
ANTS : an API for creating negotiation applications.

Philippe Mathieu & Marie-Hélène Verrons
Équipe SMAC, Laboratoire d’Informatique Fondamentale de Lille – CNRS UMR 8022
Université des Sciences et Technologies de Lille, Villeneuve d’Ascq, France
email : {mathieu,verrons}@lifl.fr

In this paper, we present a generic negotiation model for multi-agent systems, built on three levels : a commu-
nication level, a negotiation level and a strategic level, which is the only level specific to the application. XML
files are used to configure the system, freeing the end-user with recompilations each time he wants to change a
parameter. The aim of this paper is then to show that it is possible to describe precisely a generic model that we
can use in several negotiation problems. This model has been implemented by a Java API called ANTS used to
build our applications. ANTS is the only platform which enables the use of different communication systems
and of negotiation strategies independent of any attribute like price. These researches on negotiation take place
in software engineering works for artificial intelligence and multi-agent systems.
keywords : negotiation protocol, MAS, software engineering, XML

1 INTRODUCTION
With the progress of information technology, multi-
agent systems and electronic market places, the need
of automatic agents able to negotiate with the others
on behalf of the user becomes stronger and stronger.
Moreover, the utility of using an agent during nego-
tiations is perfectly justified by the explosion of the
number of messages exchanged between agents. In
certain cases, specially with cascaded renegotiations,
the number of messages can be in O(mn) if n is the
depth of the cascaded process and m the number of
agents involved in one negotiation.

Since several years, negotiation has been studied
by many researchers ((Rosenschein and Zlotkin 1994;
Sykara 1989; Kraus 2001)), and many negotiation
systems have been achieved in specific domains like
auctions or market places often in the aim of elec-
tronic commerce, let’s cite Zeus (Nwana et al. ) de-
veloped by British Telecommunications and works
done at HP Laboratories (Bartolini et al. 2002a). It
is not our aim, we want to offer a generic platform
able to build any kind of negotiation applications
like auctions, but also meeting scheduling or reserva-
tion systems. When studying such negotiation prob-
lems, we can see that many used notions are the
same in many systems. For example, contracts,
resources, contractors, participants have a
semantic equivalent in all negotiation systems. Our
aim in the software engineering field, is to show that

these notions can be reified in a generic and open ne-
gotiation model and to build the corresponding API.
This model should be wide enough to allow classi-
cal negotiation applications to be covered without an
adaptation effort, and to possess enough parameters
to adapt to different models, which is a difficult engi-
neering problem.

Although it is difficult to define formally what is
negotiation, we will base our arguments on the fol-
lowing consensual definition, which can be applied to
many fields such as auctions, appointment taking sys-
tems, games or others.

definition : Negotiation is carried out on a contract
to obtain common resources and on the request
of an initiator. It brings together a set of partic-
ipants and an initiator and runs until an agree-
ment satisfying a percentage of participants is
reached. Participants equally try to obtain the
best possible solution for themselves while giv-
ing a minimum set of information to the others.

This definition is of course inspired of the Con-
tract Net Protocol proposed by Smith (Smith 1980)
in 1980, which is a fundamental of all negotiation
works (Sandholm and Lesser 1995).

To conceive our model, three levels are neces-
sary. The negotiation level which contains the nego-
tiation protocol, the management of data structures

1



and speech acts necessary for agents to evolve their
knowledge; the communication level allowing agents
to send messages in a centralised way if agents are
on the same computer, or in a distributed way if they
are on different computers; the strategic level allow-
ing agents to reason on the problem and infer on the
knowledge obtained from the others. In our work,
each level can be changed independently of the oth-
ers. We decided to separate these three levels in order
to provide more facilities to adapt the negotiation sys-
tem to applications as their common need is the ne-
gotiation level. As a matter of fact, each application
has its own communication system and needs spe-
cific strategies of negotiation. It is for example pos-
sible to use ANTS in a round robin way with syn-
chronous communication with all agents on the same
computer to achieve a video game where virtual be-
ings will negotiate turn to turn, and to use it in a dis-
tributed way with asynchronous communication for
electronic marketplace. In our model, the negotiating
agent is composed of reactive micro-agents, where
each micro-agent manages a negotiation.

