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A very small change in the Iterated Prisoner’s Dilemma (IPD) payoff matrix leads to
an iterated game called the Iterated Lift Dilemma1 the properties of which are very
different from those of the classical IPD (CIPD). We show that the following ideas
are to be noted: (i) two levels of cooperation are now possible, the best one needs a
difficult coordination between considered strategies; (ii) only probabilistic strategies
can make a high score when they play against themselves; (iii) complex dynamics
can appear (at the edge of chaos) as soon as three strategies are confronted. Our
idea, already argumented in the case of the CIPD, is that, in spite of the model
simplicity you can obtain many complex phenomena: it is not true that to be good,
a strategy must be simple. Building good strategies for the Iterated Lift Dilemma
is then much more difficult than for the CIPD.

1. Introduction

Conflicting situations are not only a driving force in nature and society, they
are also the entry points for many investigations in Artificial Intelligence
especially in Distributed Artificial Intelligence, Multi Agents Systems, formal
model of rational action, CSCW, concurrent engineering and HCI.

The Iterated Prisoner’s Dilemma is a model for studying cooperation and
conflicts. It’s an iterated game.

An iterated game is a game with two players A and B (also called
strategies) who play an unknown finite number of rounds. On each round,
each player chooses between two actions C (for Cooperation), and D (for
Defection). A round where the player A plays C and the player B plays C

is noted [C,C]; a round where the player A plays C and the player B plays D

is noted [C,D]; a round where the player A plays D and the player B plays C

is noted [D,C]; and finally a round where both players play D is noted [D,D].
When the players play the round number n they play simultaneously

taking into account the game history (that is all the preceding choices they
both have made at all rounds i with i < n).

1 The term Lift comes from the French expression renvoi d’ascenceur which means
I help you this time, you will help me next time
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A player can also play a round randomly; in such a case we say that it is a
probabilistic strategy. The average length of each game must be long enough
(> 10) to allow interesting phenomena and to obtain robust results.

The results of the player’s choices are quantified by a payoff matrix, which
is shown in table 1.1. The parameter R is the reward for mutual cooperation
(round [C,C]), T is the temptation to defect against an opponent cooperation,
who then gets the sucker’s payoff S (round [D,C]). In case of mutual defection
both get the punishment P (round [D,D]).

As players can now choose a way of playing before the game begins, or
during the game, they can be said having a strategy.

Several interesting confrontations can be studied:

– There are single confrontations (one strategy against another one). At the
end of the confrontation (for example after 100 rounds), the points obtained
by each player are cumuled. The winner is the player who has the greatest
score.

– There are round-robin tournaments. We take k strategies, each one playing
against all the others (including itself) in single confrontations. Points of
confrontations are cumuled, the winner is the player who has the greatest
score.

– There are ecological evolutions. For example we consider only 3 strategies
A, B, C; we start with a population of one hundred players choosing the
A strategies, one hundred playing B strategies and one hundred playing C

strategies, that is 300 entities (this defines the first generation); a round-
robin tournament is computed (as if each entity plays against the 299
other entities); scores are computed for each strategy (sum of all scores
from entities of the same kind); a new population is then computed for
each strategy which is proportional to the score obtained. To simplify we
consider that the total population is constant (here 300). This defines the
second generation. This computation is repeated until populations become
stable.

We could let the total population increase but this is not really significant
since we are interested in relative strategies range. Thus our choice is to
maintain the global population stable.

In ecological evolutions, nice2 strategies proliferate and replace bad ones.
To be a good strategy in an ecological evolution a strategy needs not only
to be good in the round-robin competition but also during all the time
and especially when bad ones disappear. Persistent strategies in ecological
evolution are really robust ones.

In the CIPD the following parameters values are generally used:

S = 0 P = 1 R = 3 T = 5

2 nice strategies, as opposed to bad or naughty ones, are the strategies which never
defect prior to its opponents.
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Table 1.1. Iterated Lift Dilemma payoff matrix. Row player scores are given first.

Cooperate Defect

Cooperate
R = 3, R = 3

Reward
for mutual cooperation

S = 0, T = 8
Sucker’s payoff

Temptation to defect

Defect
T = 8, S = 0

Temptation to defect
Sucker’s payoff

P = 1, P = 1
Punishment

for mutual defection

which obey to the next two fundamental inequations:

S < P < R < T

and

S + T < 2R

The first one says that the one shot game is a dilemma, whereas the
second is used to favor cooperation in the iterated version.

