
RIO : Roles, Interactions and Organizations

P. Mathieu, J.C. Routier, and Y. Secq

Laboratoire d’Informatique Fondamentale de Lille – CNRS upresa 8022

Université des Sciences et Technologies de Lille

59657 Villeneuve d’Ascq Cedex
{mathieu,routier,secq}@lifl.fr

Abstract. The notions of role and organization have often been em-
phasized in several agent oriented methodologies. Sadly, the notion of
interaction has seldom been reified in these methodologies. We define
here a model of runnable specification of interaction protocols. Then, we
propose a methodology for the design of open multi-agent systems based
on an engineering of interaction protocols. These interaction protocols
are described in term of conversation between micro-roles characterized
by their skills, then micro-roles are gathered in composite roles. Then,
composite roles are used to build abstract agents. Lastly, these latter can
be distributed on running agents of a multi-agent system.

1 Introduction

The idea of an agent based software engineering has appeared roughly ten years
ago, with the paper from Shoham entitled Agent Oriented Programming [13].
Since these days, several methodologies have been proposed to help developers
in their analysis and design[6, 2]. For that, the concepts of role, interaction and
organization are often proposed to facilitate the decomposition and the descrip-
tion of distributed systems. However, we think that suggested methodologies do
not clearly identify the various levels of abstraction making it possible to break
up a system and especially they generally do not propose pragmatic concepts or
principles facilitating the realization of such systems. Thus, our proposal relies
on a model of minimal generic agent and a model of executable specification
of interactions. The agent model is the infrastructure allowing the deployment
and the management of interactions, while the specification of the interactions
describes a global sight of the conversations between the agents of the system.
In the first part of this article, we briefly present two methodologies which were
proposed for the use of multi-agent systems for the design of complex distributed
systems, then we put them in relation with interaction oriented approaches. In
the second part, we propose a model of minimal generic agent and a formalism
for the specification of interaction protocols between micro-roles. The latter are
assembled in composite roles which are then atributed to the agents of the sys-
tem. This specification is made executable by the generation of Colored Petri

Nets for each micro-role. This executable specification and the use of a generic
model of agent enable us to propose the RIO methodology facilitating the design,
the realization and the effective deployment of multi-agent systems.

2 Agent methodologies and interaction languages

Several agent oriented methodologies have been proposed like Aalaadin[3] or
Gaia [16]. It is significant to notice that these two methodologies do not make
any assumption on agent models and concentrate mainly on the decomposition
in term of roles of a complex system. This point is fundamental, in particular be-
cause of the multiplicity of available agent and multi-agent systems models. This
multiplicity makes the task of the developer difficult: which agent model should
be used? Which organizational model should be chosen? Indeed, each platform
imposes too often both its own agent model and its organizational model. These
methodologies are interesting on many points, but remains too general to ease
the transition from the design stage to its concrete realization. Moreover, the
various levels of communication are not clarified in the description of interac-
tion protocols. Indeed, works on agent communication languages (ACL)identify
three levels that constitutes a conversation: the semantic, the intention (these
two are expressed through languages like KIF or SL, and KQML or FIPA-ACL),
and the interaction level. However, even by considering heterogeneous platforms
sharing the same ontology, it remains difficult to have guarantees on the respect
of interaction protocols. This is the reason why works have been undertaken
to formalize this aspect with several objectives: to describe the sequence of the
messages, to have certain guarantees on the course of a conversation and to ease
interoperability between heterogeneous platforms.

Interaction languages. To illustrate these approaches based on a formaliza-
tion of the interactions, we studied three of them: April[10], AgenTalk[5]
and COOL[1]. April is a symbolic language designed to handle concurrent
processes, that eases the creation of interaction protocols. In April, the devel-
oper must design a set of handlers which treats each message matghing a given
pattern. According to the same principles, AgenTalk adds the possibility to
create easily new protocols by specialization of existing protocols, by relying
on a subclassing mechanism. Another fundamental contribution of AgentTalk

is the explicit description of the protocol: the conversation is represented by a
set of states and a set of transition rules. This same principle was employed in
COOL, which proposes to model a conversation using an finite state automata.
In COOL, the need for the introduction of conventions between agents to sup-
port coordination is proposed. This concept of convention must be brought closer
to the works of Shoham on social rules [14] and their contributions on the global
performance of the system. Thus, the introduction of this level of interaction
management while rigidifying in a certain way the possible interactions between

agents, brings guarantees on coordination and allows the reification of these in-
teractions. The table below, inspired by work of Singh[15], illustrates the various
levels of abstractions within a multi-agent system:

