
Three different kinds of negotiation applications
achieved withGeNCA

Philippe Mathieu & Marie-Hélène Verrons
Laboratoire d’Informatique Fondamentale Lille – CNRS UMR 8022

59 650 VILLENEUVE D’ASCQ, FRANCE
E-mail : {mathieu,verrons}@lifl.fr

Abstract— In this article, we present GeNCA: our Generic
Negotiation of Contracts API and three different negotiation
applications achieved with it. The first one is an auction ap-
plication that runs on a multi-agent platform. The second one
is an application for choosing a restaurant for a dinner between
friends. This application uses e-mail communications. Thethird
application is a negotiation game inspired of the Civilization
game of Avalon Hill Game Company. This game is played
between centralised agents that speak each after another ina
round-robin way. We show in this article that GeNCA is well
suited for building these negotiation applications. As a matter of
fact, different communication ways are provided with GeNCA,
and the negotiation management and protocol are adapted to
these different negotiation applications. Only strategies have to
be conceived by the users, as they are specific to the application.

I. I NTRODUCTION

With the progress of information technology, multi-agent
systems and electronic market places, the need for automatic
agents able to negotiate with others on behalf of the user
becomes stronger and stronger. Moreover, the usefulness of
using an agent during negotiations is perfectly justified by
the explosion of the number of messages exchanged between
agents. In certain cases, it can be exponential.

For several years, many negotiation systems have been
developed in specific domains like auctions or market places
often for electronic commerce, let us mention Zeus [1] devel-
oped by British Telecommunications, Magnet [2] developed
by the university of Minnesota, the SilkRoad project [3] of
IBM, the platform GNP [4] of the Montreal university and
works done at HP Laboratories [5]. Of course, negotiation
can be used in other fields like appointment taking, reservation
systems or even video games, but it seems that these areas have
not really been studied. When achieving such applications,
we can see that a lot of the notions used are the same in
many systems. For example,contracts, resources,
contractors, participants have a semantic equiv-
alent in all negotiation systems. Our aim in the software
engineering field, is to show that these notions can be reified
in a generic and open negotiation model and to show that
it is possible to build the corresponding API. The model we
propose, calledGeNCA, is broad enough to allow classical
negotiation applications to be covered without an adaptation
effort, and has enough parameters to adapt to different nego-
tiation applications, which is a difficult engineering problem.

Although it is always difficult to formally define what

negotiation is, we will base our arguments on the following
consensual definition, which can be applied to many fields
such as auctions, appointment taking systems, games or others.

Definition 1: Negotiation is carried out on acontract
to obtain commonresources and at the request of an
initiator. It brings together a set ofparticipants
and aninitiator and runs until an agreement satisfying
a percentage of participants is reached. Participants equally
try to obtain the best possible solution for themselves while
giving a minimum set of information to the others.
This definition is of course inspired from the Contract Net Pro-
tocol proposed by Smith [6] in 1980, which is a fundamental
of many negotiation works.

GeNCA is a general negotiation model that allows a user
wishing to develop a negotiation application not to have to do
the whole job but to have a model that will facilitate his work.

GeNCA is based on a three-level architecture, that separates
the communication part between agents, the negotiation part
and the negotiation strategy part of an application. As a matter
of fact, the way agents communicate doesn’t play a role in
the way negotiation is made, and different communication
ways can be used in a same application executed on different
environments.

It is also important to separate the negotiation strategy
from the two other levels, to allow a user to choose which
negotiation strategy he will use without disturbing the remain-
ing of the application. Moreover, the negotiation strategyis
intrinsically linked to the negotiation application, and it is
obvious that negotiating a ton of potatoes is not the same
as negotiating a slot-time for an appointment, nor the same as
negotiating the exclusive use of a shared resource for an hour.

The negotiation level ofGeNCA contains a general nego-
tiation protocol and a management of conflicting negotiations
that allows to process them either sequentially or simulta-
neously. Parameters to specialise the protocol are set up in
a file. Among these parameters, we can cite the number of
agreements needed to confirm the contract, answer delay and
default answer, number of rounds in the negotiation process,
retraction possibility and number of renegotiations allowed.

GeNCA has been used to achieve different applications
such as an auction system, a system to negotiate the choice
of a restaurant for a common trip and a negotiation game
application.

The auction system involve agents in a multi-agent platform



like Magique or Madkit. A seller agent proposes his article
to sell to buyer agents who propose a price for the articles if
they interest them in a sealed-bid fashion. The seller compares
the highest proposed price with his reservation price and if
the proposed price is greater than the reservation price, the
buyer wins the auction. Otherwise, the seller proposes again
his articles.