This game has been found to be a very good way of studying cooperation
and evolution of cooperation. A theory of cooperation based upon reciprocity
has been set in a wide literature, such as in (Axelrod 1984; Axelrod and Dion
1988; Axelrod and Hamilton 1981).

Experimental studies of the IPD and its strategies need a lot of computation
time. Thanks to the progress of computer science and computers, a lot of
scientists have studied it as they have been able to use specific methods, like
genetic and evolutionary algorithms, see (Axelrod 1987; Bankes 1994; Boyd
and Loberbaum 1987; Lindgren 1992; Martino 1995; Nowak and Sigmund
1992; Nowak and Sigmund 1993; Smucker, Stanley, and Ashlock 1994; Yao
and Darwen 1994).
As cooperation is a topic of continuing interest for the social, zoological and
biological sciences, a lot of works in those different fields have been made on
the IPD: (Batali and Kitcher 1994; Bendor 1987; Frean 1994; Godfray 1992;
Joshi 1987; May 1987; Molander 1985; Nowak and Sigmund 1990; Pool 1995;
Nowak 1990).

In this chapter we study the consequences of the second equality inversion:

S + T > 2R

For instance we will study the following parameters, which are shown on
table 1.1:

S = 0 P = 1 R = 3 T = 8

This small change on the classical game entails many surprising consequences.
It becomes now more interesting to agree with its rival for playing [C,D] then
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[D,C] then [C,D] then [D,C] etc. (which gives an average payoff of (S + T )/2,
4 points each round for each player) than playing [C,C] then [C,C] then [C,C]
etc. (which only gives an average payoff of R, 3 points each round for each
player).

It is still a dilemma: due to the first classical inequality that has not been
changed, the collective interest contradicts the individual one. To maximize
reward needs a subtle agreement.

As for the CIPD it is easy:

– to find cycles (A wins against B, B wins against C, C wins against A);
– to find infinite hierarchical classification (A1 wins against A0, A2 wins

against A1, etc.);
– to show that there is no strategy which plays optimally (that is obtains

the best possible score) against every other opponent;
– to show that all d (which always defects) never looses against any other

strategy but scores very few points each time (it wins against its opponents
but each game its moves costs a lot for it);

– to show that tit for tat (which cooperates on the first move and then
plays what its opponent played on the previous move) never looses more
than T , 8 points, against any other strategy.

With our new parameters the classical game analysis must be revisited.
There are now two cooperation levels:

– the basic level (which looks like a non aggression pact): to play always [C,C],
which gives an average reward of R (3) points by round for each player;

– the upper level (or meta-cooperation level): to find a way of agreeing with
the opponent to win and loose alternatively, that is to play [C,D] [D,C] then
[C,D] then [D,C] etc., which gives an average reward of (T + S)/2 (4) points
by round for each player.

To have success in meta-cooperation each player must play in opposite
phase [C,D] then [D,C] then [C,D] then [D,C] etc. which is difficult because it
needs some coordination and a great risk of loss for the player who plays C

first (it could wait reciprocity for a long time !)
Other high-level cooperations are also possible: for example, playing

[C,D] [C,D] [D,C] [D,C] [C,D] [C,D] [D,C] [D,C] etc. (periodicity 4). Such meta-
cooperations need much more coordination and confidence.

More complex synchronization schemes are now possible but they are
much more difficult to establish and to maintain.

Note that you cannot have any kind of preliminary agreement with your
opponent since choices are simultaneous. Other models are possible in which
players make their choices alternatively. We do not study these models here
(Frean 1994).

The lift dilemma does not take into account all the synchronization
and meta-cooperation problems, but it is a simple and clean model, and
thus allows us to increase our general understanding of cooperation and



206 J.P. Delahaye, P. Mathieu, and B. Beaufils

reciprocity. As we will see, this model is in fact astonishingly more subtle
than the CIPD.

Numerous situations with humans or artificial agents can be represented
by this game. In particular, every situation where an object is periodically
given to the two players, with the possibility that one (and only one) of them
takes it, or that no one takes it.

Even if it seems that this new dilemma is very similar to the CIPD,
we show that this is not the case and that this game has new surprising
properties.

2. Real examples of Iterated Lift Dilemma

Here are some examples of situations which are better described with the
Iterated Lift Dilemma than with the IPD.