Applicative skills Business knowledge
Agent models and system skills Agent oriented design
Conversation management Interaction oriented design
Message transport Agent platform (i.e. agents container)

To conclude, we would like to cite a definition suggested by Singh[15] of
the interaction oriented approach, which characterizes our approach: We in-
troduce interaction-oriented programming (IOP) as an approach to orchestrate
the interactions among agents. IOP is more tractable and practical than gen-
eral agent programming, especially in settings such as open information envi-
ronments, where the internal details of autonomously developed agents are not
available. It is the point of view that we adopt, by proposing a pragmatic method
for the design and realization of multi-agent systems, relying on the concept of
executable specification of interaction protocols.

3 Interaction oriented design

The heart of our proposal is a formal model to describe interaction protocols,
and a transformation mechanism to generate the code that is necessary to the
management of these protocols. In order for running agents to be able to exploit
these new interactions, we rely on a minimal generic agent model, which au-
thorizes the incremental construction of agent per skills addition. Thus, we will
initially present this generic agent model, then we will study the model of spec-
ification of interaction protocols and the associated transformation mechanism.

4 Applicative skills Database access, graphical user interface ...
3 Agent model re-

lated skills
inference engine, behavioral engine, ...

2 Agenthood skills Knowledge base, conversation management, organizations manage-
ment

1 Minimal system
skills

Communication and skill management

Table 1. The four layer of our abstract agent model

A minimal generic agent model. The basis of our model is on the one hand
the interactive creation of agent, and on the other hand a search on the funda-
mental functionalities of agenthood. We are not interested in the description of
the individual behavior of agents, but rather in the identification of functions
that are sufficient and necessary to an agent. Indeed, the management of interac-
tions, the knowledge management or the management of organizations, are not
related to the agent model, but are intrinsic characteristics with the concept of
agent. In our model, an agent is a container which can host skills. A skill is a co-
herent set of functionalities accessible through a neutral interface. This concept
of skill is to be brought closer to the concept of software component in object
oriented technologies. Thus, an agent consists of a set of skills which carries out

various parts of its behavior. We identified four layers which are characterized
by the various levels of abstraction of functionalities that are proposed (table 1).
The first level corresponds to “system” skills, i.e. the minimal functionalities
allowing to bootstrap an agent: the communication (emission/reception of mes-
sages) and the management of skills (dynamic acquisition/withdrawal of skills)[7].
The second level identifies agent skills: the knowledge base, media of interaction
between skills and the place of knowledge representation, the management of in-
teraction protocols (cf. following section) and the management of organizations
(cf. last section). The third level is related to skills that define the agent model
(reactive, BDI...), while the last level represents purely applicatives skills. Thus,
the first and the second level characterize our generic minimal agent model. This
model is generic with respect to the agent models that can be used, and minimal
in the sense that it is not possible to withdraw one of the functionalities without
losing a fundamental aspect of agenthood.
A skill is made of two parts: its interface and its implementation. The interface
specifies the incoming and outgoing messages, while the implementation carries
out the processing of these messages. This separation uncouples the specification
from its realization, and thus makes it possible to have several implementations
for a given interface. The interface of a skill is defined by a set of message pat-
terns which it accepts and produces. These messages must be discriminated, it
is thus necessary to type them.

interface := ((min)+, (mout)*)* where mx = message pattern

The typing of message patterns can take several forms: a strong typing, which
has the advantage of totally specifying the interfaces, while a weak typing offers
more flexibility with regard to the interface evolution. Thus, if the content of
messages are expressed in KIF or DAML+OIL, a strong typing will consist of
an entire message checking, while a weak typing will only check it partially.

