
AISB Journal1(6), c© SSAISB, 2005
http://www.aisb.org.uk

A generic negotiation model using XML

Philippe Mathieu and Marie-Hélène Verrons

Equipe SMAC, LIFL, USTL
Cité Scientifique, Bat M3, 59650 Villeneuve d’Ascq, FRANCE

mathieu@lifl.fr ; verrons@lifl.fr

Abstract

In this paper, we present a generic negotiation model for multi-agent systems
called GeNCA, built on three levels: a communication level,a negotiation level and a
strategic level, which is the only level specific to a particular application. XML files
are used to configure both each agent and the global system, freeing the end-user from
the need to reconfigure the system each time they want to change a parameter. The
aim of this paper is then to show that it is possible to give a precise description of a
generic negotiation model that we can use in several real problems. This model has
been implemented with a Java API used to build our applications. GeNCA is the only
platform which enables the use of different communication systems and of negotia-
tion strategies specific to the applications achieved. These researches on negotiation
take place in software engineering works for artificial intelligence and multi-agent
systems.

1 Introduction

With the progress of information technology, multi-agent systems and electronic market
places, the need of automatic agents able to negotiate with the others on behalf of the user
becomes stronger and stronger. Moreover, the utility of using an agent during negotiations
is perfectly justified by the explosion of the number of messages exchanged between
agents. In certain cases, specially with cascaded renegotiations, the number of messages
can be inO(mn) if n is the depth of the cascaded process andm the number of agents
involved in one negotiation.

Since several years, negotiation has been studied by many researchers ((Rosenschein
and Zlotkin, 1994; Sykara, 1989; Schwartz and Kraus, 1997)), and many negotiation sys-
tems have been achieved in specific domains like auctions or market places often in the
aim of electronic commerce, let’s cite Zeus (Nwana et al.,) developed by British Telecom-
munications, Magnet (Collins et al., 1998b) developed by the university of Minnesota, the
SilkRoad project (Ströbel, 2001) developed by IBM, the platform GNP (Benyoucef et al.,
2000) developed at the Montreal university and works done atHP Laboratories (Bartolini
and Preist, 2001). Of course, negotiation can be used in other domains like meeting
scheduling or reservation systems, but it seems that these ways have not been really stud-
ied. When studying such negotiation problems, we can see that many used notions are the
same in many systems. For example,contracts, resources, contractors
(initiators), participants have a semantic equivalent in all negotiation sys-
tems. Our aim in the software engineering field, is to show that these notions can be reified

Generic negotiation with XML

in a generic and open negotiation model and to build the corresponding API. The model
we propose here is broad enough to allow classical negotiation applications to be covered
without an adaptation effort, and has enough parameters to adapt to different negotiation
applications, which is a difficult engineering problem.

Although it is difficult to define formally what is negotiation, we will base our argu-
ments on the following consensual definition (Smith, 1980; Jennings et al., 2000; Walton
and Krabbe, 1995), which can be applied to many fields such as auctions, appointment
taking systems, games or others.

definition : Negotiation is carried out on acontractto obtain commonresourcesand on
the request of aninitiator. It brings together a set ofparticipantsand aninitiator
and runs until an agreement satisfying a percentage of participants is reached. Par-
ticipants equally try to obtain the best possible solution for themselves while giving
a minimum set of information to the others.

definition : A contract is the entity which will be negotiated. It contains theinitiator of
the negotiation, theresourcesinvolved, theanswer delayand adefault answerin
the case where a participant wouldn’t have answered at time.

This definition is of course inspired of the Contract Net Protocol proposed by Smith
(Smith, 1980) in 1980, which is a fundamental of many negotiation works (Sandholm,
2000). The main differences with the Contract Net is that negotiation ends with a con-
tract between the initiator and several participants afterpossible rounds of proposals and
counter-proposals. The initiator is the equivalent of the manager of the Contract Net and is
in fact the first person who talk in the negotiation process. In the context of our study, we
consider that a minimum number of information must be revealed to other agents, because
when all information is known, we fall in a problem solver context, where algorithms such
as a CSP is more fitted.

To conceive our model and allow a real generality, we have chosen a three-level archi-
tecture as a basis. The internal level which contains the management of data structures and
speech acts necessary for agents to evolve their knowledge;the communication level al-
lowing agents to send messages in a centralised way if agentsare on the same computer,
or in a distributed way if they are on different computers; the strategic level allowing
agents to reason on the problem and infer on the knowledge obtained from the others. In
our work, each level can be changed independently of the others. It is for example possi-
ble to use GeNCA in a round robin way with synchronous communication with all agents
on the same computer to realise a video game where virtual beings will negotiate turn to
turn, and to use it in a distributed way with asynchronous communication for electronic
marketplace. In our model, the negotiating agent is composed of reactive micro-agents,
where each micro-agent manages a negotiation.

The success of a negotiation depends of course on strategiesadapted to the problem
processed. We will not discuss here about strategies, which, to be optimal, must be differ-
ent according to the kind of negotiation done. This is an important field which goes out
of this paper. Therefore, we propose simple but generic strategies, which work for several
kinds of problems, and that the user can easily refine.

We have identify many criteria to describe a negotiation, where we can find the num-
ber of rounds in a negotiation process, the minimum number ofagreements needed to
confirm the contract, the retraction possibility, or the answer delay. Many of them have
been taken into account to build GeNCA.

A human user has two ways to use his agent. Manually, it is thena help-decision tool
which shows the state of all the concurrent negotiations. Insuch case, it is the human user

http://www.aisb.org.uk

Mathieu and Verrons

who agrees a query. Automatically, this time the agent is hidden and proposes or answers
queries by itself.

In GeNCA, the general server has an XML configuration file which allows to define
the general notions like retraction possibility or the number of rounds in a negotiation
process. Each agent can also have his own XML file to define the parameters of his
owner (minimum number of agreements needed to confirm the contract, answer delay,
etc.). Having XML files to configure the system makes it easierfor the user to define a
negotiation problem.