2.1 Elections with two candidates of the same party

Two members of the same political party X want to be candidate to the next
local election. Of course there are also other candidates from other parties.
Here are the different possible situations:

– [C,C]. The two candidates of party X take place in the elections but stay
fair-play (that is, they will not mutually discredit themselves or trying to
injure their respective reputations).
Chances to be elected are equally shared among them. The party does not
loose any votes. The chances of each candidate to be elected are evaluated
to 30%.

– [D,D]. The two candidates take place in an aggressive competition which
damages their reputations. Their fight scares some electors and the party
globally looses votes. Now each candidate has 10% chances to be elected.

– [D,C]. Only one of them is aggressive while the other stays quiet (or even
does not really want to win or calls electors to vote for his colleague).
Electors are not afraid (amused ?)
Due to the fact that all votes for the party X are now concentrated on the
same candidate. He has now 80% chances to be elected while the kind one
does not have any chances to be elected (0%).

In such a case, if there are many elections, it is obvious that the
two candidates have to alternatively give way to their colleague (meta-
cooperation). This is clearly the best global behavior.

Of course in real life, the candidate who gives way to the other hopping to
have a feedback takes a great risk (political change, new candidates, defection
of the other).
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The number of rounds in such a game seems to be rather limited, but
the feedback between A and B can already be realized in a different form in
future elections, then the total number of rounds can easily increases up to
5 or 10.

2.2 Collaborator’s recruitment session

During collaborator’s recruitment session (in research centers, universities,
or private companies) explicit or implicit agreements between two different
teams or sectors against the others are common. They often work in this way:
“This time I will not defend too much my candidate and I will help you to
support yours. Next time you will support my future candidate”.

A round [C,C] is a session where each team kindly defends its candidate, a
round [D,D] is a session where the two teams roughly fight for the recruitment
of its candidate (with a great risk to see the candidate of a third team be
chosen), a round [D,C] is a session where one of the two teams leaves its
chances to the other hopping a feedback the next time.

2.3 Sale by auction for art objects

If two collectors are in the same room where the objects they want are
presented, it is better for them to agree to buy alternatively the objects,
instead of out-bidding mutually which leads to a great global increase of
each price. Their agreement is the following one: “I stay quiet during the
auction of this object but please stay quiet for the next one, by this way we
will save our money”.

A round [C,C] is an auction where they try quietly to buy the art object.
A round [D,D] is an auction where they wildly out-bid to have the object. A
round [D,C] is an auction where one of the two buyers abstain from saying
anything hoping a feedback next time.

2.4 The two music amateur neighbors

The music amateur neighbours have also to alternate their listening periods
if they want to ear their music in good conditions.

[C,D] I can ear my music and I am not disturbed by yours. I obtain
a satisfaction of 8 “pleasure points”.

[D,C] You can ear your music and I can’t ear mine. It counts for 0
“pleasure points” for me.

[D,D] I am trying to ear my music but I can simultaneously ear
yours. I just obtain 1 “pleasure point” but you too !

[C,C] We both renounce to listen to music today. This silence counts
for 3 “pleasure points”.
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2.5 The access to an indivisible thing which is periodically
available

This case is a generalization of the previous cases.
C Trying to catch this thing in respect to fairness or non

aggression pact.
D Trying to catch this thing without restraint, defecting any

implicit or explicit agreement defining fight rules.
A round [D,C] corresponds then to a case where one of the players submits

to the other player’s authority. This avoids the fight to degenerate violently.
In the animal world, you can frequently see some fights not really violent

taking place between two animals of the same specy, until one of the
opponents gives up and shows its defection with a conventional sign. This
shows clearly that such a situation is a kind of Lift Dilemma.

A round [C,C] corresponds to a fight not really violent (for example
between two males which desire the same female). A round [D,D] corresponds
to a violent fight which can result in severe wounds.

In animal fight, we can rarely see a meta-cooperation level, but more
frequently we see a hierarchical situation with the consequence that the first
winner always wins in the following confrontations.

We will see in the studies on homogeneous populations that this situation
corresponds to the choice of a collectively rational strategy (defined as a
strategy which is able to obtain a maximum score against itself even if the
rewards are not equally distributed between its representatives).