The system to negotiate the choice of a restaurant for a
common trip involves personal agents that communicate by
sending e-mails. The agents must choose in a list of restaurants
the one where their users will eat. Users have preferences over
the restaurants and their agents must take them into account
to negotiate the choice of the restaurant.

The negotiation game application involves centralised
agents with talk one after another. This game is called JNego
and is inspired from the Civilization game of Avalon Hill
Game Company. The objective of the game for a player is
to negotiate the exchange of resources in order to maximize
the total value of the resources he possesses. There are six
different resources that have a different value. The total value
of the resources a player possesses depends on the number of
resources of one type by square multiplied with the value of
this resource.

In this article, we first give an overview ofGeNCA. Then
we describe these three negotiation applications that we easily
achieved thanks toGeNCA.

II. GeNCA: AN OVERVIEW

GeNCA is a generic contract-based negotiation model
and API that allows the user to easily develop negotiation
applications.GeNCA is based on a three-level architecture,
that separates the communication part between agents, the
negotiation part and the negotiation strategy part of an appli-
cation. We only present in this section the negotiation protocol
used inGeNCA. More details on the communication and on
the strategy levels can be found in [7]. Then, we present
GeNCA features and finally the way to useGeNCA to achieve
a negotiation application.

A. The negotiation protocol and its properties

Here we present the negotiation protocol used in our model.
The aim of the protocol is to define the messages that agents
can send to each other with the associated operational dynam-
ics. This negotiation protocol is characterised by successive
messages exchanged between an initiator (the agent who
initiates the negotiation) and participants (the agents who
participate to the negotiation) like in the Contract Net Protocol
framework.

1) Negotiation primitives:To carry out a negotiation pro-
cess between agents, it is necessary to define several ne-
gotiation primitives between agents. We thus need specific
primitives for initiators and specific primitives for participants.
Our aim here is not to ensure communication between one of
our agents and any other agent from another different platform
(which would require a “FIPA-compliant” platform or more
simply agents communicating via ACL), but to facilitate the

initiator participant

propose(contract)

propose(contract)

propose(contract)

confirm(contract)

cancel(contract)

modification request(contract)

propose modification(modifs)

modification request(contract)

cancel(contract)

accept(params)

reject()

participantinitiator

modification request(contract)

cancel(contract)

propose modification(modifs)

cancel(contract)

modification request(contract)

propose(contract)

retract(contract)

new negotiation

Fig. 1. Interaction graph between one initiator and one participant

development of an application with our agents. The sequencing
of these primitives is shown in Figure 1. Let us examine these
primitives more deeply.

Initiator primitives: The initiator can send four commu-
nication primitives to a set of participants :

• propose(contract): this is the first message sent by the
initiator to participants in order to propose a contract
to them. The contract contains different resources to
negotiate.

• modification request(contract): this message indicates to
participants that the contract cannot be taken as it is and it
has to be modified. The initiator asks participants to send
him one or several possible modifications of the contract
in order to propose a new one, which suits everyone. This
can also be a way to refine the contract.

• confirm(contract): this message indicates to participants
that the contract is confirmed. The negotiation has been
a success.

• cancel(contract): this message indicates to participants
that the contract is cancelled. The negotiation has failed.
Participant primitives:Messages sent by a participant are

only received by the initiator. Other participants do not know
about these messages. Moreover, participants do not know
about the set of participants in the negotiation, they thus cannot
form a coalition.
Participants have three communication primitives which are
answers to the initiator’s queries :

• accept(parameters): this message replies to a contract
proposal from the initiator. With this message, the par-
ticipant indicates to the initiator that he accepts the
contract as it is. Parameters can be used in case of a
partially instantiated contract. For example, it is the case
in Vickrey auctions where participants have to propose a
price for the article sold.

• reject : this message replies to a contract proposal from
the initiator. With this message, the participants indicate
to the initiator that they refuse the contract.

• propose modification(modification list): this message
replies to a modification request from the initiator. The
participant sends the initiator a list of possible modifi-
cations for the contract. The number of modifications



contained in the list is a negotiation parameter. This list
can be empty if there is no possible modification for the
contract.

A communication primitive is common to initiators and
participants:

• retract(contract): the contract has been confirmed but a
participant or the initiator can’t honour it anymore. The
agent then decides to retract from the initiator.