In this paper, we will first detail the protocol used (the phases of the protocol, the
communication primitives and its properties). Then, we will describe GeNCA and the
different ways to use it. After this, we detail two applications realised with GeNCA.
Finally, we compare our works to others achieved on the same subject.

2 Proposed protocol

The protocol we propose here aims to define the messages that agents can send to each
others with the operational dynamics associated. This negotiation protocol (Figure 1)
is characterised by successive messages exchanged betweenan initiator (the agent who
initiates the negotiation) and participants (the agents who participate to the negotiation)
as in the Contract Net Protocol framework (Smith, 1980). We first describe the phases
that compose our negotiation protocol, and then the communication primitives between
agents used in this protocol. Finally we give characteristics of our negotiation protocol.

2.1 Protocol phases

We distinguish three phases for a negotiation process : the first one is the proposal phase
which begins the negotiation process. Then, there is an optional phase named conversa-
tion phase. This phase consists of rounds of proposals and counter-proposals in order to
converge to an acceptable contract for everyone. Finally, there is the final decision phase
where the contract is either confirmed, either cancelled.

Proposal phase In this phase, the initiator proposes a contract to participants and waits
for their answer. In response to the proposal, each participant answers if he agrees or
rejects it.

Conversation phase This phase is necessary if there was not enough participantswho
agreed the contract proposal. A conversation is then started between the initiator and par-
ticipants during which modification proposals are exchanged. Following these proposals,
the initiator proposes a new contract to participants, and anew proposal phase is entered.

Final decision phase This final decision phase comes to either a confirmation or a can-
cellation of the contract. This decision is taken by the initiator in response to participants’
answers.

2.2 Negotiation primitives

To carry out a negotiation process between agents, it is necessary to define several ne-
gotiation primitives between agents. We thus need specific primitives for initiators and

http://www.aisb.org.uk

Generic negotiation with XML

initiator participant

propose(contract)

propose(contract)

propose(contract)

confirm(contract)

cancel(contract)

modification request(contract)

propose modification(modifs)

modification request(contract)

cancel(contract)

accept(params)

reject()

participantinitiator

modification request(contract)

cancel(contract)

propose modification(modifs)

cancel(contract)

modification request(contract)

propose(contract)

retract(contract)

new negotiation

Figure 1: Negotiation protocol of GeNCA. Left : the sequenceof messages between
the initiator and the participants during a negotiation. For clarity, only one participant
is shown here. Right : the sequence of messages for the renegotiation of a contract for
which a participant has retracted.

specific primitives for participants. Our aim here is not to ensure communication between
one of our agents and any other agent from another different platform (which would re-
quire a “FIPA-compliant” platform or more simply agents communicating via ACL), but
to facilitate the development of an application with our agents. We don’t use FIPA ACL
or KQML for our negotiation primitives because they are not adapted to our protocol.
The primitives defined by FIPA ACL deal with actions to perform or believes to assert.
The specifications of the FIPA ACL primitives include conditions that can’t be met with
our model, so we can’t use them with the meaning we want to givethem. For exam-
ple, theproposeprimitive denotes the intention to perform an action under certain condi-
tions, whereas our meaning ofproposeis a contract offer from the initiator to participants,
which will be accepted, rejected or discussed. We are not concerned here with believes.
Moreover, FIPA ACL messages seem to be only textual messages, and the negotiation
primitives we need for our model can’t be used only with textual messages. Because
of the content they use, our messages need to contain objects. The sequencing of these
primitives is shown in Figure 1. Let us examine these primitives more deeply.

Initiator primitives The initiator begins and leads his negotiation process. He thus has
specific primitives to do so. The initiator can send four negotiation primitives to a set of
participants :

• propose(contract): this is the first message sent by the initiator. He sends a contract
proposal to the participants. The contract contains different resources to negotiate.

• modification request(contract): this message indicates to participants that the con-

http://www.aisb.org.uk

Mathieu and Verrons

tract can’t be taken like this and it has to be modified. The initiator asks participants
to send him one or several possible modifications of the contract in order to propose
a new one, better fitting everyone. This can also be a way to refine the contract.

• confirm(contract): this message indicates participants that the contract is con-
firmed. The negotiation has been a success.

• cancel(contract): this message indicates participants that the contract is cancelled.
The negotiation failed.

Participant primitives Messages sent by a participant are only received by the initiator.
It’s a choice we made so that other participants don’t know about these messages. More-
over, participants don’t know the set of participants in thenegotiation, they thus cannot
form a coalition during negotiation. It is for example useful in Vickrey auctions where
bids are private, or in other commercial negotiations wherebuyers could join their offers
in order to have an interesting price as the quantity of goodsasked is greater than if each
buyer makes an offer for a lower quantity of goods.
Participants have three communication primitives which are answers to the initiator queries.

• accept(parameters): this message replies to a contract proposal from the initiator.
By this message, the participant indicates the initiator that he accepts the contract
as it is. Parameters can be used in case of a partially instantiated contract. For
example, it is the case in Vickrey auctions where participants have to propose a
price for the article sold.

• reject : this message replies to a contract proposal from the initiator. By this mes-
sage, the participant indicates the initiator that he refuses the contract.

• propose modification(modification list): this message replies to a modification re-
quest from the initiator. The participant sends to the initiator a list of possible
modifications for the contract. The number of modifications contained in the list is
a negotiation parameter. This list can be empty if there is nopossible modification
for the contract.

A communication primitive is common to initiators and participants :

• retract(contract): this primitive can be used only for a contract that has been con-
firmed earlier (after aconfirmmessage has been sent for this contract). Both partic-
ipants and initiators can use it. The agent sends this message to the initiator when
he can’t meet the contract taken anymore. The initiator can’t prevent the agent to
retract itself. Whether retraction is allowed or not depends on the application. Typ-
ically, retraction is not allowed in auctions, but is for appointment taking. That’s
why this possibility is a parameter of our negotiation modelthat is set up by the ap-
plication designer, and the number of retractions allowed for the same negotiation
is also a parameter.