3. What would a good strategy be ?

Before giving mathematical results and reporting computer experiments, it
is interesting to elaborate an a priori analysis of the game. The following
points have to be quoted:

– As for the CIPD, this game is a non-zero sum game (the total score
distributed among the players depends on the actions chosen). Solidarity
between the players comes from the game rules. This means that to be
successful the players must be able to establish cooperation (or meta-
cooperation) to obtain the maximum global score.

– It is a real dilemma: in the Game Theory meaning, the only Nash equilibrium
(if one of the player changes its position in any way, it will loose points) is
a round [D,D]. Of course, the only non-dominated strategy is all d (which
always defects). By construction, the game is more difficult than the CIPD
due to the existence of two levels of cooperation and also to the high
quality of coordination needed to obtain a maximum global score (that is
meta-cooperation).
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– There is a kind of paradox in that to reach the meta-cooperation level one
of the two players must defect first: by this way there is a risk to scare
an anxious opponent which will think that you don’t want to cooperate.
For example the spiteful strategy (which cooperates while you cooperate
and which always defects as soon as you defect once) will never be able
to establish meta-cooperation. Here, playing D has two significations: (i)
refusing to cooperate; (ii) trying to meta-cooperate. To avoid this ambiguity
must be the aim of all the strategies trying to reach a real success.

– It seems obvious that a good strategy must be able to accept only a first
level of cooperation if it cannot establish the second one.

– Reactivity, as in the classical game, seems necessary: you have to adjust
yourself by taking into account the rival’s reactions.

– A good strategy should also be able to adjust itself to an opponent which
plays (CDCDCD) or (CCDDCCDDCCDD) or any other scheme corresponding to an
equitable reward’s distribution. Taking into account all meta-cooperation
schemes seems to be very difficult and needs longer risk periods.

– In an ecological evolution, it is important to play as well as possible against
oneself (this problem will be addressed in details later).

About simplicity, graduality, memory, randomness, nothing seems a priori
obvious.

4. Ecological evolutions in homogeneous environment

In this section we look for strategies which obtain the best possible score
in homogeneous environments, that is which are able to collect the best
possible score when they play against themselves. Our conclusions are rather
surprising.

Definition 4.1. We call rational strategy (resp.: asymptotically rational
strategy) a strategy which when it plays against itself obtains the best possible
score for every game length n (resp. asymptotically best possible score).

Let us note Vn(A) the score obtained by a strategy A when it plays
against itself during n rounds (when the strategy is probabilistic Vn(A) is
the expectation of the A score on n rounds).

By definition, a strategy is said to be rational if:

∀n : V n(A) = max{V n(X); X is a strategy}

By definition, a strategy is said asymptotically rational if:

lim
n→∞

[

V n(A)

max{V n(X); X is a strategy}

]

= 1

A rational strategy in an ecological evolution with an homogeneous
environment obtains the maximum possible reward. Such a strategy will have
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a score advantage when it will meet the others (especially in an ecological
evolution starting from a sufficiently large amount of copies of itself).

To be efficient when you meet other strategies, the total score does not
have to be equally distributed between sister strategies. This is why we
will define the notions of collectively rational strategies and asymptotically
collectively rational strategies.

Definition 4.2. We call collectively rational strategy (resp. asymptotically
collectively rational strategy) a strategy which collects the maximum possible
total score for every game length n (resp. asymptotically the best total score)
when two copies of itself play together.

Formally we note V’n(A) the score obtained by two copies of the strategy
A when they play together during n rounds (when the strategy is probabilist
V’n(A) is the expectation of the score on n rounds).

By definition, a strategy is said to be collectively rational if:

∀n : V ′

n(A) = max{V ′

n(X); X is a strategy}

By definition, a strategy is said asymptotically collectively rational if:

lim
n→∞

[

V ′

n(A)

max{V ′
n(X); X is a strategy}

]

= 1

4.1 The CIPD case

In the CIPD (parameters S = 0, P = 1, C = 3, T = 5) rational strategies
are exactly those which never defect first (called nice strategies). Indeed to
obtain the maximum possible score in a given set each strategy must always
play C (round [C,C]) which scores collectively 2R (6) points each round (every
change in this C sequence will reduce the collective score).

That explains that, in ecological evolutions involving a large variety of
strategies, only nice strategies stay alive (if all strategies have nearly the
same number of representatives, of course).