A model of executable specification of interaction protocol. Many works
have been done to specify interaction protocols. Recently, AgentUML[11] was de-
fined like an extension of UML, to specify the conversations between agents, in
particular by specializing sequence diagrams in UML. However, these specifica-
tions require the interpretation of developers, which must then translate them
in their own system. Works of Labrou and Finin[12] explore the use of Colored
Petri Nets[4] (CPN) to model conversations between agents. In [9], the same
approach is used, but the concept of Recursive Colored Petri Nets is introduced
to support conversations composition. Our work follows the same principles: to
represent interactions in a global way, and to use a recognized and established
formalism. However, contrary to preceding works, our goal is to produce an exe-
cutable specification. i.e., a description of the interaction protocol which can be
then directly integrated in a running system. Moreover, CPN are unquestion-
ably adapted to the modeling of concurrent processes, and provide an interesting
graphic formalism, but they are unfortunately not really user friendly. This is
why it appears preferable to us to define a language adapted to the modeling
of interaction protocols, and to use a projection mechanism that translates this
language into CPN.

 :

��������������
����������

m2

m3

m4

m5

(input+,output*)

��������������
�������������� ����������

����������m1

(m1, m2)

m2 m3

(m3, (m4, m5))

m4

m5

extracted information inserted information

��������������
��������������

Initial and final states
(linked to a micro−role)

Intermediary state
(linked to a micro−role)

Information insertion/extraction
(respectively)

Message between two micro−role Skill interface Message patternmi

m1 m6

Initial state of a protocol Final state of a protocolIntermediary state that use a skill

Micro−roles :

Initiator micro−roles

Interaction protocol name : myProtocol Textual description of the interaction protocol : ...

Micro−role CMicro−role BMicro−role A

Messages ontologies : X_ontology, Y_ontology

Fig. 1. Definition of the syntactic elements that constitute interaction protocols

The interaction protocol specification model. The purpose of this model
is to ease the specification, the checking and the deployment of interaction pro-
tocols within multi-agent systems. On all these stages, the designer has to define
the specification, the other stages being automated. For that, we define a for-
malism representing the global view of an interaction protocol, and a projection
mechanism which transforms this global view into a set of local views dedicated
to each role. We will initially describe the specification of the global view, before
presenting the projection mechanism which generate local views that agents use
while a protocol is running. The interaction protocols are regarded here as social
laws within the meaning of Shoham[14], that means that agents lose part of their
autonomy (conversational rules are static), but the system gains in determinism
and in reliability. Our model relies on the concept of skill, micro-role and a graph
that represents the state of the conversation. An interaction protocol formally
specifies the course of a conversation (regarded as a social law) between various
entities, i.e. the nature of exchanged messages, the flow of these messages and
skills that entities must implement for each stage of the conversation. These en-
tities correspond to micro-roles, and are characterized by their name and their
skills. One uses a graph to represent the course of the conversation: the nodes
represent micro-roles which can be associated to a skill interface, and the arcs
with a sending of message between two micro-roles (typed by a message pat-
tern). An interaction protocol is thus defined by the following elements (figure
1): the name of the interaction protocol, a textual description of the goal of this
protocol, the list of the micro-roles involved in the interaction and the geometri-
cal symbol which is associated to them, ontologies of exchanged messages, a list
of information necessary in input and produced at output, an interaction graph

gathering information like the temporal course of the conversation, the synchro-
nization and the nature of the exchanged messages, and the skills that are used
by micro-roles. What it is significant to understand is that the designer has a
global view of the interaction: the flow of the messages, their nature (the type
of these messages corresponds to the annotations attached to the arcs), needed
skills and information used or produced. In addition, all information necessary
to the management of the interaction protocol is centralized here and can be
used to carry out the generation of the code required to manage this interaction
for each micro-role. The designer has thus only to define the interaction protocol
by using a graphical tool, the projection mechanism takes care of the generation
of descriptions for each micro-role, and the generic agent model can then use
these descriptions.