2.3 Protocol characteristics

In this subsection, we present the type of applications achievable with this protocol, as it
is aimed to be general, and then we give the complexity in number of messages exchanged
during a negotiation process.

http://www.aisb.org.uk

Generic negotiation with XML

2.3.1 Applications achievable with this protocol

As we mentioned before, this protocol is inspired of the Contract-Net, and it adds an
optional phase of conversation. As the protocol describes messages exchanged between
agents but especially the order of messages and agents’ turnto talk, and not what is
the content of the message (for example, always a price . . .),it allows many different
applications to use it, which is not the case of many protocols such as the one used in
ZEUS which is dedicated to marketplaces.

For example, you can use it in a “take it or leave it offer” formif you don’t use
the conversation phase. If you want to make auctions applications, you can implement
English auctions as well as Dutch auctions. For English auctions, the initiator proposes
his articles and participants answer giving a price as argument of the accept message if
they are interested in the article, or rejecting the proposal otherwise. If no participant
has proposed a satisfying price for the initiator, a conversation phase is entered where
each modification consists of a new bid. The process finishes when a satisfying price has
been proposed or when no one rebids or the maximum number of turns predefined by the
initiator has been reached.

For Dutch auctions, the initiator proposes an article with ahigh price, and if no par-
ticipant accepts the proposal, the initiator proposes again the article with a lower price
without asking for a modification from participants. The process finishes when a partic-
ipant accepts the contract, or when the price reaches the minimum price wished by the
initiator, or when the maximum number of rounds defined by theinitiator is reached.

This protocol is not adapted to negotiations that have to be processed on several levels,
for example, for negotiating to buy a car, you can first negotiate the colour, and then the
price This protocol is not adapted to combined negotiations (Aknine, 2002), where
contracts need to be linked. For example, you can’t create two contracts and say both
must be taken or none. If you want several resources from the same person, you put them
in a single contract, but if you want several resources from several persons, you’ll need
one contract per person/resource but you can’t specify thatall contracts must be taken
or none. Despite the protocol could fit it, negotiation with argumentation (Parsons et al.,
1998) is not included in GeNCA. The protocol could be adaptedsince the parameters of
acceptance or modifications could be arguments.

2.3.2 Complexity

Complexity is an important feature in negotiation. Negotiation complexity is the reason
why you can’t do without negotiating agents. Let’s examine here complexity in number
of messages induced by our protocol.

In the worth case, form participants at a negotiation process, the number of messages
to be sent ismn if n is the depth of cascaded renegotiation process. You imagineeasily
what could happen to your secretary in such case to organise ameeting with fifty people.

To prove this result, let us look at the different cases that can happen.

Linear order Assume thatm persons want to take a contract. Let’s callinitiator the
person who wishes to take the contract andparticipantsthe others. Figure 2 shows five
persons, before and after that the contract has been taken (each dot represents one person).

Firstly, let us consider that all participants agree with the proposal. The initiatorpro-
posesthe contract, the participantsagreeand the initiatorconfirms: 3 ∗ (n− 1) messages
are exchanged.

http://www.aisb.org.uk

Mathieu and Verrons

Figure 2: Complexity in linear order

As soon as one participant disagrees, the initiatorrequests a modificationfrom partic-
ipants who send one to the initiator (propose modificationmessage).2∗ (n−1) messages
are then exchanged. The initiator sends a newproposalwhich will be accepted, adding
3 ∗ (n− 1) messages. In total,7 ∗ (n− 1) are exchanged, taking into account those of the
first proposal and answers of participants with at least a negative one. The initiator sends
4 ∗ (n − 1) messages and receives3 ∗ (n − 1). Each participant receives4 messages and
sends3.

Taking a contract, with or without modification request, without renegotiation of other
contracts, has a global complexity in O(n), is linear for the initiator and in O(1) for par-
ticipants.

Quadratic order

Figure 3: Complexity in quadratic order - first case

First case Let us now assume that taking a contract calls previous contracts already
taken with other persons into question (Figure 3).

To simplify, all contracts will involven persons and will have the same priority.
Participants will modify the contract,7 ∗ (n − 1) messages will then be sent. But,

at time to confirm the contract, each participant will have torequest a modification for
the contract he has already taken. Let us assume that modifications are accepted without
any problem. The number of exchanged messages in this renegotiation is 5 ∗ (n − 1).
Participants of the first contract, considered as initiators of the second ones, send3∗(n−1)
and receive2 ∗ (n − 1) messages. If all renegotiations are independent, there are(n − 1)

http://www.aisb.org.uk

Generic negotiation with XML

renegotiations and thus5 ∗ (n − 1)2 messages. The total number of exchanged messages
for taking the contract is thus5 ∗ (n − 1)2 + 7 ∗ (n − 1). The initiator sends4 ∗ (n − 1)
and receives3 ∗ (n − 1) messages. Each participant receives4 + 2 ∗ (n − 1) messages
and sends3 + 3 ∗ (n − 1).

Taking a contract with renegotiation of another one by participant has a global com-
plexity of O(n2) and is linear for the initiator and participants.

Figure 4: Complexity in quadratic order - second case

Second case Let us now assume that only one participant has to modify a contract
already taken with another person (Figure 4). During renegotiation, this person also has
to modify another contract and recursively onm persons. The principal negotiation needs
7 ∗ (n − 1) messages, the others5 ∗ (n − 1). The total number of messages is(2 + 7 ∗

m) ∗ (n − 1) messages.
Taking a contract with renegotiation of another one by one participant and this recur-

sively at a depth ofm, has a global complexity of O(n ∗ m) and is linear for the initiator
and participants.