<!ELEMENT protocol (answer-delay,default-answer,
minAgreements,nbRounds,nb-modifications-by-round,
retraction-allowed,nbRenegotiations)>
<!ELEMENT answer-delay (#PCDATA)>
<!ELEMENT default-answer EMPTY>
<!ATTLIST default-answer value

(accept | refuse) "refuse">
<!ELEMENT minAgreements (#PCDATA)>
<!ELEMENT nbRounds (#PCDATA)>
<!ELEMENT nb-modifications-by-round (#PCDATA)>
<!ELEMENT retraction-allowed EMPTY>
<!ATTLIST retraction-allowed value

(true | false) "true">
<!ELEMENT nbRenegotiations (#PCDATA)>

Fig. 2. DTD file to configure the negotiation protocol.

2) Protocol parameters:We have presented a general pro-
tocol to model different types of negotiation. Here we detail
the parameters needed to specify this general protocol in order
to obtain specific negotiation protocols. We have chosen to
configure these parameters into an XML file, so we have
conceived a DTD file (Figure 2) in order to validate it.

During distributed negotiations as it is the case when agents
act for their user, a participant may not answer to the initiator
proposal, either because he is not there, or because there was
a failure. Negotiation then must not be blocked. In order to
continue the negotiation, an answer delay mechanism is used,
and when this delay is over, the initiator considers a default
answer for the participant who has not answered. This default
answer will often be a rejection of the proposal, as a matter of
fact, in commercial negotiations, one can’t oblige someoneto
buy the good. This default answer is given to the participants,
so if their answer is the same, they don’t have to answer
and communications are limited. Even if it seems strange, an
agreement as default answer can be useful, especially when
negotiation takes place in an appointment taking system, for
example. If the initiator wants to receive answers before 10
minutes and considers a rejection by default, the parameters
will be : <answer-delay>10</answer-delay> and
<default-answer value=’’refuse’’/>.

For the initiator to decide whether to confirm or annul the
contract, given the answers of participants, a parameter indi-
cating the minimum number of agreements needed to confirm
the contract is set up. This number can be a percentage. For
example, for an auction, only one participant must accept the
contract, whereas in other applications, everybody might be
agree :<minAgreements>100%</minAgreements>.

In order not to have an infinite conversation phase, we
introduce a number of rounds in negotiation, that is to say
the number of times a participant can propose a modification
for the contract, make a counter-proposal. We have chosen to
limit negotiation duration by an answer delay and a number
of speech rounds rather than with a maximal duration for the
whole negotiation process as used in general, because we think
negotiation will be more efficient this way. We can effectively
assume that the number of counter-proposals done will be
greater if agents must answer in quicker delays than if they
only know a limit date for the end of negotiation and in this
case answer less rapidly to initiators. But this usage comes
more specifically from the fact that a limit date for negotiation
poses many problems, and the major is the one of a universal
reference time. As a matter of fact, synchronisation of the
different computers where the agents are running is a real
problem we couldn’t solve.

This number of rounds will then be affected to
zero if negotiation is a take it or leave it offer
one, or if it is first or second-price sealed-bids auc-
tions : <nbRounds> 0 </nbRounds>. At every round,
each participant can propose some modifications to the
contract. This number of modifications is set up by
the parameter :<nb-modifications-by-round> 0
</nb-modifications-by-round>.

We told about the necessity to be able to retract one-
self from a contract previously taken, for some kinds of
negotiation. For this reason, a boolean parameter indicates
whether retraction is authorised or not, and another param-
eter sets up the maximum number of renegotiations allowed
: <retraction-possible value=’’true’’/> and
<nbRenegotiations>5</nbRenegotiations>.

Thanks to all these parameters, it is possible to specify the
general protocol in order to fit a negotiation. Removing one
parameter would lower the protocol generality and strength.
Let us take the example of the number of rounds in the
negotiation, if we remove it, that is to say we only do one-
proposal negotiations, it is no longer possible to implement
Dutch or English auctions. Our proposal consists in offering
a system providing this general protocol and taking into
accounts these parameters in order to instantiate different
negotiations.

B. GeNCA features

GeNCA features are developed in [8], we only mentioned
them here. A first feature is theXML parameterisation. In
GeNCA, the parameters that are needed to configure a negoti-
ation application are set up in XML files: one for the system
parameterisation and one for each agent which is optional.

Themanagement of conflicting negotiationsthat can be done
in GeNCA, is either sequential or parallel management. The
user opts for the management he prefers.

