cases can happen :

– he has a particular acquaintance for this skill,
he asks him to achieve the skill for him,

– else, he is a supervisor and someone in his
hierarchy knows the skill, then he forwards
(recursively through the hierarchy) the reali-
sation to the skilled agent,

– else, he asks to its supervisor to find for him
some gifted agent and this supervisor applied
the same mechanism to do it.

One first advantage of this mechanism of skill achieve-
ment delegation is to increase the reliability of the MAS:
the particular agent who will perform the skill has no im-
portance for the “caller”, therefore he can change between
two invocations of the same skill (because the first had
disappeared of the MAS or is overloaded, or ...) (cf. Fig-
ure 2).

Another advantage appears at the programming stage.
Since the search of a skilled agent is automatically achieved
by the hierarchy, when a request for a skill is programmed,
there is no need to specify a particular agent. Conse-
quently the same agent can be used in different contexts
(i.e. different multi-agent applications) so long as an able
agent (no matter which particular one) is present. A con-
sequence is, that when designing a MAS, the important
point is not the agents themselves but their skills.

3.3 MAGIQUE and skills

The agent used in MAGIQUE corresponds to the one pre-
sented in the section 2. They are built from an atomic
agent by dynamic skill learning. Then the basic MAG-
IQUE agent must have the few additional skills that are

Figure 2: Agent A needs some skill , he invokes it and the request is forwarded via the supervisor S:a. S sends it to B –b.
the link with B has been removed, delegation is automatically forwarded to C without A being aware of it.

particular to MAGIQUE. Skills for the hierarchy manage-
ment, others for the dynamicity (connecting, creating and
killing agents), are the main ones (see figure 3).

All the other skills are applications skills, it is the
MAS designer task to create them and to teach them to
the agents. But the MAS can be built in such a way that
the learning, and the agent evolution and specialisation,
are automatic. The MAGIQUE API offers the tools to do
that.

3.4 Dynamicity in MAS

In MAGIQUE an important point is that MAS can evolve
dynamically. This dynamicity acts at different levels.

individual an agent can acquire or forget skills. The ad-
vantages of this aspect have been discussed previ-
ously. In Magique, this corresponds to an effective
exchange of skills between agents that can be re-
mote, and the agents have the initiative of the ex-
change.

communication acquaintance links can be created when
favourite relations between two agents occur. This
creation allows to cut some repeated communica-
tions along the tree structure as communication be-
come direct between the implied agents. The deci-
sion of creating such a link is a prerogative of the
agents.

With the skill delegation principle, this contributes
to a non deterministic behaviour of the MAS: two
successive “execution” of the same multi-agent ap-
plications can lead to two different communication
structure and consequently the skills will not nec-
essarily be achieved by the same agents.

organisational agents can be created or removed dynam-
ically to adapt the MAS to some constraints. Two
examples among many:

� an agent is overloaded by requests about one
of his skills, he can decide to create a team
of agents with that particular skill and then he
can delegate some requests to these agents.

� an agent can leave temporarily the MAS and
recover his place later, messages for him must
be stored. This can be essential for agent lo-
cated on mobile computer (or phone or ...).

4 API

MAGIQUE has been put into concrete form through an
API4. It consists in an application framework above JAVA

to develop agents and multi-agents systems over hetero-
geneous distributed network. Agents are indeed easily
built from skills through teaching of these skills from an
atomic agent.

In this API, written in JAVA , primitives are provided
that allow aneffectiveexchange of skills between running
agents. The teaching of a skill between two agents can
be done with no a priori condition concerning the code:
when an agent teaches a skill to aremoteother agent, the
bytecode corresponding to the skill isreally passed from
the teacher to the learner. So even, if the “class” was not
initially known by the platform of the learner, everything
will work fine.

Let us note, that since the API is a framework, the ap-
plication part is left to the user. Thus the user must chose
and create the policies used to decide when a skill must
be acquire or when a new acquaintance must be created,
or etc.

4.1 Agent creation

Since it exploits the skill learning, the API offers an easy
framework to develop agents. Indeed, building an agent
is reduced to something like a script consisting in skill
“plugging” starting from atomic agent. Then in Magique
the source code for creating an agent looks like:

import fr.lifl.magique.*;
...

Platform p = new Platform();
// hollow agent creation
Agent myAgent = p.createAgent("myName");
// agent acquires skills (= component)
myAgent.addSkill(new SkillOne());

4It can be downloaded athttp://www.lifl.fr/MAGIQUE

myAgent.addSkill(new SkillTwo(...));
// join a hierarchy (= MAS)
myAgent.connectToBoss("bossName...");

...