Figure 5: Complexity in exponential order

Exponential order To prove the result given at the beginning of subsection, letus take
a formal example. For this example, a contract will always benegotiated between one
initiator and two participants. Figure 5 shows a binary treerepresenting the cascaded
renegotiation process. The root of this tree is the initiator of the first contract. He has got
two children : the two participants. Each participant is in his turn the initiator of another
contract, having also two children etc. We suppose here thatthere are no other relations
between all these agents, ie. they are all different, all nodes represent a different agent.

Having this, we can now compute the number of messages that will be exchanged.
The number of exchanged messages for a modification of a contract which will be

immediately accepted is equal to five : modification request,modification from partici-
pants, proposal of a new contract (the old one modified), agreement from participants and
then confirmation of this new contract. The number of agents at level i equals2i and the
number of messages exchanged at that level is5 ∗ 2i.

http://www.aisb.org.uk

Mathieu and Verrons

Global complexity is thus O(2n) and is linear for the initiator and the participants.
If we now suppose that contracts are not independent anymorebut that agents at level

n ask the initiator of the principal contract to modify another one, the number of asks for
renegotiations will be2n for the initiator.

Global complexity is still O(2n) and keeps linear for participants, on the other hand,
it becomes O(2n) for the initiator.

In this section, we presented the negotiation protocol usedin GeNCA, let’s now see the
different use modes of GeNCA.

3 GeNCA

GeNCA is a Java API for negotiation between agents. It is aimed to provide a generic
software architecture for contract-based negotiations toapplications developers in order
to facilitate their work. The internal objects needed to theimplementation of GeNCA are
described in (Mathieu and Verrons, 2002). The novelty in GeNCA is that the parameters
that are needed to configure a negotiation application are set up in XML files, thus avoid-
ing recompilations at each change of a parameter value and facilitating the writing of a
new application. Two kinds of files are defined : one for the system parameterisation, one
for each agent which is optional. The system file contain common characteristics for all
users of the negotiation system. We define them in a DTD file called genca.dtd available
at http://www.lifl.fr/SMAC/projects/genca. Common resources, agents initially present in
the system, retraction ability are found in it, plus defaultvalues for users parameters. Each
agent can have its own file to set up its individual resources,its communicator, its strate-
gies and negotiation parameters like default answer and answer delay. Figure 6 shows the
system XML file for an appointment taking application.

We discuss here about the different ways to use GeNCA, and itsmajor features.

3.1 GeNCA features

GeNCA major features are its conception in three levels, itsnegotiation cardinality and
the management of deadlocks.

Conception in three levels The first feature of GeNCA is his conception in three
levels, in order to separate the implementation of communications between agents, the im-
plementation of negotiations management and the implementation of negotiations strate-
gies. These three levels are presented more deeply in (Mathieu and Verrons, 2003a; Math-
ieu and Verrons, 2003b). We decided to separate these three levels in order to provide
more facilities to adapt the negotiation system to applications as their common need is the
negotiation level. As a matter of fact, each application hasits own communication sys-
tem and needs specific strategies of negotiation. For example, communications between
distributed agents can be done via e-mail or a MAS platform, while communications be-
tween centralised agents can be done in a round-robin way. Itis easy to define which
communicator or which strategy an agent will use as it is set up in an XML file. This
separation of these three levels is a difficult software engineering problem, and from our
knowledge, no other platform than GeNCA separates them.

http://www.aisb.org.uk

Generic negotiation with XML

Negotiation cardinality Negotiation cardinality is an important feature for MAS.
Its purpose is to know how many agents negotiate together. Different kinds of negotiation
cardinality exist (Guttman and Maes, 1998), from one-to-one to many-to-many. Kasbah
is an example of one-to-one negotiation : one buyer negotiates an article with one seller
at a time. This form of negotiation is useful when only two persons are involved in the
negotiation. But when a negotiation involves many participants with an initiator, it is a
one-to-many negotiation. Our protocol enables contract-based negotiation between one
initiator and several participants. Our implementation ofthis protocol in GeNCA allows
several negotiations to take place simultaneously betweenone initiator and several par-
ticipants, that is to say many-to-many negotiation, or moreprecisely many (one-to-many)
negotiation. The advantage provided by many-to-many negotiation is that it enables one-
to-many and one-to-one negotiation.

Deadlocks Deadlocks are an important problem in negotiation applications. It can
cause many damages if it is not resolved. Deadlocks can appear when two agents propose
a contract on the same resource one to the other, and when theychose to negotiate sequen-
tially contracts on same resources. Both are then waiting tothe other’s answer and the
deadlock appears. Deadlocks are avoided in GeNCA thanks to our mechanism of answer
delay. As a matter of fact, each initiator defines the delay that have participants to answer.
If a participant doesn’t answer before this delay, the initiator takes into account a default
answer for him and so, negotiation is not blocked.

3.2 GeNCA use modes

GeNCA can be used in different modes, which gives its genericity. Among these ways
to use it, we find the kind of resources negotiated, simultaneous management, automatic
renegotiation, tools for strategies and agents use modes.

Resources Resources that will be negotiated can be common to all agentsor indi-
vidual. If we take the example of meeting scheduling, each agent has the same agenda,
and so the same time slots. Thus, resources (time slots) are common to all agents and
any of them can make a proposal on the time slots he wants. On the contrary, auctions
applications are typically those where we find individual resources. Agents wishing to
sell articles will sell only their own articles, and not the one of its neighbours. So, for this
kind of applications, resources are individual, visible toall agents but only the agents that
possess them can make a contract proposal. Resources are described in XML files. If they
are common to all agents, they are set up in the system file, butif they are individual, they
are set up in the agent file.