Asymptotically rational strategies are those which are able to obtain an
average of R (3) points by round when they play against themselves. They
can defect sometimes, deterministically or probabilistically, but the defection
number must tend from the infinity to 0 (for example, at the round n, defect
with the 1/n probability).

In the CIPD the collectively rational (or asymptotically collectively rational)
notion does not have any interest because to obtain the best possible score
you need to play only [C,C] rounds which assure similar scores, thus collectively
rational strategies are rational and asymptotically rational strategies are
collectively asymptotically rational.

In the Lift Dilemma the situation is different because a strategy will have
sometimes to sacrifice for the other. Some collectively rational strategies are
not rational.
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4.2 The Lift Dilemma case

In this section we present some mathematical results about the Lift Dilemma:

Theorem 4.1. If the two following equalities are satisfied: S < P < R < T
and S+T > 2R, a deterministic strategy is never rational nor asymptotically
rational nor collectively rational nor asymptotically collectively rational.

Proof. When a deterministic strategy plays against itself there is never a
round [C,D] or [D,C], thus it will always score R (3) points each round in the
best case. We will see that there exist probabilistic strategies which score an
average of 4 points by round.

We will call phased round a round [C,C] or [D,D] , and unphased round
a round [C,D] or [D,C].

Theorem 4.2. (Rationality characterization)
A strategy is rational if and only if:

– at the first round and while the previous round is not unphased, it plays C

with a opti = 0.56696 probability and D with 1 − opti probability;
– After the first unphased round, it uses a rule such that, for every possible

history against itself, the one who played D at the first unphased round will
play the opposite than the one who played C at the first unphased round
(thus such a strategy when it plays against itself is deterministic after the
first unphased round).

Proof. The former point will be established later with the justification and
computation of the 0.56696 probability, while the latter one is clearly obvious.

4.2.1 First examples. In this section periodic repetitions will be noted
with a star. Let us note, for example, the moves (CDDCDDCDD). . . as (CDD)∗.

Here is the simplest rational strategy called: reason (the 0.56696 parameter
is explained below).

reason

– I play C with a 0.56696 probability and D with a 0.43304
probability at the first round and while the previous round
is phased;

– then
– if the first unphased round is [C,D], I play (DC)∗
– if the first unphased round is [D,C], I play (CD)∗

The following strategy called naive-reason is collectively rational but is
not rational. An homogeneous naive-reason population will globally obtain
the best possible score for an homogeneous population. Rewards will however
not be equally distributed between the entities.
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naive-reason

– I play (C : 0.56696; D : 0.43304) at the first round and while
the previous round is phased;

– then
– if the first unphased round is [C,D], I play (C)∗
– if the first unphased round is [D,C], I play (D)∗

This strategy can be explained by this way: “if at the first disagreement
I have been exploited, I consider that I am a looser, and I accept to always
be exploited. If at the first disagreement I win, I want to win every time”.

Such a rule, used by individuals of the same species could be a mechanism
able to create hierarchies. This kind of agreement respects the collective
interest even if there is no equality between individuals. This strategy is
more simple than the reason strategy to obtain collective maximum score.
Perhaps we could see here an explanation to the fact that democratical
societies appeared more recently than despotic ones.

The following strategies try to improve reason by being nicer. The idea
is not to annoy easily offended strategies by trying first to cooperate.

gentle-reason

I play like reason excepted that the D probability during the
first 3 rounds is equal to 0

reason-[a,1-a]

(a is a parameter between 0 and 1)
I play like reason excepted that I play C with probability a
when I am waiting for an unphased round.

The two previous strategies are asymptotically rational because they
only lose few points at the beginning of the game compared to what they
can best expect. With a near 1 (for example 9/10) reason-[a,1-a], like
gentle-reason, will avoid to annoy easily offended strategies.

While similar to reason, the following strategy is neither rational nor
collectively rational nor asymptotically rational nor collectively asymptotically
rational because it satisfies itself too easily to obtain an average of 3 points
each round. Of course we cannot expect this strategy to be a very good one.

coop-reason

I play all c (always C) until the first defection of my
opponent, then start playing reason.
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4.2.2 Justification of the 0.56696 parameter. At first sight, the 0.56696
parameter seems strange. We explain here where it comes from. This number
is the root of a polynomial equation obtained when trying to minimize the
cost of the period of search of an unphased round (when the strategy plays
randomly C or D) when a strategy plays against itself.

