
AISB Journal 1(2), c
�

SSAISB, 2002
http://www.aisb.org.uk

Using agents to build a distributed calculus
framework

Philippe Mathieu, Jean-Christophe Routier, Yann Secq

Equipe Systèmes Multi-Agents et Coopération
Laboratoire d’Informatique Fondamentale de Lille

CNRS UPRESA 8022
Université des Sciences et Technologies de Lille�

mathieu, routier, secq � @lifl.fr

Abstract

This article argues that multi-agent systems can be seen as an interesting
paradigm for the design and implementation of large scale distributed appli-
cations. Agents, interactions and organisations, that are the core of multi-
agent systems, consitute a well fitted support to the design of complex real-
world software. They combine the well defined and desired properties for
good software engineering: decomposition, abstraction and organisation.

This paper presents an agent framework RAGE, Reckoner AGEnts, for an
easier design of distributed calculus applications. This framework has been
developped using the MAGIQUE multi-agent framework. Because distribu-
tion, cooperation and organization are key concepts in multi-agent systems,
they are natural solutions for the design of such applications. The use of
MAGIQUE has contributed to an easier development of RAGE and provides
to the application the capacity to smoothly evolve and adapt.

In the first part of this paper, we introduce concepts that are emphasized
in the multi-agent domain. Then, we present the principles of the MAG-
IQUE framework. The second part describes RAGE framework and details
a practical example. Finally, the last part illustrates how an agent oriented
approach has been followed for the design and implementation of RAGE.

1 Introduction

One application field of multi-agent systems (MAS) is Distributed Problem Solv-
ing, and one typical example of such problems is the distributed calculus. Because
distribution, cooperation and organizations are key concepts in MAS, they are nat-
ural solutions for the design of applications of distributed computing.

The use of a multi-agent framework allows the designer to get rid of the prob-
lems that would have been generated by the distribution and the communications



Mathieu, Routier and Secq

between (what would have been) clients. Indeed these are primitives in multi-
agent infrastructures and are often even hidden to the designer. Moreover, the
agent approach (or paradigm) leads the designer to a natural decomposition of the
problem in term of agents, tasks and roles. We will not give here another defini-
tion of “what is an agent”1, but we will stick to the one proposed in (Wooldridge,
1997): an agent is an encapsulated computer system that is situated in some en-
vironment and that is capable of flexible, autonomous action in that environment
in order to meet its design objectives. The notion of role has been largely em-
phathized in works related to actor languages (Hewitt, 1979), subject oriented
programming (Harrison, 1993), and of course in the multi-agent field (Ferber and
Gutknecht, 1999). This notion relies on the specification of the behaviour of an
actor/agent. In a sense, roles can be seen as an equivalent of interfaces (or pure
abstract classes) in object oriented programming. The main difference resides in
the fact that interactions are not constrained with interfaces (anybody can invoke
a method), while with roles one can ensure that the request comes from the right
role. The other point with roles is that they identify the functional requirements
and are not tied to particular agents.

For all these reasons we claim that multi-agent systems are appropriate infras-
tructures for the design and development of flexible frameworks for distributed
calculus applications.

Clustering computers to share their power and exploit their idleness is an idea
that has gain momentum with the advent of Internet (Gray and Sunderam, 1997;
Stankovic and Zhang, 1998). Projects like distributed.net2 or SETI@Home (An-
derson and al., 1999) illustrate this trend. Despite their interest, they are cen-
tralized (they rely on a client-server approach) and they are monolithic based
frameworks (clients are mono-calculus). RAGE instead proposes a framework
where clients does not only provide computing power but can also create their
own calculus. This approach is closer to frameworks like xDu(Gregory, 1998) or
JavaParty (Philippsen and Zenger, 1997).

In the first part of this paper we present, briefly, the MAGIQUE framework. It
is based on an organisational model and on an minimal agent model which have
been put into concrete form as a JAVA API. MAGIQUE has been used to build
the easy distributed computing environment application described in the second
part: RAGE. We will describe both how this application has been designed and
the resulting framework.

2 MAGIQUE : a Multi-Agent framework

MAGIQUE proposes both an agent model(Routier et al., 2001), which is based
on an incremental building of agents, and an organizational model (Bensaid and

1For a lot of definitions of “agent”, have a look on (Franklin and Grasser, 1996)

2http://www.distributed.net/

http://www.aisb.org.uk



Mathieu, Routier and Secq

Mathieu, 1997), based on a default hierarchical organization.