We have identified many criteria to describe a ne-
gotiation, among which we can find the number of
rounds in a negotiation process, the minimum num-
ber of agreements needed to confirm the contract, the
retraction possibility and the answer delay. Many of
them have been taken into account to build ANTS.

A human user has two ways to use his agent. Man-
ually, it is then a help-decision tool which shows the
state of all the concurrent negotiations. In such case, it
is the human user who agrees a query. Automatically,
this time the agent is hidden and proposes or answers
queries by itself.

In ANTS, the general server has an XML configu-
ration file which allows to define the general notions
like retraction possibility, number of rounds in a nego-
tiation process, for example. Each agent can also have
its own XML file to define the parameters of its owner
(minimum number of agreements needed to confirm
the contract, answer delay . . . ). Having XML files to
configure the system makes it easier for the user to
define a negotiation problem.

In this paper, we first detail each level of ANTS.
Then, we give ANTS’ features and the different ways
to use it. Finally, we compare our works to others
achieved on the same subject.

2 ANTS COMMUNICATION LEVEL
This level is responsible for communication between
agents, and defines the primitives that all agents must
be able to understand to negotiate with ANTS.

2.1 Presentation
ANTS uses a mechanism of subscription to the sys-
tem for locating participants and collecting resources.

A names’ server has been defined to retain partici-
pants with their address and resources that will be ne-
gotiated. Each agent wishing to participate in the ne-
gotiation system has to register itself to the names’
server, giving its name, address and its own resources
that it will negotiate. Following its subscription, it re-
ceives the list of participants already present in the
system and the resources that will be negotiated. Each
participant already present is notified of the arrival of
a new participant and his resources.

Each agent can connect/disconnect the system as it
wants, then notifying it to the names’ server.

Each agent wishing to send a message to a set of
participants asks the names’ server to send it. As a
matter of fact, participants only know the name of the
other participants, not their address. So, they have to
ask the names’ server to send the message because it
is the only one who knows participants’ addresses.

Each agent needs a communicator to interact
with the names’ server. This communicator is re-
sponsible for subscribing to the system, connect-
ing/disconnecting it, and for asking the names’ server
to send a message to a set of participants.

The names’ server also needs a communicator in
order to send a message to an agent, given its address.

These communicators must implement the Com-
municator interface defined in ANTS. This allows the
system to run on many platforms like Magique or
Madkit, but also in a round robin way with threaded
agents. In order to run an application, the developer
has to define a “router” agent that plays the role of the
names’ server.

Let’s now have a look to the different implemen-
tations of the communicator that we provide with
ANTS.

2.2 Implementations achieved
Three implementations have been achieved : one with
the Magique platform (mag ), one with the Madkit
platform (mad ), and one free of any platform with
threaded agents interacting in a round robin way.

For Magique and Madkit, that are two MAS plat-
forms, the communication primitives of these plat-
forms were used to communicate. For the simple
agents version, communication is done through pro-
cedure calls on the agents that are objects.

3 ANTS NEGOTIATION LEVEL
This level contains all the objects needed for agents to
negotiate, and of course contains the negotiation pro-
tocol used in ANTS. The protocol we propose here
aims to define the messages that agents can send to
each others with the operational dynamics associated.
This negotiation protocol (Figure 1) is characterised
by successive messages exchanged between an initia-
tor (the agent who initiates the negotiation) and partic-

2



ipants (the agents who participate to the negotiation)
as in the Contract Net Protocol framework (Smith
1980). We first describe the phases that compose our
negotiation protocol, and then we present the differ-
ent kinds of applications that can be achieved with
this protocol. The internal objects needed to the im-
plementation of ANTS are described in (Mathieu and
Verrons 2002).