Many times, during negotiations, some contracts can’t be
met any longer and have to be negotiated again. For this
purpose, we propose torenegotiate automaticallycontracts
that have to be moved. If retraction is allowed, when an agent



retracts itself, the initiator of the contract can automatically
renegotiate the contract, and a number of renegotiations is
defined by the initiator to know how many times a contract
can be negotiated again.

The success of a negotiation depends of course on strategies
adapted to the problem processed. In order to give basis to de-
velop strategies, two priority lists are defined inGeNCA. Each
person defines a priority list for resources and a priority list
for persons. Thus, each person will be able to give a priority
to a contract according to priorities of resources includedin
the contract, and according to the initiator’s priority.

C. Using the package to create an application

The package we provide implements the whole negotiation
level and gives default implementations for the interfacesof
the communication and strategic levels.

Implementations of the communication level we give, allows
the use of the Magique and Madkit platforms, the use of
threaded agents acting in a round-robin way, and the use of
e-mails. We also provide the server agent to which the users’
agents subscribe and which is responsible for message sending.
For these four kinds of uses (Magique, Madkit, round-robin
and e-mail), a main class launching the application is given.
For any other kind of communication mode (sockets,. . . ), it
is necessary to implement theCommunicatorinterface and to
have an agent that integrates the name server implemented in
the package.

Default strategies provided with the package are quite sim-
ple but can be easily refined. They take into account priorities
given to resources and to persons in order to choose which
contract to accept in case of conflict, and which resources to
propose in case of modification request.

The package also provides a graphic interface for negotia-
tion, which allows the user to create a contract, to visualise the
messages sent and received by the agent, to answer a contract
proposal if the manual mode is chosen, to visualise contracts
taken by the agent, to have a view on the negotiations being
conducted on resources and to retract a previously chosen
contract.

In our package, the human user has two ways to use its
agent. Manually, it is then a decision-helping tool which shows
the state of all current negotiations, and, in this case, it is the
user who answers a contract proposal. Automatically, this time,
the agent is hidden and answers proposals by itself without
human interventions.

To write an application with the package, one only needs
to implement the interfaces of the communication and the
strategic levels (if the ones provided don’t suit the application),
and to define the XML configuration file where the resources
and the negotiation parameters are indicated, and of courseto
write his own agents including theNegotiatorof the package.
When the application concerns the negotiation of contracts
that only contain resources, there is nothing else to do. The
whole management of the negotiations is automatically done.
In return, if the contract needs other parameters, such as a
quantity or a price, theContractclass must then be extended

and the graphic interface for creating a contract must be
updated to include these new parameters.

III. A N AUCTION APPLICATION

Auction applications are more and more used over the
internet, websites such aseBay, onSale, etc. know a growing
interest from people. We propose here to achieve an auction
application involving agents on a multi-agent platform, where
bids are sealed. In this auction application, each agent must be
able to negotiate auctions for the user. For this purpose, each
user defines an amount of money (his credit), and a bidding
strategy (linear, quadratic,. . . ).

A. Description

Auctions are defined like this : a seller proposes an article
for which he wants to obtain a minimal price that he keeps
secret (reservation price). Then, buyers tell him if they are
interested or not in it, and if they are they propose a price
for it. The seller keeps the highest price proposed and the
buyer who proposed it. If this price is greater than or equals
the reservation price, the buyer wins the auction. Else, the
seller proposes again his article to the interested buyers for
them to propose a higher price. This process is repeated until
a buyer wins the auction or the predefined number of rounds
is reached.

For this application, retraction is not allowed, once an article
is sold, it is definitely sold.

B. Analysis and implementation with GeNCA

Auction applications are typically applications where re-
sources are individual for agents. The only agents who will
create contracts are the ones who possess goods to sell.

In this auction application, a new parameter is involved
in the negotiation: a price. Default strategies provided in
the package thus don’t fit the application, others must be
conceived. The price is not a parameter of the contract, so
this class hasn’t to be modified, but proposed by interested
buyers in theacceptmessage. In return, the reservation price
is a property of the contract, this class must then be extended
in order to include it.

The graphical interface for creating a contract must also be
modified in order to get this reservation price and also the
graphical interface for contract proposal in manual mode in
order to allow the user to enter a price for the article if he is
interested in it.

The negotiatormust also be extended in order to manage
the selling and buying of resources and the wallet of the user.
In return, if we use the Magique platform, no work is needed
for the communication level.

