RAGE: an agent framework for easy distributed
computing

P. Mathieu, J.C. Routier, and Y. Secq

Laboratoire d’Informatique Fondamentale de Lille — CNRS UPRESA 8022
UNIVERSITE DES SCIENCES ET TECHNOLOGIES DE LILLE
59657 Villeneuve d’Ascq Cedex

{mathieu,routier,secq}@lifl.fr

Abstract. This paper presents the RAGE framework. RAGE stands for
Reckoner AGEnts. It is an agent framework for the easy design of dis-
tributed computing environment. RAGE has been developped using the
MAGIQUE multi-agent framework. Because distribution, cooperation and
organization are key concepts in multi-agent systems, they are natural
solutions for the design of such applications. The use of MAGIQUE has
contributed to an easy development of RAGE and provides to the appli-
cation the capacity to smoothly evolve and adapt. The goal of this article
is not only to present RAGE but also to show how the development and
evolutions of such an application with a multi-agent system is simple.

1 Introduction

One application field of multi-agent systems (MAS) is Distributed Problem Solv-
ing, and one typical example of such problems is the distributed calculus. Because
distribution, cooperation and organizations are key concepts in MAS, they are
natural solutions for the design of applications of distributed computing.

The use of a multi-agent framework allows the designer to get rid of the
problems that would have been generated by the distribution and the communi-
cations between (what would have been) clients. Indeed these are primitives in
multi-agent infrastructures and are often even hidden to the designer. Moreover,
the agent approach (or paradigm) leads the designer to a natural decomposi-
tion of the problem in term of tasks and roles. The notion of role has been
largely emphathized in works related to actor languages [7], subject oriented
programming [6], and of course in the multi-agent field [4]. This notion relies
on the specification of the behaviour of an actor/agent. In a sense, roles can be
seen as an equivalent of interfaces (or pure abstract classes) in object oriented
programming. The main difference resides in the fact that interactions are not
constrained with interfaces (anybody can invoke a method), while with roles one
can ensure that the request comes from the right role. The other point with roles
is that they identify the functional requirements and are not tied to particular
agents.

For all these reasons we claim that multi-agent systems are appropriate in-
frastructures for the design and development of flexible framework for distributed
calculus applications.



Clustering computers to share their power and exploit their idleness is an
idea that has gain momentum with the advent of Internet. Projects like dis-
tributed.net’ or SETI@Home [3] illustrate this trend. Despite their interest,
they are centralized (they rely on a client-server approach) and they are mono-
lithic based frameworks (clients are mono-calculus). RAGE instead proposes a
framework where clients does not only provide computing power but can also
create their own calculus. This approach is closer to frameworks like xDu[5] or
JavaParty[9].

In the first part of this paper we present, briefly, the MAGIQUE framework. It
is based on an organisational model and on an agent model which have been put
into concrete form as a JAVA API. MAGIQUE has been used to build the easy
distributed computing environment application described in the second part:
RAGE. We will describe both how this application has been designed and the
resulting framework.

2 Magique : a Multi-Agent framework

MAGIQUE proposes both an agent model[11], which is based on an incremental
building of agents, and an organizational model [1], based on a default hierar-
chical organization.

The agent model: building agents by making them skilled. The agent
model is based on an incremental building of agents from an elementary (or
atomic) agent through dynamical skill acquisition. A skill is a coherent set of
abilities. We use this term rather than service?, but you can consider both as
synonyms here. From a developer point view, a skill can be seen as a software
component that gathers a coherent set of functionalities. The skills can then be
built independently from any agent and reused in different contexts.

We assert that only two prerequisite skills are necessary and sufficient to the
atomic agent to evolve and reach any wished agent: one to interact and one to
acquire new skills[11].

Thus we can consider that all agents are at birth (or creation) similar (from a
skill point of view): an empty shell with only the two above previously mentioned
skills.

Therefore differences between agents are issued from their education, i.e. the
skills they have acquired during their existence. These skills can either have been
given during agent creation by the developer, or have been dynamically learned
through interactions with other agents (now if we consider the programmer as
an agent, the first case is included in the second one). This approach does not
introduce any limitations to the abilities of an agent. Teaching skills to an agent
is giving him the possibility to play a particular role into the MAS he belongs
to.