The projection mechanism. The preceding section described the formalism
representing interaction protocols, we will now explain the transformation mak-
ing it possible to obtain a runnable specification. The specification of interaction
protocols gives to the designer a global view of the interaction. Our objective
is to generate for each micro-role a local view starting from this global view,
this one could then be distributed dynamically to the agents of the system. The
projection mechanism transforms the specification into a set of automata. More
precisely, an automata is created for each micro-role. This automata manages the
course of the protocol: coherence of the protocol (messages scheduling), messages
types, side effects (skill invocation). The implementation of this mechanism is
carried out by the generation of Colored Petri Nets. Indeed, we use the color of
tokens to represent messages patterns, in addition we have a library facilitating
the interactions between generated networks and the agent skills. On the basis
of the interaction graph, we create a description of Colored Petri Net for each
micro-role, and we transform this textual description to a Java class. This class
is then integrated within a skill, which is used by conversation manager skill
(level 2 in table 1). The interest of this approach is that the designer graphically
specifies the global view of the interaction, the projection mechanism generates
the skill needed to the management of this interaction. Moreover, thanks to
the dynamic skill acquisition, it is possible to add new interaction protocols to
running agents of the system.

Knowledge and organization management. The knowledge management
and the management of organizations are also mandatory functionnalities of
agent, and they should not be enclosed within the agent model. The knowledge
management gathers at the same time their representation, the information stor-
age, the means of reaching and of handling them. The implementation of these
functionalities is strongly dependent on the used agent model (third level of ta-
ble 1). The concept of organization is necessary to structure interactions that
intervene between entities of the system. This concept brings some significant
benefits: a means to logically organize the agents, a communication network
per defect and a media to locate agents, roles or skills. Moreover, its reification

provides a door in the system, making it possible to visualize and to improve
interactions between agents[8].

4 RIO : towards an interaction based methodology

In this section, we will present the methodology that we are developing, and
which relies on the previously presented concept of runnable specification . This
methodology falls under the line of GAIA[16], and thus aims the same appli-
cability. However, GAIA remains too general to easily be able to go from the
system design stage to its realization. The purpose of our proposal is to facilitate
this transition. The RIO methodology relies on four stages, the two first repre-
sent reusable specifications, while the two last are singular with the application
(figure 2). Moreover, we will not speak about application, but about an agent
society. Indeed, the RIO methodology proposes an incremental and interactive
construction of multi-agent systems. By analogy with our minimal generic agent
model, where an agent is a container which can receive skills, we see a multi-
agent system like a container that has to be enriched by interactions. We will
detail this approach by studying the four stages of our methodology.

Choice of skill interface implementation

Pre/Post−conditions on messages
Messages transformations to customize them to skill interfaces

Linking between abstract and concrete agents

Agent society instanciation

Abstract multi−agent definition

Abstract agent society specification

Abstract agent definition
Abstract agent occurence definition
Linking between abstract role and organization

Composite roles specification

Generic element definition
Composite roles definition

Interaction protocols specification

Interaction graph definition

Ontologies of messages that are exchanged
Information that are created within protocol

Textual description describing the protocol
Defining micro−roles and their symbol

Micro−role/skill interface linking

Fig. 2. The stages of the RIO methodology

Interaction protocols specification. The first stage consists in identifying
the involved interactions and roles. Then, it is necessary to determine the gran-
ularity of these interactions. Indeed, for reasons of re-use of existing protocols,
it is significant to find a balance between protocols using too many roles, these
protocols becoming thus too specific, and protocols where there are only two
roles, in this case the view of the interaction is no more global. The specification
of the interaction protocols can then be done in three ways : either ex-nihilo, by
specialization, or by composition. Creation ex-nihilo consists in specifying the
interaction protocol by detailing its cartouche (figure 1). Specialization makes
it possible to annotate an existing cartouche. Thus, it is possible to specify the
cartouche of an interaction protocol such as FIPA ContractNet, its special-
ization will consist in changing micro-roles names to adapt them to the applica-
tion, to refine message patterns, and if required to modify insertions/extractions
of information. Finally, the composition consists in assembling existing protocols

by specifying associations of micro-roles and information transfers. At the end of
this stage, the designer has a set of interaction protocols. He can then pass to the
description of composite roles, which will allow the aggregation of micro-roles
that are involved in complementary interactions.