2.1 The agent model: building agents by making them skilled.

The agent model is based on an incremental building of agents from an elementary
(or atomic) agent through dynamical skill acquisition. A skill is a coherent set of
abilities. We use this term rather than service3 , but you can consider both as
synonyms here. From a developer point view, a skill can be seen as a software
component that gathers a coherent set of functionalities. The skills can then be
built independently from any agent and reused in different contexts.

We assert that only two prerequisite skills are necessary and sufficient to the
atomic agent to evolve and reach any wished agent: one to interact and one to
acquire new skills(Routier et al., 2001).

Thus we can consider that all agents are at birth (or creation) similar (from a
skill point of view): an empty shell with only the two above previously mentioned
skills.

Therefore differences between agents are issued from their education, i.e. the
skills they have acquired during their existence. These skills can either have been
given during agent creation by the developer, or have been dynamically learned
through interactions with other agents (now if we consider the programmer as
an agent, the first case is included in the second one). This approach does not
introduce any limitations to the abilities of an agent. Teaching skills to an agent is
giving him the possibility to play a particular role into the MAS he belongs to.

This paradigm of dynamic construction of agent from skills, has several ad-
vantages :

� development becomes easier : modularity is given by the skills,

� efficiency : skills distribution can be dynamilly adapted,

� robustness : critical skill can be preserved,

� autonomy and evolutivity : runtime customization available through adap-
tation to runtime environment.

2.2 The organisational model.

In MAGIQUE, there exists a basic default organisational structure which is a hier-
archy. It offers the opportunity to have a default automatic delegation mechanism
to find a skill provider.

The hierarchy characterizes the basic structure of acquaintances in the MAS
and provides a default support for the routing of messages between agents. A
hierarchical link denotes a communication channel between the implied agents.

3We keep service for “the result of the exploitation of a skill”.

http://www.aisb.org.uk



Mathieu, Routier and Secq

When two agents of a same structure are exchanging a message, by default it goes
through the tree structure.

With only hierarchical communication, the organisation would be too rigid,
thus MAGIQUE offers the possibility to create direct links (i.e. outside the hier-
archy structure) between agents. We call them acquaintance links (by opposition
of the default hierarchical links). The decision to create such links depends on
some agent policy. However the intended goal is the following: if some request
for a skill occurs frequently between two agents, the agent can take the decision to
dynamically create an acquaintance link for that skill. The aim is of course to pro-
mote the “natural” interactions between agents at the expense of the hierarchical
ones.

With the default acquaintance structure, an automatic mechanism for the del-
egation of request between agents is provided. When an agent wants to exploit
some skill it does not matter if he knows it or not. In both cases the way he in-
vokes the skills is the same. If the realization of a skill must be delegate to another,
this is done transparently for him, even if he does not have a peculiar acquaintance
for it. The principle of the skill provider search is the following:

� the agent knows the skill, he uses it directly

� if he does not, several cases can happen

� if he has a particular acquaintance for this skill, this acquaintance is used
to achieve the skill (ie. to provide service) for him,

� else he is a supervisor and someone in his sub-hierarchy knows the skill,
then he forwards (recursively through the sub-hierarchy) the realisa-
tion to the skilled agent,

� else he asks its supervisor to find for him some skilled agent and his
supervisor applies the same delegation scheme.

One first advantage of this mechanism of skill achievement delegation is to
increase the reliability of the multi-agent system: the particular agent who will
perform the skill has no importance for the “caller”, therefore he can change be-
tween two invocations of the same skill (because the first had disappeared of the
MAS or is overloaded, or ...).

Another advantage appears while developping applications. Since the search
of a skilled agent is automatically achieved by the hierarchy, when a request for a
skill is programmed, there is no need to specify a particular agent. Consequently
the same agent can be used in different contexts (i.e. different multi-agent appli-
cations) so long as an able agent (no matter which particular one) is present. A
consequence is, that when designing a multi-agent system, the important point is
not necessarily the agents themselves but their skills (ie. their roles).

http://www.aisb.org.uk



Mathieu, Routier and Secq

2.3 The API

These models have been put into concrete form as a JAVA API, called MAG-
IQUE too. It allows to develop multi-agent systems distributed over heteroge-
neous network. Agents are developed from incremental (and dynamical if needed)
skill plugging and multi-agent system are hierarchically organized. As described
above, some tools to promote dynamicity in the MAS are provided: direct ac-
quaintance links can be created, new skills can be learned or exchanged between
agents (with no prior hypothesis about where the bytecode is located, when needed
it is transferred between agents). The API, a tutorial and samples applications can
be downloaded at http://www.lifl.fr/MAGIQUE.