! http://www.distributed.net/
2 We keep service for “the result of the exploitation of a skill”.



This paradigm of dynamic construction of agent from skills, has several ad-
vantages :

— development becomes easier : modularity is given by the skills,

— efficiency : skills distribution can be dynamilly adapted,

robustness : critical skill can be preserved,

— autonomy and evolutivity : runtime customization available through adap-
tation to runtime environment.

The organisational model. In MAGIQUE, there exists a basic default organi-
sational structure which is a hierarchy. It offers the opportunity to have a default
automatic delegation mechanism to find a skill provider.

The hierarchy characterizes the basic structure of acquaintances in the MAS
and provides a default support for the routing of messages between agents. A
hierarchical link denotes a communication channel between the implied agents.
When two agents of a same structure are exchanging a message, by default it
goes through the tree structure.

With only hierarchical communication, the organisation would be too rigid,
thus MAGIQUE offers the possibility to create direct links (i.e. outside the hierar-
chy structure) between agents. We call them acquaintance links (by opposition
of the default hierarchical links). The decision to create such links depends on
some agent policy. However the intended goal is the following: if some request
for a skill occurs frequently between two agents, the agent can take the deci-
sion to dynamically create an acquaintance link for that skill. The aim is of
course to promote the “natural” interactions between agents at the expense of
the hierarchical ones.

With the default acquaintance structure, an automatic mechanism for the
delegation of request between agents is provided. When an agent wants to exploit
some skill it does not matter if he knows it or not. In both cases the way he
invokes the skills is the same. If the realization of a skill must be delegate to
another, this is done transparently for him, even if he does not have a peculiar
acquaintance for it. The principle of the skill provider search is the following:

e the agent knows the skill, he uses it directly
¢ if he does not, several cases can happen

o first he has a particular acquaintance for this skill, this acquaintance is
used to achieve the skill (ie. to provide service) for him,

o he is a supervisor and someone in his hierarchy knows the skill, then he
forwards (recursively through the hierarchy) the realisation to the skilled
agent,

o he asks its supervisor to find for him some gifted agent and his supervisor
applies the same delegation scheme.

One first advantage of this mechanism of skill achievement delegation is to
increase the reliability of the multi-agent system: the particular agent who will
perform the skill has no importance for the “caller”, therefore he can change



between two invocations of the same skill (because the first had disappeared of
the MAS or is overloaded, or ...).

Another advantage appears while developping applications. Since the search
of a skilled agent is automatically achieved by the hierarchy, when a request for a
skill is programmed, there is no need to specify a particular agent. Consequently
the same agent can be used in different contexts (i.e. different multi-agent appli-
cations) so long as an able agent (no matter which particular one) is present. A
consequence is, that when designing a multi-agent system, the important point
is not necessarily the agents themselves but their skills (ie. their roles).

The API These models have been put into concrete form as a JAVA API,
called MAGIQUE too. It allows to develop multi-agent systems distributed over
heterogeneous network. Agents are developed from incremental (and dynamical
if needed) skill plugging and multi-agent system are hierarchically organized. As
described above, some tools to promote dynamicity in the MAS are provided:
direct acquaintance links can be created, new skills can be learned or exchanged
between agents (with no prior hypothesis about where the bytecode is located,
when needed it is transferred between agents). The API, a tutorial and samples
applications can be downloaded at http://www.1ifl.fr/MAGIQUE.

3 Rage: an easy distributed computing framework

In this section, we will illustrate how we have designed and implemented RAGE
using the MAGIQUE infrastructure. We will see that an agent oriented approach
offers simplicity in the development of such an application, and promotes an
easy evolution of the system too.

We will briefly present the framework, that is the point of view of the frame-
work user, then we will see how it has been designed, which is the point of view
of the designer. While the end user can see only distributed entities, he can name
them agents or distributed objects if he prefers, the designer clearly tackles the
problem using agent notions: agents, interactions and organization.

3.1 The Rage framework: the end user point of view

RAGE® wants to be a framework that offers an easy development of distributed
calculus, that allows multi-applications computing in parallel and that can scale
with the available power (cluster).