3.1 Negotiation protocol phases

initiator participant

propose(contract)

reject()

accept(parameters)

confirm(contract)

cancel(contract)

modification request(contract)

propose modification(modifs)

modification request(contract)

cancel(contract)

propose(contrat)

propose(contract)

Figure 1: Negotiation protocol of ANTS

We distinguish three phases for our negotiation pro-
cess : the first one is the proposition phase which initi-
ates the negotiation process. Then, there is an optional
phase named conversation phase. This phase consists
of rounds of propositions and counter-propositions in
order to converge to an acceptable contract for every-
one. Finally, there is the final decision phase where
the contract is either confirmed, either cancelled.

Proposition phase In this phase, the initiator pro-
poses a contract to a set of participants and waits
for their answer. In response to the proposition,
each participant answers if he agrees or rejects it.

Conversation phase This phase is necessary if there
was not enough participants who agreed the con-
tract proposition. A conversation is then started

between the initiator and participants during
which modification propositions are exchanged.
Following these propositions, the initiator pro-
poses a new contract to participants, and a new
proposition phase is entered.

Final decision phase This final decision phase
comes to either a confirmation or a cancellation
of the contract. This decision is taken by the
initiator in response to participants’ answers.

3.2 Applications realisable with this protocol
In this subsection, we present the type of applications
realisable with this protocol, as it is aimed to be gen-
eral.

As we mentioned before, this protocol is inspired
of the Contract-Net, and it adds an optional phase of
conversation. As the protocol describes messages ex-
changed between agents but especially the order of
messages and agents’ turn to talk, and not what is the
content of the message (for example, always a price),
it allows many different applications to use it, which
is not the case of many protocols such as the one used
in ZEUS which is dedicated to marketplaces.

For example, you can use it in a “take it or leave it
offer” form if you don’t use the conversation phase. If
you want to make auctions applications, you can im-
plement English auctions as well as Dutch auctions.
For English auctions, the initiator proposes his arti-
cles and participants answer giving a price as argu-
ment of the accept message if they are interested in
the article, or rejecting the proposition otherwise. If
no participant has proposed a satisfying price for the
initiator, a conversation phase is entered where each
modification consists of a new bid. The process fin-
ishes when a satisfying price has been proposed or
when nobody rebids or the maximum number of turns
predefined by the initiator has been reached.

For Dutch auctions, the initiator proposes an arti-
cle with a high price, and if no participant accepts
the proposition, the initiator proposes again the article
with a lower price without asking for a modification
from participants. The process finishes when a partic-
ipant accepts the contract, or when the price reaches
the minimum price wished by the initiator, or when
the maximum number of rounds defined by the initia-
tor is reached.

This protocol is not adapted to negotiations that
have to be processed on several levels, for example,
for negotiating to buy a car, you can first negoti-
ate the colour, and then the price . . . This protocol is
not adapted to combined negotiations (Aknine 2002),
where contracts need to be linked. For example, you
can’t create two contracts and say both of them must
be taken or none. If you want several resources from
the same person, you put them in a single contract, but
if you want several resources from several persons,

3



you’ll need one contract per person/resource but you
can’t specify that all contracts must be taken or none.
Despite the protocol could fit it, negotiation with ar-
gumentation (Parsons et al. 1998) is not included in
ANTS. The protocol could be adapted since the pa-
rameters of acceptation or modifications could be ar-
guments.

4 ANTS STRATEGIC LEVEL

Our model separates the strategic level in order to
leave to the user the possibility to write his own nego-
tiation strategy for a specific application.

4.1 Presentation

There are two kinds of strategies : the strategy for
an initiator for him to decide either to confirm or to
cancel the contract, and to choose among the differ-
ent modification propositions. The other is the strat-
egy used by a participant for him to decide whether
to accept a proposition or not, and to choose a modi-
fication to propose in case of a modification request.
Two interfaces have thus been defined, corresponding
to the decisions that have to be taken either for the ini-
tiator role, or for the participant role. The success of
a negotiation depends of course on strategies adapted
to the problem processed. We will not discuss here
about strategies, which, to be optimal, must be differ-
ent according to the kind of negotiation done. This is
an important field which goes out of this paper. There-
fore, we propose simple but generic strategies, which
work for all kinds of problems, and that the user can
easily refine.