3 RAGE: an easy distributed computing framework

In this section, we will illustrate how we have designed and implemented RAGE

using the MAGIQUE infrastructure. We will see that an agent oriented approach
offers simplicity in the development of such an application, and promotes an easy
evolution of the system too.

We will briefly present the framework, that is the point of view of the frame-
work user, then we will see how it has been designed, which is the point of view
of the designer. While the end user can see only distributed entities, he can name
them agents or distributed objects if he prefers, the designer clearly tackles the
problem using agent notions: agents, interactions and organization.

3.1 The Rage framework: the end user point of view

RAGE4 wants to be a framework that offers an easy development of distributed
calculus, that allows multi-applications computing in parallel and that can scale
with the available power (cluster).

Simplicity was a preliminary condition for the framework. The main idea was
to provide an easy framework for non computer scientists. To achieve this goal,
we had to define a small number of concepts that the user has to understand in
order to feed the system with its calculus. It is important to note that the end user
has no need to know anything about agent or multi-agent systems, even if he has
to understand at least some object-oriented notions (since he must inherits some
predefined patterns). The user has mainly to know two concepts: what is a task
and what is a a result. A task can be seen as the algorithm that is distributed, while
a result represents the data produced by the task and which must be stored.

The user of the framework has to define what should be distributed, and what
is the global scheduling of its main algorithm. Let us take the example of a ma-
trix that has to be computed and then used to solve a linear system. The main
algorithm could be cut in two phases: first compute the matrix (distributed), then

4RAGE stands for Reckoner AGEnt

http://www.aisb.org.uk



Mathieu, Routier and Secq

solve the system (centralized). In the first stage the user dispatches the tasks that
populate the matrix, then he retrieves the matrix to solve the system. The task de-
fines the chunk of algorithm that will be distributed among agents. The simplest
way for the user to create a task is to subclass the AbstractTask class and to
define the only two methods:

abstract public void compute();
abstract public boolean finished();

The complexity for the user is then not bigger than writing a JAVA Applet. There-
fore, the end user has a rather OO view of the framework: he extends one class to
tailor it to his distributed application and uses the underlying framework without
necessary explicitly knowing what happens.

To ease the migration or cancellation of running tasks, the user has to follow a
simple principle while designing the compute() method : tasks are considered
as cooperative in respect to the threading model5. The figure 1 illustrates this
principle and describe the lifecycle of a Task.

initialized
init() compute()

running

compute()

sleeping

suspend() compute()

finished() == true
terminated

Figure 1: The lifecycle of a RAGE Task.

To illustrate what the user must do, we will detail a simple example : comput-
ing an approximation of the � number. The idea of the algorithm is to randomly
choose points in an unitary square, and to check wether the point is within the
quarter of circle or not. Then, we can apply the following formulae : ���

�����	��

,

where N is the total number of points and I is the number of points within the quar-
ter of circle (see figure 2).

The accuracy of this algorithm increases when N grows. Thus, the user will
have to define a PiTask that encapsulates this algorithm, to create a set of
these tasks and to dispatch them within RAGE. The complete source code for
the PiTask class is given here.

public class PiTask extends AbstractTask {
public Double pi;
private int crtIter = 0, inner = 0, niter, chunk;

5This model was inspired by works done on the FAIRTHREADS project at http://www-sop.
inria.fr/mimosa/rp/FairThreads/

http://www.aisb.org.uk



Mathieu, Routier and Secq

N = +I = 

PI = 4 * I / N

Figure 2: A Monte-Carlo algorithm to compute an approximation of �

public PiTask(String factId, String taskId, int niter){
super(factId, taskId);
this.niter = niter; chunk = niter/10;

}
public void compute(){

double x, y;
for(; (crtIter % chunk) < chunk; crtIter++){
x = Math.random(); y = Math.random();
if (Math.sqrt(x*x + y*y) <= 1.0)

inner ++;
}
pi = new Double(4*((double)inner/(double)niter));

}
public boolean finished(){

return crtIter == niter;
}
public double percent(){ // Percent of progress

return (double) (crtIter * 100)/(double)niter;
}

}

Despite its simplicity, this example illustrates the programming model of the
RAGE framework :

� extend AbstractTask (or implement the Task interface),

� implement the compute() and finished()methods,

� tag as public members that should be saved as result.