Simplicity was a preliminary condition for the framework. The main idea was
to provide an easy framework for non computer scientists. To achieve this goal,
we had to define a small number of concepts that the user has to understand in
order to feed the system with its calculus. It is important to note that the end
user has no need to know anything about agent or multi-agent systems, even
if he has to understand at least some object-oriented notions (since he must

3 RAGE stands for Reckoner AGEnt



inherits some predefined patterns). The user has mainly to know two concepts:
what is a task and what is a a result. A task can be seen as the algorithm that is
distributed, while a result represents the data produced by the task and which
must be stored.

The user of the framework has to define what should be distributed, and
what is the global scheduling of its main algorithm. The task defines the chunk
of algorithm that will be distributed among agents. The simplest way for the
user to create a task is to subclass the AbstractTask class and to define the
only two methods:

abstract public void compute();
abstract public boolean finished();

The complexity for the user is then not bigger than writing a JAVA Applet.
Therefore, the end user has a rather OO view of the framework: he extends one
class to tailor it to his distributed application and uses the underlying framework
without necessary explicitly knowing what happens.

3.2 Implementation with Magique: the designer point of view

The design of the framework has loosely followed the GAIA methodology [12]
and has been defined through those steps: first, definition of the roles involved in
the framework and their abilities (or skills), second, definition of the organization
of roles in the system and finally, the mapping of roles on agents.

The first step identifies the main entities of the application, and the abilities
they have to assume. This step describes also the interactions between roles.
The second step defines the number of agents playing a particular role and their
position in the organization. Then, the last step do the mapping between the
agents and the role(s) they play.

The first task is to define the roles. A short analysis of the problem allows
to determine a set of roles that can be distinguished to bring a solution to the
problem of distributed calculus. Here is a short description of these roles:

Boss role is responsible of all the interactions with the user part

Task Dispatcher role has to dispatch tasks and deal with the fault tolerancy.

Platformm Manager role manages the agents that will compute the tasks, and
must ensure that there are always available tasks for these agents.

Reckoner Agent role is the worker of the framework, it computes tasks, and
send back the results of this computation.

Repositories Manager role manages the storage of results.

Result Repository role is a mirror of the database of results.

As we implemented the system with MAGIQUE, we have put in concrete form
those roles with the corresponding skills. For example, the Platform Manager
role is defined by a MAGIQUE skill that implements its goal: getting tasks and
dispatching them to Reckoner Agents. A role is then defined by a set of skills that



forms its functionnalities. The interaction between the roles must then be de-
scribed. With M AGIQUE, the dynamic of interactions between roles is contained
in the skills.

Now that we have seen the involved entities, let us have a look on their
interactions, that is in the backstage of the application. While the user “runs”
its calculus, he first sends his tasks to the framework, then they are stored until
an agent requests them. Once the agent has computed its task, he sends the
result of the computation back to a repository. Thus the user can retrieve them
and go on with its main algorithm. For the user, distribution and computation
are totally abstract, he only has to feed the framework with tasks and retrieves
the results : agents of the framework manage everything for him.

This stage can be considered as the analysis phase. We have to define the
abilities associated to a role. This leads to the definition of a skill interface. It
is important to work on interfaces, as skill implementations are not considered
at this stage. Actually, the implementation will be dependant of the available
runtime : we will indeed not have the same skill running on a workstation and
on a cellular phone, but the interface of the skill will be the same.

Once those entities are identified, the architecture of the system must be
defined. When working with M AGIQUE, it means that the architecture is shaped
by the logical grouping of roles and by the dynamic of interactions. If we take
a look back at interactions: users send tasks to the Boss, which sends them to
the TaskDispatcher. Then, PlatformManagers that are available request tasks
and dispatch them to available ReckonerAgents. Once the computation of a task
is done, the result is sent to the Repositories Manager. The figure 1 shows the

TaskManager

ReckonerAgent PlatformManager

ReckonerAgent

ReckonerAgent TaskDispatcher

ReckonerAgent

ReckonerAgent

PlatformManager RepositoriesManager

ReckonerAgent

ReckonerAgent
ReckonerAgent

Nt

ResultRepository
Fig. 1. Rage’s organization: the hierarchy of roles.

logical hierarchy of roles, it does not define how roles are mapped onto agents
and how agents are mapped onto the network of computer, but instead provides
the topology of what we call natural acquaintances structure : the default orga-
nization. There is no a priori reason to respect a “one role-one agent” rule, the
whole hierarchy could even be mapped onto one single agent (that would not be
useful, but it could be done!).