TOOLS FOR STRATEGIES

In order to give basis to develop strategies, two pri-
ority lists are defined in ANTS. Each person defines
a priority list for resources and a priority list for per-
sons. Thus, each person will be able to give a priority
to a contract according to priorities of resources in-
cluded in the contract, and according to the initiator’s
priority. For example, if I took an appointment with
a colleague and my boss asks me for an appointment
at the same time, I will take the appointment with my
boss (who has a greater priority) and I will move the
appointment with my colleague.
These lists can also be used in case that I am initiator
of a contract and I requested modifications from par-
ticipants, I can weight their answer according to the
priority I gave them.

ANTS also provides rates of success or retraction
of negotiations that have been done in the past, given
a participant and a set of resources. It is thus possible
to know if a participant globally accepts propositions
he receives, and if he keeps his engagements.

4.2 Applications
Several applications have been achieved with ANTS,
among which we can cite an auction application, a
Dutch auction application, an appointment taking sys-
tem and a time-table planning system. For each appli-
cation, strategies have been implemented, fitting bet-
ter to the application. These applications can be found
at http://www.lifl.fr/SMAC/projects/ants.

5 ANTS FEATURES
ANTS is a Java API for negotiation between agents.
It is aimed to provide a generic software architecture
for contract-based negotiations to applications devel-
opers in order to facilitate their work. We discuss here
about the different ways to use ANTS, and its major
features.

5.1 ANTS major features
ANTS major features are its conception in three lev-
els, its negotiation cardinality, the management of
deadlocks and the XML parameterisation.

NEGOTIATION CARDINALITY

Negotiation cardinality is an important feature for
MAS. Its purpose is to know how many agents nego-
tiate together. Different kinds of negotiation cardinal-
ity exist (Guttman and Maes 1998) , from one-to-one
to many-to-many. Kasbah is an example of one-to-
one negotiation : one buyer negotiates an article with
one seller at a time. This form of negotiation is use-
ful when only two persons are involved in the negoti-
ation. But when a negotiation involves many partici-
pants with an initiator, it is a one-to-many negotiation.
Our protocol enables contract-based negotiation be-
tween one initiator and several participants. Our im-
plementation of this protocol in ANTS allows several
negotiations to take place simultaneously, thus finally
negotiations take place between several initiators and
several participants, that is to say many-to-many ne-
gotiation. The advantage provided by many-to-many
negotiation is that it enables one-to-many and one-to-
one negotiation.

DEADLOCKS

Deadlocks are an important problem in negotiation
applications. It can cause many damages if it is not
resolved. Deadlocks can appear when two agents pro-
pose a contract on the same resource one to the other,
and when they choose to negotiate sequentially con-
tracts on same resources. Both are then waiting for
the other’s answer and the deadlock appears. Dead-
locks are avoided in ANTS thanks to our mechanism
of answer delay. As a matter of fact, each initiator de-
fines the delay that participants have to answer. If a
participant doesn’t answer before this delay, the ini-
tiator takes into account a default answer for him and

4



so, negotiation is not blocked.

XML PARAMETERISATION

<?xml version="1.0"?>
<!DOCTYPE ants SYSTEM "ants.dtd" >
<ants>
<negotiation-name>rdv</negotiation-name>
<resources-list>
<resource>8h-9h</resource>
<resource>9h-10h</resource>
<resource>10h-11h</resource>
<resource>11h-12h</resource>
<resource>14h-15h</resource>
<resource>15h-16h</resource>
<resource>16h-17h</resource>
<resource>17h-18h</resource>
</resources-list>
<agents-list>
<agent><name>Paul</name>

<address>localhost</address>
</agent>
<agent><name>Peter</name>

<address>localhost</address>
</agent>
<agent><name>John</name>

<address>localhost</address>
</agent>
</agents-list>
<default-communicator>
fr.lifl.ants.magique.MagiqueCommunicator
</default-communicator>
<default-initiator-strategy>
rdv.RdvInitiatorStrategy
</default-initiator-strategy>
<default-participant-strategy>
rdv.RdvParticipantStrategy
</default-participant-strategy>
<nbRounds>20</nbRounds>
<nbRenegotiations>3</nbRenegotiations>
<minAgreements>100%</minAgreements>
<answer-delay>10</answer-delay>
<default-answer value="refuse"/>
<simultaneity value="deferred"/>
<retraction-allowed value="true"/>
<nb-modifications-by-round>5
</nb-modifications-by-round>
</ants>

