
Teams of cognitive agents with leader: how to let them some autonomy.

Damien Devigne
LIFL - CRNS UMR 8022

Université de Lille 1
Villeneuve d’Ascq, F-59655 cedex

devigne@lifl.fr

Philippe Mathieu
LIFL - CRNS UMR 8022

Université de Lille 1
Villeneuve d’Ascq, F-59655 cedex

mathieu@lifl.fr

Jean-Christophe Routier
LIFL - CRNS UMR 8022

Université de Lille 1
Villeneuve d’Ascq, F-59655 cedex

routier@lifl.fr

Abstract- 1 Most often situated multi-agent simulations,
of which platform-games are an example, uses reactive
agents. This approach has limitations as soon as com-
plex behaviours are desired. For these reasons we pro-
pose an approach using cognitive agents. They have
knowledge, objectives and are able to build plans in or-
der to achieve their goals and then execute them.

In this paper we particularly address the problem of
teams of cognitive agents. We chose to build teams di-
rected by a leader. One major problem is the build-
ing of the team plan and in particular one difficulty is
to find the means in order to let autonomy to the team
members. This can be done if the leader builds abstract
plans. We present in this article a solution to this prob-
lem.

1 Introduction

Our work aims at producing agent-based simulations where
the agents, situated in a geographical environment, behave
“rationally”. An application of such a work can be simula-
tion platforms of which computer games are an instance,
movies is another like “The Lord of the Rings” and the
MASSIVE application illustrate it2.

The main characteristics that we consider for these simu-
lations are: first, the environment is defined by a geography,
then the notions of positions or coordinates have a meaning,
this is a critical feature since relative positions must be con-
sidered before executing an action and consequently moves
must be performed; second, the world is dynamic (agents
can appear or disappear), and then heavily non monotonic
(ie. values, once known, can change); third, agents are dif-
ferent: they can perform and suffer actions that are different
from one to the other; and last, the agents are embodied:
they are situated in the environment, and have a partial per-
ception of it, from this it follows that the agent’s knowledge
is incomplete, moreover because of the non monotonic na-
ture of the environment, this knowledge can be wrong.

According to J. Laird, computer games constitute the
“killer application” for human-level AI [LvL00]. The char-
acters involved in video games, like FPS or role-playing
games, have indeed to be perceived as autonomous entities
with increasing realistic behaviours. They have to becon-
vincing, thus their behaviour must comply with the ratio-
nal expectations of their partner or opponent human players.

1This work is supported by the CPER TAC of therégion Nord-Pas de
Calaisand the FEDER europeand fund.

2seehttp://www.massivesoftware.com/news.html

They also need to adapt to new situations, acquire additional
abilities throughout the game, etc. In addition, team strate-
gies are also often useful. Some research has been done
concerning agents and games [Nar00], and most of them
concern reactive agents [Nar98].

But reactive agents, while effective in several cases, offer
limited behaviours. Indeed their behaviours are “short term
directed” and not “goal oriented”. Their ability to perform
some tasks depends on the immediate surroundings and is
not the result of wilful acts. In current commercial games,
too often the character’s behaviours are reactive ones, coded
using scripts based on trigger/action sets. This approach has
limitations [Toz02]. First the obtained behaviours are rather
limited and it is difficult to get deliberate group behaviours
unless they hard-coded them. This leads to a second ma-
jor problem: the software design concern. It appears to be
very difficult to reuse parts of AI from one game to another:
scripts are too much tied to game design.

Our proposition aims at offering cognitive, driven by
goals, proactive agents. To use cognitive agents allows to
obtain more abstract reasoning. From one simulation/game
to another the cognitive behavioural engine stays the same
even if the context changes, and the behavioural compo-
nents, theinteractions, can be at least partially reused. Our
approach uses declarative knowledge and thus favours the
separation between the game logic and code. This promotes
reusability and should ease the development.

In a first part we describe how we design simulated
worlds or game environments: the geography, the laws that
rule the world (the interactions) and the cognitive agents
and their behavioural engine. Then we discuss teams and
present our proposition to obtain team plans.

2 Simulations with cognitive agents

We define a simulation as follows:
Simulation= E × I × A

whereE is the topologicenvironment, I is the set ofin-
teractionsthat rule the simulated world andA is the set of
situated agentsinvolved in the simulation. In the following
subsections we will quickly define these three points.