C. Negotiation strategies

1) Initiator strategy: The initiator first creates a contract
through the graphic interface, by indicating which articles he
wants to sell, participants to whom the articles will be pro-
posed, the answer delay for participants answers, the default
answer he will consider (a rejection) and the number of rounds



in the negotiation. In the auction case, an additional parameter
must be indicated : the reservation price.

When an agreement is received, the strategy updates the
highest bid proposed so far. If the new price tops the highest
bid proposed, this new bid becomes the highest and the buyer
who proposed it the current winner of the auction. Once all
replies have been received, the initiator decides toconfirm
the auction for the current winner if the highest bid tops the
reservation price, and thus tocancelthe auction for the other
participants. If neither the reservation price nor the maximum
number of rounds are reached, then the initiatorrequests a
modification from the interested buyers, in other cases, he
cancelsthe auction.

When a modification proposal is received, the initiator pro-
ceeds exactly as for an agreement, as a modification proposal
is a new price for the article.

2) Participant strategy: When a participant receives an
auction proposal, he first checks if the article interests him
or not. If he is interested in it, heacceptsthe contract and
proposes a price. Otherwise, herejectsthe proposal.

When an auction confirmation is received, the participant
adds the article in his bag and virtually pays the price to the
seller.

When a modification request is received, the participant
checks the amount of money he has and proposes a higher
price than in the previous round if he has enough money or
a price equal to 0 if he doesn’t want to participate further in
the auction.

D. Configuration files

Figure 3 shows the common configuration file of the auction
application. No resource is common to everyone as partic-
ipants only sell articles they possess. As we mentioned it
before, retraction is not authorised and only one acceptance is
needed to sell the article. Obviously, the default answer isa
rejection. Agents use the Magique communicator and have by
default no money.

An agent who wishes to sell articles must have his own
configuration file where his articles are defined. Each agent
also has to define his amount of money in his configuration
file. Figure 4 represents the configuration file of an agent
named Paul who wants to sell a table, a fridge and a cook
book. He has 50 euros.

Figure 5 shows the graphic interfaces of four agents nego-
tiating auctions with our API.

The top left-hand screen is an agent showing his window
for visualising messages sent and received by him. It permits
to see the different proposals received and the proceedings
of the negotiation (answer sent, confirm, cancel, modification
request,. . . ). The top right-hand screen is an agent showing
the new contract input interface, the bottom left-hand one
displays contracts chosen with the name of the initiator and
the negotiated resources. The last one shows the display of a
contract proposal for manual mode.

<?xml version="1.0"?>
<!DOCTYPE genca SYSTEM "genca.dtd" >
<genca>
<application-name>auction
</application-name>
<resources-list>
</resources-list>
<communicator>

fr.lifl.genca.magique.MagiqueCommunicator
</communicator>
<default-initiator-strategy>

auction.AuctionInitiatorStrategy
</default-initiator-strategy>
<default-participant-strategy>

auction.AuctionParticipantStrategy
</default-participant-strategy>
<protocol>

<answer-delay>10</answer-delay>
<default-answer value="refuse"/>
<minAgreements>1</minAgreements>
<nbRounds>20</nbRounds>
<nb-modifications-by-round>1
</nb-modifications-by-round>
<retraction-allowed value="false"/>
<nbRenegotiations>0</nbRenegotiations>

</protocol>
<default-priority value="5"/>
<management value="sequential"/>
<window value="true"/>
<application-parameters-list>

<application-parameter>
<name>credit</name>
<parameter>
<class>java.lang.Float</class>
<value>0</value>

</parameter>
</application-parameter>

</application-parameters-list>
</genca>

Fig. 3. XML configuration file for the auction application

E. Advantages of using GeNCA

Many auction applications exist, among which we can cite
Kasbah [9], AuctionBot [10] and Fishmarket [11], but in most
of them, a third person collects offers to sale and offers to buy
and match them.

The advantages of this application are numerous, the most
important ones are mentioned here. First, this application
helps the user to bid, and bids in his place when he’s not
there, according to the strategy he has defined. Secondly, this
application can easily be extended to other kinds of auctions,
like English, Dutch, Vickrey auctions, etc. And thirdly, this
application is portable, as a matter of fact, agents can be placed
on PDAs, over a heterogeneous network, etc.