Figure 2: System XML file for appointment taking ap-
plication

The novelty in ANTS is that the parameters that
are needed to configure a negotiation application
are set up in XML files, thus avoiding recompi-
lations at each change of a parameter value, and
facilitating the writing of a new application. Two

kinds of files are defined : one for the system pa-
rameterisation, one for each agent (which is op-
tional). The system file contains common character-
istics for all users of the negotiation system. We de-
fine them in a DTD file called ants.dtd available
at http://www.lifl.fr/SMAC/projects/ants. In
this file, we find, among others, common resources,
agents initially present in the system, retraction abil-
ity, plus default values for users parameters. An exam-
ple of a system file for appointment taking is shown
in Figure 2. Each agent can have its own file to set up
its individual resources, its communicator, its strate-
gies and negotiation parameters like default answer
and answer delay.

5.2 ANTS use modes

ANTS can be used in different modes, which gives its
generality. Among these ways to use it, we find the
kind of resources negotiated, simultaneous manage-
ment, automatic renegotiation and agents use modes.

RESOURCES

Resources that will be negotiated can be common to
all agents or individual. If we take the example of
meeting scheduling, each agent has the same agenda,
and so the same time slots. Thus, resources (time
slots) are common to all agents and any of them can
make a proposition on the time slots they want. On
the contrary, auctions applications are typically those
where we find individual resources. Agents wishing
to sell articles will sell only their own articles, and not
the one of its neighbours. So, for this kind of applica-
tions, resources are individual, visible to all agents but
only the agents that possess them can make a contract
proposition. Resources are described in XML files. If
they are common to all agents, they are set up in the
system file, but if they are individual, they are set up
in the agent file.

SIMULTANEOUS MANAGEMENT

The management of negotiations is an important cri-
terion in a negotiation application. Negotiations can
be processed sequentially, or in parallel, depending on
the constraints of the application. Two managements
are possible in ANTS, immediately or deferred simul-
taneous management. The user opts for the one he
prefers. When he chooses to negotiate immediately all
contracts, no restriction is made on the resources, they
can already being negotiated for another contract. But
if the user chooses to negotiate in a deferred way, the
only negotiations that will take place simultaneously
are the ones which involves disjoint sets of resources.
The other negotiations will wait for their turn.

5



AUTOMATIC RENEGOTIATION

Many times, during negotiations, some contracts can’t
be met any longer and has to be negotiated again. It
is the case when appointments are negotiated. For this
purpose, we propose to renegotiate automatically con-
tracts that have to be moved. But you can’t always
question a contract that has been taken. For exam-
ple in auctions, when an article is sold, it is definitely
sold, you can’t retract yourself. That’s why we define
a parameter called retraction allowed, used to know
whether it is possible or not to retract yourself from a
contract previously taken. This is a common parame-
ter to all agents which is defined in the system XML
file. If retraction is allowed, when an agent retracts
itself, the initiator of the contract can automatically
renegotiate the contract, and a number of renegotia-
tions is defined by the initiator (in the agent XML file)
to know how many times a contract can be negotiated
again.

AGENTS USE MODES

Figure 3: A tab of the GUI of a negotiating agent in
ANTS

As we mentioned before, a human user has several
ways to use its agent. He can use it with a graphi-
cal interface to interact with it, in this case, the agent
is a help decision tool for the user. The agent man-
ages the negotiations and it is the user who answers
contract proposition, and creates contract to negoti-
ate. Through the interface (Figure 3) , the user views
messages received and sent, contracts taken and being

negotiated, and he can create a new contract, cancel a
contract he has previously taken and reply to a con-
tract proposition.

Another way to use the agent is the automatic way,
in this case, the agent manages the whole negotiation
and replies itself to propositions, the graphical inter-
face is not used, and the agent runs like a background
task.