Composite roles specification. This second stage specifies role models. These
models are abstract reusable descriptions. The composite roles correspond to
a logical gathering of micro-roles. These patterns define abstract roles, which
gather a set of consistent interaction protocols. For example, a composite role
Supplies management will gather the micro-role Buyer within the Providers

seeking interaction protocol and the micro-role Storekeeper of the interac-
tion Supplies delivery. Indeed, a role is generally composed of a set of tasks
which can be, or which must be carried out by the agent playing this role. Each
one of these tasks can be broken up and be designed as a set of interactions with
other roles. The concept of composite role is thus used to give a logical coherence
between the micro-role representing the many facets of a role.

AC : Agent Concret

µ 12µ 11

ι 1

µ 23µ 22µ 21

ι 2

µ 32µ 31

ι 3

xι : Interaction protocol

µ xy : Micro−role

µ 21 ι 2(,)
µ 32 ι 3(,)

µ 12 ι 1(,)

CR 2

µ 11 ι 1(,)
µ 23 ι 2(,)
µ 31 ι 3(,)

CR 1

µ 22 ι 2(,)

CR 3

AA 1

CR 1 CR 3

AA2

CR 2

AA 1

AC 1

AA2

AC 2

AA2

AC 3

CR : Composite role AA : Agent Abstrait

Fig. 3. Synthetic illustration of RIO stages

Agent societies specification. This third stage can be regarded as a specifi-
cation of an abstract agent society, i.e. a description of abstract agents and their
occurrence, as well as the link between composite roles and organizations. Once
the set of composite roles is created, it is possible to define the abstract agents
(patterns of agent, or agent template), which are defined by a set of composite
roles. These abstract agents describe applicative agent models. These models are
specific, because they introduce strong dependencies between composite roles.
For example, the Office Stationery Delivery composite role could be asso-
ciated with the Travelling expenses management composite role to char-
acterize a Laboratory secretary abstract agent (fig 4). Once abstract agents
are defined, it is necessary to specify their occurrence in the system. It means
that each abstract agent has an associated cardinality constraint that specifies
the number of instances that could be created in the system (exactly N agents,
1 or more, *, or [m..n]). The second part of this stage consists in specifying
for each abstract agent, and even for the composite roles of these agents, which
organization should be used to find their acquaintances. Indeed, when agents are
running, they have to initiate interaction protocols, but in order to do that they
initially have to find their interlocutors. The organization is used as a media for

this search. This association makes it possible to use various organizations for
each interaction protocol.

Interaction Protocols

(

(

(

(

Buyer
Seeking providers

Storekeeper

Travelling expenses management

President

Travelling notes recording

Seeking providers

Travelling notes recording

User

BuyerProviders

Traveller

Director Secretary

)

)

Laboratory Secretary

Travelling expenses management

Secretary
Mission orders emission)

Mission orders emission

Office stationery delivery

Office stationery delivery)

Office stationery management

Office stationery management

,

,Storekeeper

,

Assistant Assistant ,

Composite Roles Abstract Agent

Fig. 4. The Secretary example

Instantiating an agent society in a multi-agent system. This last stage
specifies deployment rules of the abstract roles on the running agents of a system.
We have a complete specification of the agent society, that can be mapped on the
concrete agents of the multi-agent system. For that, it is necessary to indicate the
assignments from abstract agents to concrete ones. Then, the connection between
a skill interface and its implementation is carried out. The designer indeed must,
according to criteria that are specific to the hosting platform or applicative,
bind the implementation with skill interfaces. It is during deployment that the
generic agent model is justified as a support to dynamic acquisition of new skills
related with the interaction. Indeed, the interaction, once transformed by the
projection mechanism, is represented for each micro-role by a Colored Petri Net
and its associated skills. All these information are sent to the agent, which adds
applicative skills and delegates the CPN to the conversation manager. When an
agent receives a message, the conversation manager checks if this message is part
of a conversation in progress (thanks to the conversation identifier included in the
message), if it is the case, it delegates the message processing to the concerned
CPN, if not he seeks the message pattern matching the received message and
instantiates the associated CPN. If it does not find any, the message will have
to be treated by the agent model.