The fastest way to obtain an unphased round in this case is to play C and
D with an equal probability of 1/2 (the average number of phased round is
then 1).

But with this probability, we lose more points on average in each round
than if we play (for example) C with a 3/4 probability and D with one of 1/4
D because [C,C] rounds which give 3 points to each player are more frequent
than [D,D] rounds which pay only 1 point.

Thus it is not obvious that the best way to find an unphased round is
to play C and D with a 1/2 probability. The mathematical study of this
problem shows that the minimal unphased round searching cost is obtained
for 0.56696.

The computation of this cost leads to the following equation:

−(1 − 2p + 2p2)(p(R − P ) + P − (T + S)/2)/[2p(1− p)]

which gives with our parameters R = 3, P = 1, T = 8, S = 0:

−(2p − 3)(1 − 2p + 2p2)/2p(1− p)

We note that the gain obtained by 0.56696 instead of 0.5 is very small
(less than 1/10 of a point). Thus for simplicity we can avoid it and make our
searching period with a 1/2 probability.

4.2.3 Computation of the parameter 0.56696. Search for an unphased
round when two strategies play C with probability p and D with probability
1 − p.

When we are in the period of search of an unphased round, [D,D] rounds
score P points and the rounds [C,C] score R points. Thus during this period,
on average we score by round

Rp + P (1 − p) = p(R − P ) + P

Computation of the average length of this period:

length moves probability

0 [D,C] or [C,D] 2p(1 − p)
1 ([D,D] or [C,C]) followed by ([D,C] or [C,D]) 2p(1 − p)(p2 + (1 − p)2)
2 ([D,D] or [C,C]) two times followed by ([D,C] or [C,D]) 2p(1 − p)(p2 + (1 − p)2)2

...
...

...

Thus the expectation of length EL is:

EL = 2p(1− p)
[

(p2 + (1 − p)2) + 2(p2 + (1 − p)2)2

+ 3(p2 + (1 − p)2)3 + 4(p2 + (1 − p)2)4 + · · ·
]

Computation of the sum X + 2X2 + 3X3 + 4X4 + · · ·
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X + 2X2 + 3X3 + 4X4 + · · · =

= X [1 + 2X + 3X2 + 4X3 + · · ·]

= X [1 + X + X2 + X3 + · · ·]′

= X

[

1

(1 − X)

]

′

=
X

(1 − X)2

Hence, EL =
2p(1− p)

(

p2 + (1 − p)2
)

[1 − (p2 + (1 − p)2)]
2

=
2p(1− p)

(

p2 + (1 − p)2
)

(2p(1− p))
2

=

(

p2 + (1 − p)2
)

(2p (1 − p))

=
1 − 2p + 2p2

2p(1− p)

The loss L (compared to an immediate unphased round) is:

L =

[

(1 − 2p + 2p2)

2p(1 − p)

] [

(T + S)

2
− [p(R − P ) + P ]

]

=
T + S

2
−

[p(R − P ) + P ](1 − 2p + 2p2)

2p(1− p)

With our parameters, we obtain:

L =
(2p − 3)(1 − 2p + 2p2)

2p(1− p)

For p = 0.5 we find L = 2; for p = 0.7 we find L = 2.209; for p = 0.9 we
find L = 5.46; for p = 0.4 we find L = 2.38; for p = 0.6 we find L = 1.95 ; for
p = 0.55 we find L = 1.938; for p = 0.65 we find L = 2.03

Minimum loss is obtained for p = 0.5669640801 . . . The cheapest unphased
round period searching is obtained when we play C with p = 0.5669640801 . . .
probability and D with 1 − p probability.

4.2.4 Notes about determinism. We say in theorem 4.2 “for every
possible past against itself” because it does not matter to play in opposite
phase with other strategies when we are looking for rational strategies. It is
only important for it to play in opposite phase against itself.

For example, consider the following strategy:
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reason-careful

– I play (C : 0.56696; D : 0.43304) at the first round and while
the previous round is phased.

– then
– if the first unphased round is [C,D] I play (DC)∗ excepted

if the opponent has played consecutively 3 D since the
first unphased round; in this case I play (D)∗

– if the first unphased round is [D,C] I play (CD)∗ excepted
if the opponent has played consecutively 3 D since the
first unphased round; in this case I play (D)∗

The excepted actions are never used when the strategy plays against itself
and thus it is rational (theorem 2). The following strategy is also a rational
one.

reason-tit for tat

– I play (C : 0.56696; D : 0.43304) at the first round and while
the previous round is phased;

– then I play tit for tat (I play what my opponent played
on the previous move).