In the next section, we compare our work to others
in the same field.

6 COMPARISON WITH OTHER WORKS
We are obviously not the only ones who are inter-
ested in negotiation between agents and in proposing
a generic architecture to accomplish it. Let’s cite the
works achieved at HP Laboratories by Claudio Bar-
tolini et al. (Bartolini and Preist 2001; Bartolini et al.
2002b; Bartolini et al. 2002a) who want to create a
general framework for automated negotiation dedi-
cated to market mechanisms. In this paper, they define
two roles : participant and negotiation host. A partic-
ipant is an agent who wants to reach an agreement,
while the negotiation host is responsible for enforcing
the protocol and rules of negotiation. Rules of negoti-
ation include posting rule, visibility rule, termination
rule . . . It is the negotiation host who is responsible
for making agreements. This framework proposes a
general negotiation protocol parameterised with rules
to implement a variety of negotiation mechanisms. It
has common properties with our, like enabling one-
to-one, one-to-many and many-to-many negotiations,
or like parameterisation.

Another formal work we can cite is the one done
by Morad Benyoussef et al. (Benyoucef et al. 2000)
who want to create a Generic Negotiation Platform
for marketplaces. These two works are close to our,
but they are more directed to electronic commerce
whereas our model aims to fit also other types of au-
tomated negotiations.

Let’s now examine two platforms for negotiation :
magnet and zeus. Multi AGent NEgotiation Testbed
(Collins et al. 1998) is a testbed for multi-agent nego-
tiation, implemented as a generalised market archi-
tecture and developed at the university of Minnesota.
It provides a support for a variety of types of trans-
action, from simple buying and selling of goods to
complex multi-agent contract negotiation. A session
mechanism enables a customer to issue a call-for-bids
and conduct other business. The negotiation protocol
for planning by contracting consists of three phases
: a call-for-bids, bidding and bid acceptance. In con-
trast, our protocol enables the initiator of the call-for-
bids to make counter-propositions until an agreement
is reached. In MAGNET, there is an explicit interme-
diary into the negotiation process and agents interact
with each other through it, whereas all agents directly

6



interact with each other in our negotiation process.
ZEUS (Nwana et al. ) is a generic Java API

achieved by British Telecom in order to easily con-
ceive cost-based negotiation applications between au-
tonomous agents. Zeus proposes a negotiation pro-
tocol between two agents (an initiator and a partici-
pant) and on a single resource per contract. The pro-
tocol consists of a call-for-bids, and no mechanism of
counter-proposition is provided. Moreover, it is pos-
sible to negotiate simultaneously different contracts
on the same resource, that we don’t allow. Another
difference with our protocol is that retraction is not
possible with Zeus. Once a contract is taken you can’t
retract yourself. Moreover, Zeus provides only cost-
based strategies, and so is less generic than our pro-
tocol which is not dedicated to cost-based contracts.
Although it is possible to add an interaction protocol
in Zeus, it is a difficult thing to do, as says S. Thomp-
son in the mailing list of Zeus in April 2002. On the
other hand, ANTS negotiation protocol is parameter-
isable via XML files, which simplifies modifications.

These previous works, like our, are based on the
general Contract Net Protocol model (Smith 1980)
which works on bids invitation between a Manager
agent and Contractor agents. Zeus is dedicated to auc-
tions whereas Magnet is more opened, thus Magnet is
probably the closest work to what we present. Never-
theless, none of them takes into account at the same
time generic aspects, automatic renegotiations and a
mechanism to manage conflicts between simultane-
ous negotiations, that we propose in ANTS. More-
over, ANTS is the only platform which separates the
communication level, the negotiation level and the
strategic level.