Simultaneous management The management of negotiations is an important cri-
terion in a negotiation application. Negotiations can be processed sequentially, or in par-
allel, depending on the constraints of the application. Twomanagements are possible in
GeNCA, immediately or deferred simultaneous management. The user opts for the one
he prefers. When he chooses to negotiate immediately all contracts, no restriction is made
on the resources, they can already being negotiated for another contract. But if the user
chooses to negotiate in a deferred way, the only negotiations that will take place simulta-
neously are the ones which involves disjoint sets of resources. The other negotiations will
wait for their turn. This management of simultaneous negotiations is possible because
we have designed a structure to check if all resources neededfor a negotiation are free or

http://www.aisb.org.uk

Mathieu and Verrons

yet under negotiation, and so to know if the negotiation process can begin or not. This
structure is a Tetris like matrix, which is described in (Mathieu and Verrons, 2002). Si-
multaneous negotiations are possible because we’ve chosento entrust micro-agents with
the management of one negotiation. In fact, each time an agent creates or receives a pro-
posal, a micro-agent is created (a goal if the agent is the initiator, an engagement if the
agent is a participant) which is responsible for the whole negotiation process of this pro-
posal. It is thus possible to negotiate simultaneously several contracts, and being initiator
as well as participant in the same time.

Automatic renegotiation Many times, during negotiations, some contracts can’t be
met any longer and has to be negotiated again. It is the case when appointments are
negotiated. For this purpose, we propose to renegotiate automatically contracts that have
to be moved. But you can’t always question a contract that hasbeen taken. For example
in auctions, when an article is sold, it is definitely sold, you can’t retract yourself. That’s
why we define a parameter called retraction allowed, used to know whether it is possible
or not to retract yourself from a contract previously taken.This is a common parameter to
all agents which is defined in the system XML file. If retraction is allowed, when an agent
retracts itself, the initiator of the contract can automatically renegotiate the contract, and
a number of renegotiations is defined by the initiator (in theagent XML file) to know how
many times a contract can be negotiated again.

Tools for strategies The success of a negotiation depends of course on strategies
adapted to the problem processed. We will not discuss here about strategies, which, to be
optimal, must be different according to the kind of negotiation done. This is an important
field which goes out of this paper. Therefore, we propose simple but generic strategies,
which work for all kinds of problems, and that the user can easily refine. In order to
give basis to develop strategies, two priority lists are defined in GeNCA. Each person
defines a priority list for resources and a priority list for persons. Thus, each person will
be able to give a priority to a contract according to priorities of resources included in the
contract, and according to the initiator’s priority. For example, if I took an appointment
with a colleague and my boss asks me for an appointment at the same time, I will take the
appointment with my boss (who has a greater priority) and I will move the appointment
with my colleague. These lists can also be used in case that I am initiator of a contract
and I requested modifications from participants, I can weight their answer according to
the priority I gave them.

GeNCA also provides rates of success or retraction of negotiations that have been
done in the past, given a participant and a set of resources. It is thus possible to know if a
participant globally accepts proposals he receives, and ifhe keeps his engagements.

Agents use modes As we mentioned before, a human user has several ways to use
its agent. He can use it with a graphical interface to interact with it, in this case, the agent
is a help decision tool for the user. The agent manages the negotiations and it is the user
who answers contract proposal, and creates contract to negotiate. Through the interface,
the user views messages received and sent, contracts taken and being negotiated, and he
can create a new contract, cancel a contract he has previously taken and reply to a contract
proposal.

Another way to use the agent is the automatic way, in this case, the agent manages the
whole negotiation and replies itself to proposals, the graphical interface is not used, and
the agent runs like a background task.

http://www.aisb.org.uk

Generic negotiation with XML

GeNCA features and use modes have been applied to several negotiation applications
like appointment taking, Dutch and English auctions and timetable creation. These appli-
cations can be downloaded at http://www.lifl.fr/SMAC/projects/genca.

In the next section, we present two applications realised with GeNCA.

4 Applications

Our aim is to propose a generic model to negotiate contracts whatever they are. The
model, we called GeNCA, has been implemented in the Java language in order to provide
an API for the creation of contract negotiation applications. Here we present two appli-
cations among those we have developed with GeNCA. One of themis a classical one,
it uses participant individual resources, it is an auction application. The other is much
less classical, it uses resources common for all participants, it is an appointment-taking
system.

4.1 Application with common resources

The first application we describe here is the one which involves common resources for
all participants in the negotiation. It’s an appointment taking application where resources
are time slots. Each agent must be able to negotiate appointments for the user. Each user
defines a schedule with time slots which are free or not. In addition, he gives preferences
on slots and on persons with whom he prefers to take appointments. As resources are
common for all participants, each one is able to create a contract for one or several re-
sources and to propose it to a set of participants. There is noessential need for each user
to have his own XML file since resources are defined once for allin the system XML file.
We obviously don’t let the agents share their schedules in order to find a suitable time slot
for an appointment.

This problem is a full-featured one because it needs preferences over persons, for ex-
ample, the boss has a greater priority than the colleague, but also priorities over resources
(here time slots), e.g. if I don’t want to have appointments at lunch time or before 8 am,
I’ll give the corresponding time slots a lower priority. Moreover, appointment taking is
an application where there are typically many renegotiations and retractions, because it is
difficult to find time slots that fit everyone.

This appointment taking application involves resources ofone hour timeslot in one
day, and four agents running on the same computer. The systemfile (Figure 6) contains
thus these resources and agents, and defines that retractionis possible, ie an appointment
can be moved if it can’t be maintained at the time defined. For this application, we used
the Magique platform to run our agents, so the Magique communicator is used. Specific
strategies have been implemented to fit the application, particularly to group consecutive
hours if one hour was too short for the appointment.

Default values for users’ parameters are set up like this : each participant has 10
minutes to answer the proposal, and would be considered as rejecting the proposal if
he doesn’t answer. Everyone must agree for the appointment to be taken. The initiator
can request 20 times modifications from participants who canpropose 5 modifications
at a time. The appointment can be moved 3 times and all negotiations that take place
simultaneously must involve different time slots.