There is a generalization of the previous strategy. With a nearly 1 it will
be less aggressive at the beginning of the game.

reason-[a,1-a]-tit for tat

– I play (C : a; D : 1 − a) at the first round and while the
previous round is phased;

– then I play tit for tat

4.2.5 Remarks concerning the search of an unphased round. The
a = 0.56696 parameter has been computed with an homogeneous population
hypothesis (all the strategies are identical). Is this value always an optimal
one in an heterogeneous population? The answer is no, we now explain why.

In an heterogeneous panel a new factor which favors a value less than
0.5 for a must be taken into account. It is in fact clear that a strategy takes
advantage to be the one which defects at the first unphased round, because
if the rest of the game lasts an odd number of rounds it will never get back
the gain scored at the first unphased round. We can estimate to 4 points this
kind of advantage (sometimes it will be played an odd number of rounds thus
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it will score 8 points, sometimes it will last an even number of rounds thus
it will earn 0 points). This is really important in case of short games because
the global payoff is small.

Of course no optimal value of the parameter a can be mathematically
determined because everything depends of the starting panel. The simulations
we have realized by confrontations between various reason-[a,1-a] have
shown the following results:

– in an ecological evolution with 2 kinds of strategies: a = 0.5 wins against
a = 0.567

– in an ecological competition with 5 kinds of strategies the order is: a = 0.5;
a = 0.433; a = 0.567; a = 0.1; a = 0.9.

– in an ecological competition with 5 kinds of strategies the order is: a =
0.567; a = 0.433; a = 0.5; a = 0.6; a = 0.7; a = 0.4; a = 0.3; a = 0.2;
a = 0.1; a = 0.8; a = 0.9

These results do not allow general conclusions except that choices of a
near 0 or 1 are bad choices. Of course these results are very sensible to the
random generator and in fact can change according to how experimentations
are made (we have made an average of 1000 tournaments).

To obtain a good strategy you can of course watch the behavior of the
other player. For example, if your opponent has consecutively defected many
times, it is certainly trying to exploit you. In such a case your interest is to
search again for a new unphased round. The following strategy is based on
this idea with a test of 3 consecutive defections.

iterated-reason

– I play (C : 0.56696; D : 0.43304) at the first round and while
the previous round is phased.

– then
– if the first unphased round is [C,D], I play (DC)∗ excepted

if my opponent has defected consecutively 3 times; in this
case I forget the last phased round and I start again a
search of unphased round,

– if the first unphased round is [D,C], I play (CD)∗ excepted
if my opponent has defected consecutively 3 times; in this
case I forget the last phased round and I start again a
search of unphased round.

4.2.6 Remarks about memory and complexity of strategies. The
use of the first unphased round in the formulation of theorem 2 implies that
rational strategies keep in memory the first unphased round. Thus rational
strategies must not only be probabilistic but must also have a memory (they
must remember the number and what they have played at the first unphased
round).
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To play well against oneself (that is to be rational) implies necessarily a
certain level of complexity.

Then to obtain a robust strategy, the complexity of the strategy will be
increased. Similar conclusions about the necessity of complexity have already
been obtained concerning the CIPD (Beaufils, Delahaye, and Mathieu 1996;
Delahaye and Mathieu 1995; Delahaye and Mathieu 1993).

The following experiments confirm the abstract analysis just described
about the Lift Dilemma.

5. Practical study of confrontations

5.1 all d against reason

The reason strategy plays well against itself, but is not reactive (it does
not take into account the behavior of the opponent) after the first unphased
round. Thus this strategy can be exploited for example by all d strategy
which always defect (D)∗. Let us show this result.

all d against reason gives
[D,D][D,D]· · ·[D,D][D,C] + [D,D][D,C][D,D][D,C][D,D]· · ·

After an unphased search period of reason (before the +) which does not
take a long time (one round on average), the confrontation continues with
the reason exploitation (reason scores an average of 1 point each 2 rounds,
while all d scores 9 points each two rounds).

In a length game of 1000 rounds, globally, all d against itself scores 1000
points, reason against itself scores 4000, all d against reason scores 4500
while reason scores 500. See figure 5.1.