Then, the user creates a bunch of tasks and sends them to the framework. Later,
he can retrieve the results and compute the average value. One interesting point of
the compute method is that it illustrates the delegation of control from the task
to the agent that handles it. If the agent receives an order to terminate or migrate
the task, it can be handled only if the user releases the control to the agent. Thus,
a PiTaskwill need 10 calls to the computemethod before being achieved. The
granularity of the compute method should therefore be carefully studied by the
user if he wants to take advantages of task migration or termination.

http://www.aisb.org.uk



Mathieu, Routier and Secq

3.2 Implementation with MAGIQUE: the designer point of view

The design of the framework has loosely followed the GAIA methodology (Wooldridge
et al., 2000) and has been defined through those steps:

� firstly, the definition of the roles involved in the framework and their abili-
ties (or skills)

� secondly, the definition of the organization of roles within the system

� and finally, the mapping of roles on agents.

The first step identifies the main entities of the application, and the abilities they
have to assume. This step describes also the interactions between roles. The sec-
ond step defines the number of agents playing a particular role and their position
in the organization. Then, the last step do the mapping between the agents and the
role(s) they play.

The first task is to define the roles. A short analysis of the problem allows to
determine a set of roles that can be distinguished to bring a solution to the problem
of distributed calculus. Here is a short description of these roles:

Boss role is responsible of all the interactions with the user part

Task Dispatcher role has to dispatch tasks and deal with fault tolerancy.

Platform Manager role manages the agents that will compute the tasks, and
must ensure that there are always available tasks for these agents.

Reckoner Agent role is the worker of the framework, it computes tasks, and
send back the results of this computation.

Repositories Manager role manages the storage of results.

Result Repository role is a mirror of the database of results.

As we implemented the system with MAGIQUE, we have put in concrete form
those roles with the corresponding skills. For example, the Platform Manager
role is defined by a MAGIQUE skill that implements its goal: getting tasks and
dispatching them to Reckoner Agents. A role is then defined by a set of skills
that forms its functionnalities. The interaction between the roles must then be de-
scribed. With MAGIQUE, the dynamic of interactions between roles is contained
in the skills.

Now that we have seen the involved entities, let us have a look on their in-
teractions, that is in the backstage of the application. While the user “runs” its
calculus, he first sends his tasks to the framework, then they are stored until an
agent requests them. Once the agent has computed its task, he sends the result
of the computation back to a repository. Thus the user can retrieve them and go
on with its main algorithm. For the user, distribution and computation are totally

http://www.aisb.org.uk



Mathieu, Routier and Secq

abstract, he only has to feed the framework with tasks and retrieves the results :
agents of the framework manage everything for him.

This stage can be considered as the analysis phase. We have to define the
abilities associated to a role. This leads to the definition of a skill interface. It is
important to work on interfaces, as skill implementations are not considered at this
stage. Actually, the implementation will be dependant of the available runtime :
we will indeed not have the same skill running on a workstation and on a cellular
phone, but the interface of the skill will be the same.

Once those entities are identified, the architecture of the system must be de-
fined. When working with MAGIQUE, it means that the architecture is shaped
by the logical grouping of roles and by the dynamic of interactions. If we take a
look back at interactions: users send tasks to the Boss, which sends them to the
TaskDispatcher. Then, PlatformManagers that are available request tasks and dis-
patch them to available ReckonerAgents. Once the computation of a task is done,
the result is sent to the Repositories Manager. The figure 3 shows the logical hier-

�����
�����
�����

���
���
���

TaskDispatcher

RepositoriesManager

Boss

PlatformManagerReckonerAgent

ReckonerAgent

ReckonerAgent

ReckonerAgent
ReckonerAgent

ResultRepository

PlatformManager

TaskManager

ReckonerAgent

ReckonerAgent

ReckonerAgent

Figure 3: Rage’s organization: the hierarchy of roles.

archy of roles, it does not define how roles are mapped onto agents and how agents
are mapped onto the network of computer, but instead provides the topology of
what we call natural acquaintances structure : the default organization.

There is no a priori reason to respect a “one role–one agent” rule, the whole
hierarchy could even be mapped onto one single agent (that would not be useful,
but it could be done!). It is important to note that we could have applied the same
role decomposition with another agent infrastructure, and then used another topol-
ogy of organisation. If we had used Madkit (Gutknecht O., 2000) for example,

http://www.aisb.org.uk



Mathieu, Routier and Secq

the organisation would have followed the Aalaadin model (Ferber and Gutknecht,
1998), and thus we whould have had organize roles with groups instead of the
hierarchy.