IV. A RESTAURANT CHOICE SYSTEM

When coming out with friends to have dinner, the choice
of the restaurant is many times a problem. The application
we present here aims to solve this problem before the day of
the dinner by negotiating the choice via e-mails. Users have



<?xml version="1.0"?>
<!DOCTYPE agent SYSTEM "agent.dtd" >
<agent>

<name>Paul</name>
<resources-list>
<resource>table</resource>
<resource>fridge</resource>
<resource>cook book</resource>

</resources-list>
<application-parameters-list>
<application-parameter>

<name>credit</name>
<parameter>

<class>java.lang.Float</class>
<value>50</value>

</parameter>
</application-parameter>

</application-parameters-list>
</agent>

Fig. 4. Configuration file of an agent

Fig. 5. Four agents participating in the auction application

preferences over the restaurants and their agents must take
them into account to negotiate the choice of the restaurant.

A. Description

A group of friends wants to choose the restaurant where
they will eat together for their next meeting. They know a
list of restaurants and they choose their next restaurant inthis
list. Moreover, they rank the restaurant from the most to the
least preferred. One of the friends will propose a restaurant
to the others, who reply if they like or not the restaurant. If
75% of the friends like this restaurant, they have found where
they will eat. Otherwise, another restaurant has to be proposed.
To choose the next one, the proposer requests proposals to the
friends and computes the one which is most popular to propose
this one to everyone. The process ends when the restaurant

satisfies at least 75% of the friends.

B. Analysis and implementation with GeNCA

Resources to be negotiated in this application are the
restaurants and are common to all friends. These resources
thus appear in the common configuration file.

The contract only has to contain the proposed restaurant, so
nothing has to be added to this class. The preferences between
the restaurants can be stored in the priority list defined in the
model, so no new data structure has to be created. There is no
parameter that hasn’t been defined in the model to be added.
So there is nothing to do in the negotiation level.

The package provides a mail communication system, so
there is nothing to do for this level too.

The only level that has to be improved is the strategy level.

C. Negotiation strategies

Strategies for choosing a restaurant can be based only on
preferences of the user or also on the previous restaurants
where the friends have eaten.

1) Initiator strategy: The default strategy provided in the
package can be used for this application. As a matter of fact,
this strategy confirms the contract if at least the minimum
number of agreements is reached, here, this number is 75%. If
this number is not reached, the initiator requests a modification
from the participants. Once the modifications received, the
initiator gives a mark to each resource according to the
number of times it appears in a modification proposal from
participants. Then, the initiator proposes the resource which
has the best (greatest) mark.

As this strategy fits the application, no work has to be made
for the initiator strategy.

2) Participant strategy:Several strategies can be defined.
A simple one consists of accepting a restaurant if it is in the
top half of the preference list. If a modification request is
received, the participant proposes the restaurant at the top of
his list, and goes through this list if other modifications are
requested.

Another strategy is to accept the proposal if it is not the
restaurant where they eat last time.

D. Configuration file

Figure 6 shows the common configuration file for this ap-
plication. We can observe the list of restaurants, the strategies
used to negotiate, and the protocol parameters. The minimum
number of agreement is set to 75%, participants have 20
minutes to reply to a proposal and if they don’t, it is as if they
have accepted. Each participant proposes a single restaurant if
a modification is requested, and they can propose one up to 5
times.

E. Advantages of using GeNCA

The only work needed to achieve this application with
GeNCA is to conceive participant strategies and define the
configuration file. There’s nothing else to do ! This ease of
achievement of a negotiation application is a great advantage.
Moreover, this application can be easily extended to fit voting
methods like Borda count or Hare system.



<?xml version="1.0"?>
<!DOCTYPE genca SYSTEM "genca.dtd" >
<genca>

<application-name>restaurant
</application-name>
<resources-list>
<resource>little</resource>
<resource>cheap</resource>
<resource>expensive</resource>
<resource>self</resource>
<resource>fastfood</resource>

</resources-list>
<communicator>
fr.lifl.genca.mail.MailCommunicator

</communicator>
<default-initiator-strategy>
fr.lifl.genca.strategy.DefaultInitiatorStrategy
</default-initiator-strategy>
<default-participant-strategy>
resto.RestoParticipantStrategy

</default-participant-strategy>
<protocol>
<answer-delay>20</answer-delay>
<default-answer value="accept"/>
<minAgreements>75%</minAgreements>
<nbRounds>5</nbRounds>
<nb-modifications-by-round>1
</nb-modifications-by-round>
<retraction-allowed value="true"/>
<nbRenegotiations>3</nbRenegotiations>

</protocol>
<default-priority value="5"/>
<management value="sequential"/>
<window value="true"/>

</genca>

Fig. 6. XML configuration file for the restaurant application

V. JNEGO : A NEGOTIATION GAME

We have conceived this game by inspiring us of the Civ-
ilization game of Avalon Hill Game Company. This game
allows us to illustrate many concepts from negotiation as well
as game theory, which makes its richness. This game aims
to incite competition between players that have to maximize
the value of the resources they possess. This game runs in a
synchronous way, players speak each one in his turn.