5.2 all d against reason-tit for tat

The following experiment shows that the improvement added to reason to
obtain reason-tit for tat leads to a strategy which now beats all d. See
figure 5.2.

5.3 tit for tat against reason

Once again, see (Beaufils, Delahaye, and Mathieu 1996) for previous questions,
tit for tat reputation have to be reconsidered. In the Lift Dilemma, deterministic
strategies cannot be good, and this is the case for tit for tat. Nevertheless
it is able to favor meta-cooperation with a period of two rounds. In fact it
plays well against reason (average of 4 points), unfortunately it is satisfied
by 3 points against itself. In an ecological computation it is fatal for it.
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tit for tat against reason gives
[C,C][C,C]· · ·[C,C][C,D]+ [C,D][D,C][C,D][D,C][C,D]· · ·

In a length game of 1000 rounds, tit for tat against itself scores 3000
points, reason against itself scores 4000 points, tit for tat against reason
scores 4000 points like reason. See figure 5.3.
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5.4 reason-tit for tat with tit for tat and all d

– reason-tit for tat against tit for tat gives :
[C,C][C,C]· · ·[C,C][C,D]+ [D,C][C,D][D,C]· · · that is an average of 4 points each
round.

– reason-tit for tat against all d gives
[D,D][D,D]· · ·[D,D][C,D]+ [D,D][D,D][D,D][D,D]· · · that is an average of 1 point
each round together.

– tit for tat against all d gives [C,D][D,D][D,D][D,D]· · · that is 1 point each
round together in average

– all d against itself scores 1 point each round
– tit for tat against itself scores 3 points each round
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– reason-tit for tat against itself scores 4 points each round in average.

In an ecological evolution involving these 3 strategies, all d disappears
quickly, then tit for tat disappears.
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Note, as shown on figure 5.4, that tit for tat until the 5th first generations
takes advantage of all d’s population decrease, but it can’t do that a long
time.

5.5 reason-tit for tat against 10 basic strategies

In order to determine if reason-tit for tat is a good strategy, let us
compare it in an ecological evolution with 10 basic strategies. We first describe
the 10 considered strategies:

all c always cooperates
all d always defects
ipd random cooperates with a probability of 0.5
tit for tat cooperates on the first move and then plays what its opponent

played on the previous move
spiteful cooperates until the opponent defects, then defects all the time
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per ccd plays periodically [cooperate, cooperate, defect]
per ddc plays periodically [defect, defect, cooperate]
soft majo plays the opponent’s most used move and cooperates in case of

equality (first move considered as equality)
mistrust has the same behavior as tit for tat but defects on the first

move
prober begins by playing [cooperate, defect, defect], then if the opponent

cooperates on the second and the third move continues to defect, else
plays tit for tat
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Fig. 5.5. reason-tit for tat against 10 basic strategies

As shown on the figure 5.5, during first generations, tit for tat beats
reason-tit for tat, but once again, not for a long time.

6. Parameters sensibility

Graphics on figure 6.1 shows the influence of the T (temptation) parameter
in ecological evolutions.

To illustrate this influence let us, in a first time, take 4 basic strategies
without reason and, in a second time, the same 4 strategies with reason

added to them.
In each case we change the T parameter from T = 5 (CIPD) to T = 6,

T = 7 and finally T = 8 (ILD).
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We can see that to be probabilistic is not sufficient to be good in the cases
where 2R < S + T (see ipd random).

It is also to be quoted that such phenomena could also be seen with the
classical Iterated Prisoner’s Dilemma.

7. Conclusion

In this chapter we have shown that a very small change in Iterated Prisoner’s
Dilemma payoff matrix leads to an iterated game which properties are very
different than those of the CIPD. Two levels of cooperation are possible
in this game. This creates an iterated game much more difficult to analyze
than the classical IPD Nevertheless very concrete situations of social life are
simulated with it. One of our conclusions, mathematically proved, is that
only probabilistic strategies can make a high score when they play against
themselves. We have then found interesting characteristics allowing us to
define good strategies like reason or reason-tit for tat. Building good
strategies for the Lift Dilemma is now much more interesting and complex
than for the classical game.

The simulation software we use for the experiments, is already available,
with many strategies, for Unix, DOS or Windows computer system architectures
on the World Wide Web at http://www.lifl.fr/IPD or by anonymous ftp
on the following site ftp.lifl.fr in pub/projects/IPD.
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