This single file is sufficient to launch the application with these four agents. They all
have their own GUI to create contracts, answer to proposals,view their messages sent and
received and the contracts they’ve taken.

http://www.aisb.org.uk

Mathieu and Verrons

<?xml version="1.0"?>
<!DOCTYPE genca SYSTEM "genca.dtd" >
<genca>
<negotiation-type>rdv</negotiation-type>
<resources-list>
<resource>8h-9h</resource>
<resource>9h-10h</resource>
<resource>10h-11h</resource>
<resource>11h-12h</resource>
<resource>14h-15h</resource>
<resource>15h-16h</resource>
<resource>16h-17h</resource>
<resource>17h-18h</resource>
</resources-list>
<agents-list>
<agent><name>Paul</name>

<address>localhost</address></agent>
<agent><name>Pierre</name>

<address>localhost</address></agent>
<agent><name>Jean</name>

<address>localhost</address></agent>
<agent><name>Jacques</name>

<address>localhost</address></agent>
</agents-list>
<default-communicator>
fr.lifl.genca.magique.MagiqueCommunicator
</default-communicator>
<default-initiator-strategy>
rdv.RdvInitiatorStrategy
</default-initiator-strategy>
<default-participant-strategy>
rdv.RdvParticipantStrategy
</default-participant-strategy>
<nbRounds>20</nbRounds>
<nbRenegotiations>3</nbRenegotiations>
<minAgreements>100%</minAgreements>
<answer-delay>10</answer-delay>
<default-answer value="refuse"/>
<simultaneity value="deferred"/>
<retraction-allowed value="true"/>
<nb-modifications-by-round>5
</nb-modifications-by-round>
<magique><skill><class>
fr.lifl.genca.magique.NegotiationSkill
</class></skill></magique>
</genca>

Figure 6: System XML file for appointment taking application

http://www.aisb.org.uk

Generic negotiation with XML

4.1.1 Initiator behaviour

The initiator first chooses the participants he wants to meetand a time slot for the meeting.
He also checks the parameters of the negotiation, such as thedefault answer, the minimum
number of agreements to take the appointment, etc. All this define the contract and its
properties. The contract is then proposed to the set of participants. The initiator thus uses
theproposemessage of the protocol. Then, he waits for participants answers during the
answer delay he has defined.

When the delay is over, the initiator checks participants answers. If there are more
agreements than the minimum number of agreements he has chosen, he thenconfirms
the contract for the participants who have agreed, andcancelsthe contract for the others.
Otherwise, herequests a modificationto all participants if the maximum number of rounds
of negotiation is not reached. In the other case, hecancelsthe contract for everyone.

If the initiator requests a modification, he then waits for propositions from participants
during the same answer delay. After this delay, he takes one of the following decisions :

• Heproposesa new contract based on the propositions of the participants.

• He can’t find a new contract proposal, so herequestsagain a modification from
participants.

• Hecancelsthe contract.

If the initiator receives aretractionmessage, he checks if there are enough participants
left. In this case, he only removes the retracting participant from the list of agreed partic-
ipants. In the other case, hecancelsthe contract for everyone andrequests a modification
from all participants in order to find a new contract that satisfies the participants.

4.1.2 Participant behaviour

When a participant receives a contract proposal, he first checks if the time slots proposed
are free in his agenda. If they are, he accepts the proposal, thus sending theacceptmes-
sage. If the slots aren’t free, he compares the priority of the initiator of the contract taken
previously for these slots with the priority of the initiator of the new contract. If the older
initiator has a greater priority, he thenrejectsthe proposal. Otherwise, heacceptsit.

When the participant receives a modification requests, he sends to the initiator a list
of free time slots in order of preferences according to the priority he has given to the slots
via thepropose modificationmessage.

When a contract is confirmed, the participant adds it in his agenda andretractsitself
from previous contracts he has taken on the same time slots ifthey exist.

This application allows agents to negotiate appointments for its user. Contrary to other
systems that can be found in shops, users’ agendas are private and the problem isn’t to
find a suitable time slot free and common to all participants,knowing their agendas, but
to negotiate the hour of the appointment, taking into account the preferences of the users
on hours and persons. Moreover, this system renegotiate automatically an appointment
that has to be moved due to participants retractions.

4.2 Application with individual resources

Auction applications are typically applications where resources are individual for partici-
pants. The only participants who will create contracts are the ones who possess goods to

http://www.aisb.org.uk

Mathieu and Verrons

sell. We describe here an auction application where some participants want to sell goods
they have defined in their own XML file.

In this auction application, each agent must be able to negotiate auctions for the user.
For this purpose, each user defines an amount of money (his credit), and a bidding strategy
(linear, quadratic,. . .).

Auctions are defined like this : a seller proposes an article for which he wants to
obtain a minimal price that he keeps secret (reservation price). Then, buyers tell him if
they are interested (accept) or not (reject) in it, and if they are they propose a price for it.
The seller keeps the highest price proposed and the buyer whoproposed it. If this price
is greater than or equals the reservation price, the buyer wins the auction. Else, the seller
proposes again his article to the interested buyers for themto propose a higher price. This
process is repeated until a buyer wins the auction or the number of rounds is reached.

For this application, retraction is not allowed, once an article is sold, it is definitely
sold.

For this application, there are no common resources in the XML system configura-
tion file and we launch four agents on the same computer. For this application, these
agents run on a Magique platform and so they use the Magique communicator to ex-
change messages. Two strategies have been written to evaluate and propose bids, which
are the default strategies set up in the system file. Only one person can buy the article, so
the parameterminAgreementsis set up to 1.Three minutesare granted for participants to
bid, if they don’t, the initiator considers that theyreject the proposition. If no bid fits the
initiator, he can ask a new bid20 timesto participants, who propose asingle bidby round.
Retractionis not allowed. Auctions on same goods are processed sequentially, that’s why
the parameter simultaneity has the valuedeferred.

If users are satisfied with these parameters and do not have goods to sell, they do not
need to have their own XML files. Let us take the example of our agent named Jean who
wants to sell goods . Thus, he has his XML file Jean.xml where his goods (a fridge, a
table and a chair, for example) are listed in the resources list. The other parameters this
agent will use are those defined in the system file.