A. Rules of the game

There are 6 different resources which worth, in this order
and by convention, from 1 to 6 points, and that are present in
the game in limited quantities.

1) wheat
2) wood
3) stone
4) bronze
5) silver
6) gold

Each player possessesN resources. The value of theith
resource is denotedvalue(ri) and nbCards(ri) denotes the
number of cards representing theith resource that the player

possesses. The value of a player’s hand, denotedvalue(hand),
is computed according to the following formula:

value(hand) =

6
∑

j=1

value(ri) ∗ nbCards(ri)
2 (1)

This formula shows that the more resources you get in the
same family, the more points you get. As a matter of fact,
the increase is quadratic to the number of identical resources
possessed. Let us take an example of one hand containing 3
wood cards and a hand containing 1 wood, 1 wheat and 1
stone. The first one is worth2 ∗ 32 = 18 points, whereas the
second one is worth2 ∗ 12 + 1 ∗ 12 + 3 ∗ 12 = 6 points.

To succeed in obtaining a hand that has a maximal value,
players exchange cards. The only obligation is to exchange 2
cards for 2 cards. This sometimes constrains players to broke a
group of identical resources they have formed. Assume that a
player possesses 5 cards of stone and 1 of wood. If he wants
to exchange his card of wood, he must also give 1 card of
stone.

Three kinds of exchanges can be proposed : the first one
indicates what is given and what is asked, the second one
indicates only what is given, and the third one only what is
asked.

B. Analysis and implementation with GeNCA

The rules indicate that the resources are commonly known
by all players, and each of them possesses a total ofN

resources. These resources thus are defined in the common
configuration file.

As the contract provided by the package contains resources
to negotiate but provides no way to distinguish resources given
or asked for an exchange in this game, the contract must be
extended to include a second set of resources to indicate given
resources. The set of resources contained by the basic contract
represents asked resources.

For this game, one needs to know what hand he has, what
is its value, and to be able to update his hand when he makes
an exchange. He also needs to determine which resources
he’d like to ask or to give. These functionalities are added
to the Negotiator class, so that they can be accessible by the
strategies.

Two classes of our negotiation level have to be extended for
this application. Concerning the communication level, no work
will be needed because our API provides a CentralisedCom-
municator which is designed for synchronous communication
in a round-robin way.

The most important work to be done is to conceive strategies
for this game.

C. Negotiation strategies

We present in this subsection quite simple strategies because
our aim here is not to provide the best strategies for this
game but to show thatGeNCA is well-suited for designing
this application. Better strategies can be obtained by adding a
knowledge base which stores the number of times a player
wanted to obtain or to give each resource. This can help



a player to determine which resources interest which other
player, and who is likely to give resources that interest him.

1) Initiator strategy: When the exchange specifies what is
asked and what is given, it is the simplest case. If a player
has accepted the exchange, it is confirmed. If no player has
accepted it, it is cancelled. If several players have accepted
the exchange, one is chosen (randomly or the first who had
answered) to achieve the exchange.

When the initiator has only specified given resources, he
must evaluate each player’s proposal concerning the resources
he would get. The initiator chooses the exchangeei such as :

{

gain(ei) > gain(ej)∀j 6= i

gain(ei) > 0
(2)

with
gain(ek) = value(hand after the exchangeek) −

value(hand before the exchangeek)
The initiator cancels the contract for every other player. If no

exchange satisfies these conditions, then the initiator request a
modification from participants so that they propose other cards.
When all modifications are received, the initiator chooses the
exchange by the same way. If no player wants to give the
initiator the resources, the contract is cancelled.

When the initiator proposes an exchange giving only asked
resources, he first check if he has the resources wanted in
exchange by the other players. If he has the resources for
several exchanges, then he chooses the one which satisfies
conditions 2 and he cancels the contract for the other players.
If the initiator has no one of the resources asked by the players
or if he doesn’t want to give them, then he request a modi-
fication from the players. He then evaluate the modifications
by the same way.

2) Participant strategy:When an exchange specifying the
resources asked and given by the initiator is proposed to a
player, he first checks if he has the asked resources. If he hasn’t
the resources, he refuses the contract. Else, he computes ifthe
exchange would provide him with a gain. If it is the case, he
accepts the contract, otherwise he refuses it.