7 CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented ANTS, a Java API for
contract-based negotiation, which enables many-to-
many negotiations, simultaneous negotiation of sev-
eral contracts, and the management of deadlocks in
conversation. Three distinct levels were defined : the
knowledge representation level allowing the agent
viewing the advancement of his/her negotiations, the
communication level which we achieved with a multi-
agent platform allowing physical distribution, and the
strategic level for which we propose generic strate-
gies adaptable to any kind of problem. Each level can
be easily extended by the developer as he wants to
map with his application, which is a feature that only
ANTS proposes. Moreover, XML files are used to
set up parameters and define an application, which
facilitates the end-user work, and avoid useless re-
compilations. Many implementations of these works
on different software supports are already possible
(distributed, centralised, WEB) and strategic level en-
hancement for different specific problems is consid-

ered. These works are a part of software engineering
and distributed artificial intelligence works. The next
challenge of ANTS is to integrate the negotiation pro-
tocol into the XML configuration file in order to sup-
port other protocols that the end-user could choose.
This API will now be applied to different problems
like distance teaching, network games and workflow
systems.

REFERENCES
http://www.lifl.fr/smac/projects/magique.

http://www.madkit.org.

Aknine, S. (2002, July). New Multi-Agent Pro-
tocols for M-N-P Negotiations in Electronic
Commerce. In National Conference on Artifi-
cial Intelligence, AAAI, Agent-Based Technolo-
gies for B2B Workshop, Edmonton, Canada.

Bartolini, C. and C. Preist (2001). A framework for
automated negotiation. Technical Report HPL-
2001-90, HP Laboratories Bristol.

Bartolini, C., C. Preist, and N. R. Jennings (2002a).
Architecting for reuse: A software framework
for automated negotiation. In Proc. 3rd Int
Workshop on Agent-Oriented Software Engi-
neering, Bologna, Italy, pp. 87–98.

Bartolini, C., C. Preist, and N. R. Jennings
(2002b). A generic software framework for au-
tomated negotiation. Technical Report HPL-
2002-2, HP Laboratories Bristol.

Benyoucef, M., R. K. Keller, S. Lamouroux,
J. Robert, and V. Trussart (2000). Towards
a Generic E-Negotiation Platform. In Pro-
ceedings of the Sixth International Conference
on Re-Technologies for Information Systems,
Zurich, Switzerland, pp. 95–109.

Collins, J., M. Tsvetovatyy, B. Mobasher, and
M. Gini (1998, August). MAGNET : A Multi-
Agent Cntracting System for Plan Execution.
In Workshop on Artificial Intelligence and
Manufacturing: State of the Art and State of
Practice, Albuquerque, NM, pp. 63–68. AAAI
Press.

Guttman, R. H. and P. Maes (1998, July). Coopera-
tive vs. Competitive Multi-Agent Negotiations
in Retail Electronic Commerce. In Proceedings
of the Second International Workshop on Co-
operative Information Agents (CIA’98), Paris,
France.

Kraus, S. (2001). Strategic Negotiation in Multia-
gent Environments. MIT Press.

Mathieu, P. and M.-H. Verrons (2002). A generic
model for contract negotiation. In Proceedings
of the AISB’02 Convention, London, UK.

7



Nwana, H., L. L. D.T. Ndumu, and J. Collis. ZEUS
: A Toolkit for Building Distributed Multi-
Agent Systems.

Parsons, S., C. Sierra, and N. R. Jennings (1998).
Agents that reason and negotiate by arguing.
Journal of Logic and Computation 8(3), 261–
292.

Rosenschein, J. and G. Zlotkin (1994). Rules of
encounter : designing conventions for auto-
mated negotiation among computers. Cam-
bridge, Mass.: MIT Press.

Sandholm, T. and V. Lesser (1995). Issues in au-
tomated negotiation and electronic commerce:
Extending the contract net framework. In First
International Conference on Multiagent Sys-
tems (ICMAS-95), San Fransisco, pp. 328–335.

Smith, R. G. (1980, December). The Contract
Net Protocol : high-level communication and
control in a distributed problem solver. IEEE
Transactions on computers C-29(12), 1104–
1113.

Sykara, K. (1989). Multiagent compromise via ne-
gociation. In L. Gasser and M. Huhns (Eds.),
Distributed Artificial Intelligence, Volume 2,
Los Altos, CA, pp. 119–137. Morgan Kauf-
mann Publishers.

8