4.2.1 Initiator behaviour

The initiator first creates a contract containing the article to sell, the reservation price,
the other negotiation parameters and the set of participants. The initiator then sends this
proposalto the participants.

When an agreement is received, the initiator updates the highest bid proposed so far.
If the new price tops the highest bid proposed, this new bid becomes the highest and
the buyer who proposed it the current winner of the auction. Once all replies have been
received, the initiator decides toconfirmthe auction for the current winner if the highest
bid tops the reservation price, and thus tocancelthe auction for the other participants.
If neither the reservation price nor the maximum number of rounds are reached, then the
initiator requests a modificationfrom the interested buyers, in other cases, hecancelsthe
auction.

When a modification proposal is received, the initiator proceeds exactly as for an
agreement, as a modification proposal is a new price for the article.

4.2.2 Participant behaviour

When a participant receives an auction proposal, he first checks if the article interests him
or not. If he is interested in it, heacceptsthe contract and proposes a price. Otherwise, he

http://www.aisb.org.uk

Generic negotiation with XML

Figure 7: Four agents participating in the auction application

rejectsthe proposal.
When an auction confirmation is received, the participant adds the article in his bag

and virtually pays the price to the seller.
When a modification request is received, the participant checks the amount of money

he has and proposes a higher price than in the previous round if he has enough money or
a price equal to 0 if he doesn’t want to participate further inthe auction.

Figure 7 shows the graphic interfaces of four agents negotiating auctions with our
API.

The top left-hand screen is an agent showing his window for visualising messages sent
and received by him. It permits to see the different proposals received and the proceedings
of the negotiation (answer sent, confirm, cancel, modification request,. . .). The top right-
hand screen is an agent showing the new contract input interface, the bottom left-hand
one displays contracts chosen with the name of the initiatorand the negotiated resources.
The last one shows the display of a contract proposal for manual mode.

The advantages of this application are numerous, the most important ones are men-
tioned here. First, this application helps the user to bid, and bids in his place when he’s
not there, according to the strategy he has defined. Secondly, this application can easily be
extended to other kinds of auctions, like English, Dutch, Vickrey auctions. . . And thirdly,
this application is portable, as a matter of fact, agents canbe placed on PDAs or over a

http://www.aisb.org.uk

Mathieu and Verrons

heterogeneous network.

These two examples show that our protocol can be applied to different kinds of negotia-
tion applications such as auctions or appointment-taking.This illustrates our purpose of a
generic protocol. In the next section, we compare our protocol with different applications
developed by other researchers to show the differences between them.

5 Comparison with other works

We are obviously not the only ones who are interested in negotiation between agents and
in proposing a generic architecture to accomplish it. Let’scite the works realised at HP
Laboratories by Claudio Bartolini et al. (Bartolini and Preist, 2001; Bartolini et al., 2002b;
Bartolini et al., 2002a) who want to create a general framework for automated negotiation
dedicated to market mechanisms. In this paper, they define two roles : participant and
negotiation host. A participant is an agent who wants to reach an agreement, while the
negotiation host is responsible for enforcing the protocoland rules of negotiation. Rules
of negotiation include posting rule, visibility rule, termination rule It is the negotia-
tion host who is responsible for making agreements. This framework proposes a general
negotiation protocol parameterised with rules to implement a variety of negotiation mech-
anisms. It has common properties with our, like enabling one-to-one, one-to-many and
many-to-many negotiations, or like parameterisation.

Another formal work we can cite is the one done by Morad Benyoussef et al. (Beny-
oucef et al., 2000) who want to create a Generic Negotiation Platform for marketplaces.

A third work is the SilkRoad project (Ströbel, 2001). This project aims to facilitate
the design and implementation of negotiation support systems for specific application
domains. SilkRoad facilitates multi-attribute negotiations in e-business scenarios through
a specific design methodology and a generic system architecture with reusable negotiation
support components. A negotiation support system built on the basis of the SilkRoad
architecture model acts as an intermediary between the actual negotiating agents (which
might be software agents or humans) and thereby provides rule-driven communication
and decision support. This project has common points with ours, like the possibility to
have either software or human agents and the genericity of the system.

These three works are close to our, but they are more directedto electronic commerce
whereas our model aims to fit also other types of automated negotiations.

Let’s now examine two platform for negotiation : magnet and zeus. Multi AGent
NEgotiation Testbed(Collins et al., 1998a) is a testbed for multi-agent negotiation, im-
plemented as a generalised market architecture and developed at the university of Min-
nesota. It provides a support for a variety of types of transaction, from simple buying
and selling of goods to complex multi-agent contract negotiation. A session mechanism
enables a customer to issue a call-for-bids and conduct other business. The negotiation
protocol for planning by contracting consists of three phases : a call-for-bids, bidding
and bid acceptance. In contrast, our protocol enables the initiator of the call-for-bids to
make counter-proposals until an agreement is reached. In MAGNET, there is an explicit
intermediary into the negotiation process and agents interact with each other through it,
whereas all agents directly interact with each other in our negotiation process.

ZEUS (Nwana et al.,) is a generic Java API realised by British Telecom in order
to easily conceive cost-based negotiation applications between autonomous agents. Zeus
proposes a negotiation protocol between two agents (an initiator and a participant) and on
a single resource per contract. The protocol consists of a call-for-bids, and no mechanism

http://www.aisb.org.uk

Generic negotiation with XML

of counter-proposal is provided. Moreover, it is possible to negotiate simultaneously dif-
ferent contracts on the same resource, that we don’t allow. Another difference with our
protocol is that retraction is not possible with Zeus. Once acontract is taken you can’t re-
tract yourself. Moreover, Zeus provides only cost-based strategies, and so is less generic
than our protocol which is not dedicated to cost-based contracts. Although it is possible to
add an interaction protocol in Zeus, it is a difficult thing todo, as says S. Thompson in the
mailing list of Zeus in April 2002. On the other hand, parameters of GeNCA negotiation
protocol can be set up in XML files, which simplifies modifications.