Here we have briefly seen the designer vision: the determination of roles and
their interactions and then the choice of the organization. The agent oriented
approach has allowed a quick development of the RAGE framework. Moreover,
we see that even if finally the user has not necessarily an agent vision of the
framework, the design was agent oriented. And while the framework is running,
agents are working on behalf of RAGE users.

3.3 Experiments done with RAGE

To evaluate the framework, we have done some experiments that are ranging from
simple examples to complex applications. The first experiment is a tutorial exam-
ple that we have seen in section 3.1 (i.e. computation of an approximation of � ).
It is based on a Monte-Carlo method and illustrates how simple it is to create a
task and to run the framework.

The second tutorial experiment is a naive implementation for prime number
decomposition, which enabled us to evaluate the scaling of the infrastructure. The
idea is to test the primality of a number by making an exhaustive search of its
factors.

The third example is bigger : it is an exploration of the underlying structure
of the Donkey sliding block game. The algorithm consists in an exhaustive gen-
eration of game states graphs(Elwyn R. Berlekamp, 1982). It is interesting as it
works in two stages and shows how computations can be canceled. The first stage
consists in the creation of all valid states of the game. Then, we choose randomly
a state that will be considered as a seed to create the graph of all accessible states
from it. This is where the cancellation of computation is needed : several seeds
are chosen and computations take place, but sometimes we have to check that we
are not computing the same graph from different seeds. Thus, when a graph

�
is

complete, each task receives the set of states of
�

and can therefore check if they
are computing the same graph or not.

The last example is an application for solid mechanics : it is an implemen-
tation of the two-dimensional displacement discontinuity method (Crouch and
Starfield, 1983). This sample provides a way to introduce the idea of shared data
because each task needed to access a matrix representing forces. This mecanism
of shared data is handled by PlatformManagers : they retrieve data from the user
and make them available to their ReckonerAgents.

These experiments along with the framework can be downloaded at http:
//www.lifl.fr/SMAC/projects/magique/examples.

http://www.aisb.org.uk



Mathieu, Routier and Secq

3.4 What is next on the framework ?

The RAGE framework misses some features that could ease its use and broaden
the field of applications it can handle. In this section, we present the most needed
enhancements, firstly within the framework himself, and secondly around it.

The main missing feature in RAGE is the lack of inter-tasks communication. It
has not yet been implemented, but thanks to the underlying multi-agent system, it
can be quite easily handled. As tasks are managed by ReckonerAgents, inter-tasks
communication could be provided by using communication paths provided by the
hierarchy. It would involve the implementation of a search algorithm between
PlatformManagers : if task identification is done through their identifier, the im-
plementation is straightforward, but not really usable. It would be better that each
task provides some meta-description, and that the search algorithm works on these
description to do the matching.

Another improvement that is not yet implemented, but could easily be added is
multi-application scheduling. Several computations can be done simultaneously
within RAGE, and now the TaskDispatcher distributes tasks without any consider-
ation on them. We could add some scheduling policies, thus it could be possible
to distribute twice much tasks from one application than another for example. Or,
we could even introduce some kind of economical policy(Wolski et al., 2000)
where users that provide more computation power to the framework by running
PlatformManagers, could have a greater priority.

A last important feature that should be implemented concerns the database of
results. At present, we are using an object database to ease the deployment of
the framework, and there is only one database of results, which is managed by
a ResultRepository agent. As results can be queried by users and also by tasks
that are being computed, we plan to implement some automated mirroring of the
database of results. The hardest part will be to establish metrics that could provide
some criteria to the framework about the usage of the database. But if we have
these criteria, mirroring is easily implemented by dynamical skill acquisition : a
new agent is created where needed, the ResultRepository role is given to him and
then we need to synchronize the local database with others. Another approach
could be to implement an automatic mirroring of the database by using some kind
of replication mecanisms based on peer-to-peer interactions like the Freenet sys-
tem(Clarke et al., 2000). The main advantage of this approach is that no metrics
have to be defined, replication is only dependent on the usage of data.

Finally, we plan other enhancements around the framework : mainly on tools
that can be provided and on packaging. At present, we have mainly worked on
the framework, and thus we do not provide any tools to help users to visualize
the dynamic of RAGE. An administration tool, that could provide feedback to
the user and the ability to dynamically manage tasks and results, would be really
useful. The packaging of the framework should be enhanced : we could provide
one bundle for the framework, another for computational clients (basically, a Plat-
formManager and its sub-hierarchy). And, it could be interesting to deliver this

http://www.aisb.org.uk



Mathieu, Routier and Secq

client bundle with the JavaWebStart6 technology, so new clients could easily join
a running framework through their browsers.