Here we have briefly seen the designer vision: the determination of roles and
their interactions and then the choice of the organization. The agent oriented
approach has allowed a quick development of the application. Moreover, we see
that even if finally the user has not necessarily an agent vision of the application,
the design was agent oriented.

3.3 Experiments done with RAGE

To evaluate the framework, we have done some experiments that are ranging
from simple examples to complex applications. The first experiment is a tutorial
example that computes an approximation of PI. It is based on a Monte Carlo
method and illustrates how simple it is to create a task and to run the framework.
The second tutorial experiment is a naive implementation for prime number de-
composition, which enabled us to evaluate the scaling of the infrastructure. The
third sample is bigger, it is an exploration of the underlying structure of the
Donkey sliding block game. The algorithm consists in an exhaustive generation
of game states graphs[2]. It is interesting as it works in two stages and shows how
computation can be canceled. The last sample is an application for solid mechan-
ics : it is an implementation of the two-dimensional displacement discontinuity
method[8]. Those experiments along with the framework can be downloaded at
http://www.1ifl.fr/SMAC/projects/magique/examples.

4 Conclusion

The presented application, RAGE, is an easy to use framework for distributed
computing. It allows to develop, distribute and run calculus on heterogeneous
framework with no need of background in distributed computing or agents tech-
nologies. The user can only direct its efforts towards his very calculus.

This article argues that multi-agent paradigms: agent animacy, organization
and roles, are key notions to support the analysis, design and implementation
of open large-scale distributed systems. It is particulary significant that those
application models are in adequation with multi-agent paradigms. It has been
illustrated with an application of distributed computing, but could be extended
to other classes of applications (like CSCW[10]).

From our point of view, RAGE demonstrates that agent oriented program-
ming is an appropriate framework for the development of such distributed ap-
plications. And as a consequence, the resulting framework is easy, first, for the
user who has a calculus to do, and, second, for the designer who wants to extend
the capacities of the framework.

References

1. N.E. Bensaid and P. Mathieu. A hybrid and hierarchical multi-agent architecture
model. In Proceedings of PAAM’97, pages 145-155, 1997.



10.

11.

12.

Richard K. Guy Elwyn R. Berlekamp, John H. Conway. Winning Ways for your
mathematical plays. Academic Press, 1982.

Anderson et al. Seti@home: The search for extraterrestrial intelligence. Technical
report, Space Sciences Laboratory, University of California at Berkeley., 1999.

J. Ferber and O. Gutknecht. Operational semantics of a role-based agent architec-
ture. In Proceedings of ATAL’99, jan 1999.

Samir Gehani Gregory. xdu: A java-based framework for distributed programming
and application interoperability.

W. Harrison. Subject-oriented programming, 1993.

C. Hewitt. Viewing control structures as patterns of passing messages. In Artificial
Intelligence: An MIT Perspective. MIT Press, Cambridge, Massachusetts, 1979.
Crouch S. L. & Starfield A. M. Boundary Element Methods in solid mechanics.
Georges Allen & Unwin, 1983.

Michael Philippsen and Matthias Zenger. JavaParty — transparent remote objects
in Java. Concurrency: Practice and Ezperience, 9(11):1225-1242, 1997.

JC. Routier and P. Mathieu. Une contribution du multi-agent aux applications
de travail coopératif. TSI Hermeés Science Publication, Numéro Spécial : Télé-
applications, To appear: 2001.

JC. Routier, P. Mathieu, and Y. Secq. Dynamic skill learning: A support to agent
evolution. In Proceedings of the AISB’01 Symposium on Adaptive Agents and
Multi-Agent Systems, pages 25-32, 2001.

M. Wooldridge, NR. Jennings, and D. Kinny. The gaia methodology for agent-
oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 2000.