These previous works, like our, are based on the generalContract Net Protocol
model (Smith, 1980) which works on bids invitation between aManager agent and Con-
tractor agents. From all these works, Magnet is probably theone which is closest to
what we present. Nevertheless, none of them takes into account at the same time generic
aspects, automatic renegotiations and a mechanism to manage conflicts between simulta-
neous negotiations, that we propose in GeNCA. Moreover, GeNCA is the only platform
which separates the communication level, the negotiation level and the strategic level.

6 Conclusion

In this paper, we have presented a generic protocol for contract-based negotiation and a
Java API called GeNCA, which enables many-to-many negotiations, simultaneous nego-
tiation of several contracts, and the management of deadlocks in conversation. Three dis-
tinct levels were defined : the knowledge representation level allowing the agent viewing
the advancement of his/her negotiations, the communication level which we realised with
a multi-agent platform allowing physical distribution, and the strategic level for which
we propose generic strategies adaptable to any kind of problem. Each level can be easily
extended by the developer as he wants to map with his application, which is a feature
that only GeNCA proposes. Moreover, XML files are used to set up parameters and
define an application, which facilitates the end-user work,and avoid useless recompila-
tions. These works are a part of software engineering and distributed artificial intelligence
works. Many implementation perspectives of these works on different software supports
are possible (distributed, centralised, WEB) and strategic level enhancement for different
specific problems is considered. This API will now be appliedto different problems like
distance teaching, network games, workflow systems.

References

Aknine, S. (2002). New Multi-Agent Protocols for M-N-P Negotiations in Electronic
Commerce. InNational Conference on Artificial Intelligence, AAAI, Agent-Based
Technologies for B2B Workshop, Edmonton, Canada.

Bartolini, C. and Preist, C. (2001). A framework for automated negotiation. Technical
Report HPL-2001-90, HP Laboratories Bristol.

Bartolini, C., Preist, C., and Jennings, N. R. (2002a). Architecting for reuse: A software
framework for automated negotiation. InProc. 3rd Int Workshop on Agent-Oriented
Software Engineering, pages 87–98, Bologna, Italy.

Bartolini, C., Preist, C., and Jennings, N. R. (2002b). A generic software framework for
automated negotiation. Technical Report HPL-2002-2, HP Laboratories Bristol.

http://www.aisb.org.uk

Mathieu and Verrons

Benyoucef, M., Keller, R. K., Lamouroux, S., Robert, J., andTrussart, V. (2000). Towards
a Generic E-Negotiation Platform. InProceedings of the Sixth International Confer-
ence on Re-Technologies for Information Systems, pages 95–109, Zurich, Switzer-
land.

Collins, J., Tsvetovatyy, M., Mobasher, B., and Gini, M. (1998a). MAGNET : A Multi-
Agent Contracting System for Plan Execution. InWorkshop on Artificial Intelli-
gence and Manufacturing: State of the Art and State of Practice, pages 63–68, Al-
buquerque, NM. AAAI Press.

Collins, J., Youngdahl, B., Jamison, S., Mobasher, B., and Gini, M. (1998b). A Market
Architecture for Multi-Agent Contracting. In2nd Int’l Conf on Autonomous Agents,
pages 285–292, Minneapolis.

Guttman, R. H. and Maes, P. (1998). Cooperative vs. Competitive Multi-Agent Negoti-
ations in Retail Electronic Commerce. InProceedings of the Second International
Workshop on Cooperative Information Agents (CIA’98), Paris, France.

Jennings, N. R., Parsons, S., Sierra, C., and Faratin, P. (2000). Automated Negotiation.
In Proc 5th Int. Conf. on the Practical Application of Intelligent Agents and M.A.S.,
PAAM-2000, pages 23–30, Manchester, UK.

Mathieu, P. and Verrons, M.-H. (2002). A generic model for contract negotiation. In
Proceedings of the AISB’02 Convention, London, UK.

Mathieu, P. and Verrons, M.-H. (2003a). ANTS : an API for creating negotiation appli-
cations. InProceedings of the 10th ISPE International Conference on Concurrent
Engineering: Research and Applications (CE2003), track onAgents and Multi-agent
systems, pages 169–176, Madeira Island, Portugal.

Mathieu, P. and Verrons, M.-H. (2003b). A Generic Negotiation Model for MAS using
XML. In Proceedings of the ABA workshop Agent-based Systems for Autonomous
Processing, held by the IEEE International Conference on Systems, Man and Cyber-
netics., Washington, USA. IEEE Press.

Nwana, H., D.T. Ndumu, L. L., and Collis, J. ZEUS : A Toolkit for Building Distributed
Multi-Agent Systems.

Parsons, S., Sierra, C., and Jennings, N. R. (1998). Agents that reason and negotiate by
arguing.Journal of Logic and Computation, 8(3):261–292.

Rosenschein, J. and Zlotkin, G. (1994).Rules of encounter : designing conventions for
automated negotiation among computers. MIT Press, Cambridge, Mass.

Sandholm, T. (2000).Automated Negotiation. MIT Press.

Schwartz, R. and Kraus, S. (1997). Negotiation on Data Allocation in Multi-Agent Envi-
ronments. InProc. of the AAAI-97, pages 29–35.

Smith, R. G. (1980). The Contract Net Protocol : high-level communication and control
in a distributed problem solver.IEEE Transactions on computers, C-29(12):1104–
1113.

Ströbel, M. (2001). Design of Roles and Protocols for Electronic Negotiations.Electronic
Commerce Research, Special Issue on Market Design, 1(3):335–353.

http://www.aisb.org.uk

Generic negotiation with XML

Sykara, K. (1989). Multiagent compromise via negotiation.In Gasser, L. and Huhns, M.,
editors,Distributed Artificial Intelligence, volume 2, pages 119–137, Los Altos, CA.
Morgan Kaufmann Publishers.

Walton, D. and Krabbe, E. (1995).Commitment in Dialogue. SUNY Press.

http://www.aisb.org.uk