When the player receives a proposal mentioning only given
resources, he checks if these resources interest him. It could
be the case if he already has such resources in his hand. If the
resources don’t interest him, he refuses the contract. Else, he
accepts the contract and specifies which resources he would
give in exchange. For example, he would give resources he has
in a single item, or that value less than the cards he would get.
If the initiator requests a modification, the players proposes
other cards that he has and that don’t interest him, or nothing
if he has no more proposals to make.

When the player receives a proposal mentioning only asked
resources, he checks if he possesses these resources. If he
doesn’t possess them, he refuses the contract. Otherwise, he
computes if an exchange could raise his hand’s value, and
in this case he proposes this exchange. In the other case, he
refuses the contract. If the initiator requests a modification, he
proposes another exchange that raises his hand’s value if one
exists. Else, he proposes nothing.

D. Advantages of using GeNCA

The advantages of usingGeNCA for this application are
that only two classes have to be extended for the negotiation
level and that the user only has to define strategies for this
game. All the remaining of the application is already done.

VI. CONCLUSION

In this paper, we gave an overview ofGeNCA, our general
model for contract-based negotiation between agents, and
presented three different applications that we achieved thanks
to our model. The first one is an auction application that runs
on a multi-agent platform. The second one is an application
for choosing a restaurant for a dinner between friends. This
application uses e-mail communications. The third application
is a negotiation game inspired of the Civilization game of
Avalon Hill Game Company. This game is played between
centralised agents that speak each after another in a round-
robin way. We showed that these applications don’t need a lot
of work to be achieved withGeNCA, and that the principal
work was to define negotiation strategies for each application.
Other applications have been achieved thanks toGeNCA, they
are available on http://www.lifl.fr/SMAC/projects/genca.

REFERENCES

[1] H. Nwana, L. L. D.T. Ndumu, and J. Collis, “ZEUS : A Toolkitfor
Building Distributed Multi-Agent Systems.”

[2] J. Collins, B. Youngdahl, S. Jamison, B. Mobasher, and M.Gini, “A
Market Architecture for Multi-Agent Contracting,” in2nd Int’l Conf on
Autonomous Agents, Minneapolis, May 1998, pp. 285–292.

[3] M. Ströbel, “Design of Roles and Protocols for Electronic Negotiations,”
Electronic Commerce Research, Special Issue on Market Design, vol. 1,
no. 3, pp. 335–353, 2001.

[4] M. Benyoucef, R. K. Keller, S. Lamouroux, J. Robert, and V. Trussart,
“Towards a Generic E-Negotiation Platform,” inProceedings of the Sixth
International Conference on Re-Technologies for Information Systems,
Zurich, Switzerland, 2000, pp. 95–109.

[5] C. Bartolini, C. Preist, and N. R. Jennings, “Architecting for reuse:
A software framework for automated negotiation,” inProc. 3rd Int
Workshop on Agent-Oriented Software Engineering, Bologna, Italy,
2002, pp. 87–98.

[6] R. G. Smith, “The Contract Net Protocol : high-level communication
and control in a distributed problem solver,”IEEE Transactions on
computers, vol. C-29, no. 12, pp. 1104–1113, December 1980.

[7] P. Mathieu and M.-H. Verrons, “ANTS : an API for creating negotiation
applications,” inProceedings of the 10th ISPE International Conference
on Concurrent Engineering: Research and Applications (CE2003), track
on Agents and Multi-agent systems, Madeira Island, Portugal, july 26-30
2003, pp. 169–176.

[8] ——, “A Generic Negotiation Model for MAS using XML,” inPro-
ceedings of the ABA workshop Agent-based Systems for Autonomous
Processing, held by the IEEE International Conference on Systems, Man
and Cybernetics. Washington, USA: IEEE Press, October, 5-8 2003.

[9] A. Chavez and P. Maes, “Kasbah : An Agent Marketplace for Buying
and Selling Goods,” 1996.

[10] P. Wurman, M. Wellman, and W. Walsh, “The Michigan Internet
AuctionBot : A Configurable Auction Server for Human and Software
Agents,” in Proceedings of the Second International Conference on
Autonomous Agents, Minneapolis, MN, USA, May 1998.

[11] P. Noriega, “Agent mediated auctions: The Fishmarket Metaphor,” Ph.D.
dissertation, University of Barcelona, 1998.