4 Conclusion

The presented application, RAGE, is an easy to use framework for distributed
computing intended to non-compter scientists. It allows to develop, distribute and
run calculus over an heterogeneous framework with no need of background in
distributed computing or agent oriented technologies. The user can only direct his
efforts toward his very calculus.

This article argues that multi-agent paradigms: agent animacy, organization
and roles, are key notions to support the analysis, design and implementation of
open large-scale distributed systems. It is particulary significant that these appli-
cation models are in adequation with multi-agent paradigms. It has been illus-
trated with an application of distributed calculus, but could be extended to other
classes of applications like Computer Supported Collaborative Work(Routier and
Mathieu, 2002)).

From our point of view, RAGE demonstrates that agent oriented programming
is an appropriate framework for the development of such distributed applications.
And as a consequence, the resulting framework is easy, first, for the user who has
a calculus to do, and, second, for the designer who wants to extend the features of
the framework.

References

Anderson and al. (1999). Seti@home: The search for extraterrestrial intelli-
gence. Technical report, Space Sciences Laboratory, University of California
at Berkeley.

Bensaid, N. and Mathieu, P. (1997). A hybrid and hierarchical multi-agent archi-
tecture model. In Proceedings of PAAM’97, pages 145–155.

Clarke, I., Sandberg, O., Wiley, B., and Hong, T. W. (2000). Freenet: A distributed
anonymous information storage and retrieval system. In Workshop on Design
Issues in Anonymity and Unobservability, pages 46–66.

Crouch, S. and Starfield (1983). Boundary Element Methods in solid mechanics.
Georges Allen & Unwin.

Elwyn R. Berlekamp, John H. Conway, R. K. G. (1982). Winning Ways for your
mathematical plays. Academic Press.

6http://www.javasoft.com/products/javawebstart

http://www.aisb.org.uk



Mathieu, Routier and Secq

Ferber, J. and Gutknecht, O. (1998). A meta-model for the analysis and design of
organizations in multi-agent systems. In Proceedings of ICMAS’98.

Ferber, J. and Gutknecht, O. (1999). Operational semantics of a role-based agent
architecture. In Proceedings of ATAL’99.

Franklin, S. and Grasser, A. (1996). Is it an agent, or just a program?: A taxonomy
for autonomous agent. In Proceedings of the 3rd International Workshop on
Agent Theories, Architectures, and Languages. Springer-Verlag.

Gray, P. A. and Sunderam, V. S. (1997). IceT: distributed computing and Java.
Concurrency: Practice and Experience, 9(11):1161–1167.

Gregory, S. G. (1998). xdu: A java-based framework for distributed programming
and application interoperability.

Gutknecht O., Ferber J., M. F. (2000). The madkit agent platform architecture.
Technical report. http://www.madkit.org/papers/rr000xx.
pdf.

Harrison, W. (1993). Subject-oriented programming.

Hewitt, C. (1979). Viewing control structures as patterns of passing messages.
In Artificial Intelligence: An MIT Perspective. MIT Press, Cambridge, Mas-
sachusetts.

Philippsen, M. and Zenger, M. (1997). JavaParty — transparent remote objects in
Java. Concurrency: Practice and Experience, 9(11):1225–1242.

Routier, J. and Mathieu, P. (to appear in April 2002). A multi-agent approach to
co-operative work. In Proceedings of the CADUI’02 Conference.

Routier, J., Mathieu, P., and Secq, Y. (2001). Dynamic skill learning: A support
to agent evolution. In Proceedings of the AISB’01 Symposium on Adaptive
Agents and Multi-Agent Systems, pages 25–32.

Stankovic, N. and Zhang, K. (1998). Java and network parallel processing. In
PVM/MPI, pages 239–246.

Wolski, R., Plank, J., Brevik, J., and Bryan, T. (2000). Analyzing market-based
resource allocation strategies for the computational grid.

Wooldridge, M. (1997). Handbook of Agent Technology, chapter Agent-Based
Software Engineering. IEE Proc. on Software Engineering.

Wooldridge, M., Jennings, N., and Kinny, D. (2000). The gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents and
Multi-Agent Systems.

http://www.aisb.org.uk