As you can note in the source code, Magique uses the
notion of platform and each agent must belong to such
a platform. This is used to facilitate message routing
between agents, but the platform offers the support for
“physically” exchanging skills too. In Magique, two agents
caneffectivelyexchange skills with no need to make hy-
pothesis about the location of classes: dynamic skill code
loading and exchange is automatically performed (even
remotely and, in this case, even if network is broken).

As an example, the agents used in MAGIQUE are built
from the atomic agent through the skill acquisition/education
described in figure 3.

4.2 Skill creation

In the API, building a skill is writing a class whose in-
stances are the software components teached to the agents.
The public methods of this component can then di-
rectly be used by the agent.

import fr.lifl.magique.*;
import fr.lifl.magique.skill.*;
...
public class ASkill implements Skill {

public ASkill() {...}

//agent will be able to use <ability>
public void ability(...) {
}

}

4.3 Skill invokation and delegation

The invokation of a skill is very simple to program too.
Let us recall that in Magique, it is not necessary to ex-
plicitly know an able agent, the MAS insures that if one
exists, the realisation of the skill will be automatically for-
warded.

Where in OOP you should write:

object.ability(arg...);

to make a call to a given methodability , you must
write:

perform("ability",arg...);

This has the effect that a skill named ”ability ” will be
“called” (no need to know by who5).

The performprimitive is dedicated to the invokation
of skills with no required answer. There exist mainly
three other primitives:ask when an asynchronous an-
swer is required,askNow for an immediate answer and
concurrentAsk for a concurrent invokation of a skill.

5Of course, Magique offers also possible to precise a recipient to an
invokation request if needed.

4.4 Dynamic skill acquisition

The basic MAGIQUE agent knows the skill required to ac-
quire dynamically new skills.

Thus, if you want an agent to acquire dynamically
a new skill, whose name is"skill" , it suffices to use
addSkill as stated before :

addSkill("skill",args);

Now, if you want this same skill being teached by an
agent names"teacher@..." , you need thelearn-
Skill skill :

perform("learnSkill",
new Object[]{"skill","teacher@...",

args});

Once this done, the agent will be able to use the new
skill. This can be done even if the teacher and the learner
agent are on two different remote machines. No hypothe-
sis need to be made about bytecode, , location. If needed,
the bytecode for the skill will be forwarded to the plat-
form of the learner.

4.5 Graphical Environment

In order to facilitate the creation of hierarchies, to dis-
tribute agents over the net and to allow addition of skills
to agents, we have built a graphical development tool (see
figure 4). Once the skill classes have been written, this
tool allows to automatically generate agents, to build a
MAS with them and to distribute the MAS over a net-
work.

Once the agents have been distributed, this environ-
ment provides an interface to track the behaviour of each
agent.

A shell tool allows to interact with the agents during
their “life”, in order to learn them a new skill for example.

More details and some examples are available on the
web site :

http://www.lifl.fr/SMAC

4.6 Conclusion

As you can see from this quick overview, once you know
the JAVA language, there is no difficulty to apprehend and
use the Magique API: the method calls are replaced by
skill invocations according to a slight syntactical change
explained above.

Of course the methodological difficulties due to the
multi-agent aspect and the skill modularity are another
problem...

5 An application to dynamic skill learn-
ing

An application of the skill exchange can be a dynamic
evolution of the role of the agents: you can make evolve

public class Agent extends AtomicAgent {
...
/** method invoked by the constructor */

protected void initBasicSkills()
throws SkillAlreadyAcquiredException {

addSkill(new fr.lifl.magique.skill.magique.BossTeamSkill(this));
addSkill(new fr.lifl.magique.skill.magique.system.ConnectionSkill(this));
addSkill(new fr.lifl.magique.skill.magique.ConnectionToBossSkill(this));
addSkill(new fr.lifl.magique.skill.magique.KillSkill(this));
addSkill(new fr.lifl.magique.skill.system.DisplaySkill());
addSkill(new fr.lifl.magique.skill.system.AddSkillSkill(this));
addSkill(new fr.lifl.magique.skill.system.LearnSkill(this));

}
...

}

Figure 3: Education of MAGIQUE agent from an tomic agent (directly extract from MAGIQUE API source code)

or reduce the abilities of an agent and then change its role
in the application.