5 Conclusion

We have presented in this article a methodology falling under the line of GAIA,
but relying on the concepts of the interaction oriented programming. The basis
of the RIO methodology is the engineering of interaction protocols, and more
precisely the engineering of runnable specifications. For that purpose, we use a
tool facilitating the graphical design of interaction protocols, and a projection
mechanism that generates the code corresponding to the vision that each partic-
ipant has of the interaction. By using these specifications, it is possible to create
abstractions characterizing the various roles and agents of a multi-agent sys-
tem: the composite roles, which gather a set of micro-roles, and abstract agents,
which gather a set of composite roles. An implementation of this approach is

under development, and we use the following technologies: Coloured Petri Nets,
DAML+OIL for messages ontologies and knowledge representation, OSGi as
component model, and the Java language for the multi-agent platform.

References

1. M. Barbuceanu and M. S. Fox. Cool: A language for describing coordination in
multiagent systems. In Proceedings of the First International Conference oil Multi-
Agent Systems (ICMAS-95), pages 17–24, San Francisco, CA, 1995.

2. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE:
Modelling multi-agent systems in a compositional formal framework. Int Journal
of Cooperative Information Systems, 6(1):67–94, 1997.

3. J. Ferber and O. Gutknecht. Operational semantics of a role-based agent architec-
ture. In Proceedings of ATAL’99, jan 1999.

4. Kurt Jensen. Coloured petri nets - basic concepts, analysis methods and practi-
cal use, vol. 1: Basic concepts. In EATCS Monographs on Theoretical Computer
Science, pages 1–234. Springer-Verlag: Berlin, Germany, 1992.

5. Nobuyashu Osato Kazuhiro Kuwabara, Toru Ishida. Agentalk : Describing multi-
agent coordination protocols with inheritance.

6. E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A methodology for developing
agent based systems. In Chengqi Zhang and Dickson Lukose, editors, First Aus-
tralian Workshop on Distributed Artificial Intelligence, Canberra, Australia, 1995.

7. P. Mathieu, J.C. Routier, and Y. Secq. Dynamic skill learning: A support to
agent evolution. In Proceedings of the AISB’01 Symposium on Adaptive Agents
and Multi-Agent Systems, pages 25–32, 2001.

8. P. Mathieu, J.C. Routier, and Y. Secq. Principles for dynamic multi-agent organisa-
tions. In Proceedings of Fifth Pacific Rim International Workshop on Multi-Agents
(PRIMA2002), August 2002.

9. Hamza Mazouzi, Amal El Fallah Seghrouchni, and Serge Haddad. Open proto-
col design for complex interactions in multi-agent systems. In Proceedings of the
first international joint conference on Autonomous agents and multiagent systems,
pages 517–526. ACM Press, 2002.

10. Frank G. McCabe and Keith L. Clark. April – agent process interaction language.
In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Ar-
chitectures, and Languages (LNAI volume 890), pages 324–340. Springer-Verlag:
Heidelberg, Germany, 1995.

11. J. Odell, H. Parunak, and B. Bauer. Extending uml for agents, 2000.
12. Tim Finin Yannis Labrou R. Scott Cost, Ye Chen and Yun Peng. Modeling agent

conversations with colored petri nets. In Third Conference on Autonomous Agents
(Agents-99), Workshop on Agent Conversation Policies, Seattle, May 1999. ACM
Press.

13. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
14. Yoav Shoham and Moshe Tennenholtz. On social laws for artificial agent societies:

Off-line design. Artificial Intelligence, 73(1-2):231–252, 1995.
15. Munindar P. Singh. Toward interaction-oriented programming. Technical Report

TR-96-15, 16, 1996.
16. M. Wooldridge, NR. Jennings, and D. Kinny. The gaia methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 2000.