We have developed a small groupware multi-agent ap-
plication consisting in a distributed conference (see Routier
and Mathieu (2001)6). In this application, mainly two
roles can be identified for the agents: the speaker and the
listeners. The speaker is identified since he is the only
one who own a remote control at a time. Of course, he
can give this remote control to another agent and then
he becomes a plain listener, and the receiver becomes the
speaker. Therefore the roles of the agents can evolve dy-
namically.

The remote control is of course a skill since it gives
special ability to its owner. Then when a speaker gives
the control to a listener, what he does in fact is to teach
the “control skill” to the listener and also forget it (see 5).
And this iseffectivelydone, the former speaker agent has
really lost the ability to use the control. And this is done
at the low bytecode level too: even between two remote
agents, the skill bytecode is really exchanged and learned
or lost.

In this case, we see that dynamic skill learning is used
to manage something like the rights over an application.
Roles evolve dynamically according to the skills learned
or forgotten by the agents. The MAGIQUE API provides
an easy to use framework to design applications with such
behaviour.

6 Conclusion

Here, we have proposed a vision of agents built from an
atomic frame using dynamic skill acquisition. Skills are
coherent sets of abilities and can be seen as software com-
ponents. From a programmer point of view, an advantage
is that modularity and reusability are promoted. Then an
agent evolves during his “life”. That means that he can

6or/and have a look athttp://www.lifl.fr/MAGIQUE/
examples/diapoExt.html

Agent 1

Agent 1

Agent 2

Agent 2

ZapperSkill

ZapperSkill

Asking for the

Speaker Listener

SpeakerListener

remote control

Giving the

remote control

Figure 5: Dynamic evolution of roles through
skill exchange

play different roles depending on the skills he knows at
that time.

This is an efficient tool to develop agent applications.
The next step is to provide a methodology strongly based
on the skill notion whose formalisation must be deepened.
Starting from studies like Wooldridge et al. (1999), a fun-
damental consideration of the nature of interaction must
be undertaken. Interactions can indeed be tackled in terms
of skills and roles. We are working on a formalism for
representing them and we think it will lead to an auto-
matic generation of MAS and agents. Dynamic learning
should help that.

An API has been developed to validate these ideas. It
allows to effectively build agents by dynamic “skill plug-
ging” and to distribute them, no hypothesis about where
the source of a skill is need to be done as soon as the
learner knows it. The API, the graphical environment,
some small illustrating examples and a brief tutorial can
be downloaded at:

http://www.lifl.fr/SMAC

Figure 4: Graphical environment for building and distributing agents.

References

N.E. Bensaid and P. Mathieu. Un mod`ele d’architecture
multi-agents enti`erement ´ecrit en prolog. In IV
Jourńees Francophones de Programmation Logique,
JFPL’95, pages 381–385, Dijon-France, 1995. teknea,
Toulouse-France.

N.E. Bensaid and P. Mathieu. A hybrid and hierarchi-
cal multi-agent architecture model. InProceedings of
PAAM’97, pages 145–155, 1997.

J. Ferber and O. Gutknecht. A meta-model for the analy-
sis and design of organizations in multi-agent systems.
In Proceedings of ICMAS’98, 1998.

S. Franklin and A. Grasser. Is it an agent, or just a pro-
gram?: A taxonomy for autonomous agent. InProceed-
ings of the 3rd International Workshop on Agent The-
ories, Architectures, and Languages. Springer-Verlag,
1996.

B. Horling and V. Lesser. A reusable component architec-
ture for agent construction. Technical report, UMass
Computer Science, 1998.

C. Mezrura, M. Occello, Y. Demazeau, and C. Baeijs.
Récursivité dans les syst`emes multi-agents : vers un

modèle opérationnel. InJFIADSMA’99, pages 41–52.
Hermès, 1999.

JC. Routier and P. Mathieu. Une contribution du
multi-agent aux applications de travail coop´eratif. TSI
Hermès Science Publication. Réseaux et Systèmes
Répartis. Calculateurs Parallèles, 13. Numéro
Spécial : Télé-applications, 2001.

JC. Routier, P. Mathieu, and Y. Secq. Dynamic skills
learning. Technical Report 2000-06, LIFL, 2000.

Y. Shoham. Agent-oriented programming.Artificial In-
telligence, 60:51–92, 1993.

M. Travers. Programming with Agents: New metaphors
for thinking about computation. PhD thesis, MIT,
1996.

M. Wooldridge, N. R. Jennings, and D. Kinny. A method-
ology for agent-oriented analysis and design. 1999.