2.1 Environment

The environment describes the geography of the simulated
“world”. We represent the environment by a graph where
nodes areplacesand vertices denotepathfrom one place to
another (see Table 1). A place is an elementary geographical
area. The granularity of a place depends on the simulation,



the only constraint is that inside a place there is no restric-
tion neither for moves, nor for perception (restrictions due
to the other agents, like collision problems, are exempt). A
place can represent a room, a town or any other part of the
environment, and inside a place the position of an agent can
be handled discretely or continuously depending on needs.

Environment = {place*,path*}
path = (placeorigin, placedest,condition)

Table 1: Definition of environment

A path denotes an oriented transition between two
places. It is defined by the places that it links, and a con-
dition that must be satisfied if an agent wants to use this
path (usually most of the conditions are simplytrue). The
paths are oriented and the condition to go from some place
a to a placeb is not necessarily the same than the one to
go fromb to a. This formalism allows to describe, for ex-
ample, that a door between two rooms must be opened if
we want to go from one room to the other, or that an agent
must be able to swim to cross a river between two fields. In
this last case, our approach allows, depending on needs, to
choose to represent or not the river with a place. It depends
on whether ot not the crossing of the river has a meaning in
the simulation (see figure 1).

areaa river r areab areaa areab

Figure 1: Left: river is modelled. Paths are: (a,r,“agent
can swim”), (r,a,true), (b,r,“agent can swim”), (r,b,true)
Right: river is not modelled. The paths are: (a,b,“agent can
swim”),(b,a,“agent can swim”).

2.2 Interactions

Knowledge representation is based on the notion of what
we call “interactions”[MPR03]. Since the objective is to
achieve simulations (like games are), it is necessary to rep-
resent the laws that rule the simulated world and to allow
the agents to manipulate these as knowledge elements. We
introduce our interactions in this goal.

Interactions are the backbone of our simulation model.
They are at the basis of the knowledge representation in the
simulation. Some agents (the actors) can perform interac-
tions and others (possibly the same) can suffer from them
(the targets).

An interaction is defined by a name and three parts:

• acondition, it tests the current context of execution of
the interaction and consists mainly of tests on values
of target or actor properties.

• a guard, it checks general conditions for the interac-
tion applicability, typically it defines that to be fired
an interaction requires that the distance between the
target and the actor must be less than some given
value.
The guard is separated from the condition since it cor-
responds to the knowledge due to the geographically

situated feature of the simulations. In a non situated
context, one would have only the condition and action
parts. The guard will be at the origin of the moves in
the plan, moves that are indeed specific to situated
problems. We do not express explicitly in an interac-
tion that the agent has a move to do in order to fire it,
we want the agent to plan it when required.

• anaction, it describes the consequence of the interac-
tion, it can be a change in the state of the actor and/or
of the target (ie. a change of the value of a property),
and/or the activation of an environment action (like
the creation of an agent).

By example, toopenan object (door, chest, window, etc.)
makes it changing fromclosedstate toopenedone. The
nature of the target is of no importance here (insofar as it
can sufferopen), this knowledge can then be represented
in a “universal” way by the interaction (see below). In this
sense, interactions are declarative knowledge: they describe
an action and not how to solve/use it. Let us remark that
there is no mention of moves to be performed to fire the
interaction, the knowledge due to the situated property is
mentioned in the guard. An interaction is a piece ofabstract
knowledge where the situated point of view is taken into
account in the guard.

open:

{

condition = “target.opened = false”
guard = “distance(actor, target) < 1”
action = “target.opened = true”

One advantage in using such interactions is that this ap-
proach favours a good software engineering design. Since
interactions are not tied to a particular agent nor to a simu-
lated world, they can be reused from one to another. This is
clearly the case with the aboveopeninteraction. Reusabil-
ity is of course an important concern in software engineer-
ing design and in particular in AI game design where it is
reputed to be not applied although wished.

To increase the generic nature of our interactions we pro-
pose a way to specialize them. This is not the object of this
paper to detail it but let us say that the aim is to keep the
declarative and abstract nature while taking into account the
fact that to solve a given abstract action can require different
conditions. To solve that we use something like inheritance
of interactions. Using an example should help to present it
shortly: again consider theopeninteraction, we said that it
can be applied to different types of targets and used in a plan
such that “to fetch an apple in the next room I mustopenthis
door”. Now let us assume that this door is a lockable one
(and is indeed locked). From an abstract point of view the
plan is still valid, but theopeninteraction must be under-
stood as “make the door change fromclosedto openedstate
when it is unlocked”. The problem is then how the same
abstract plan (open the door to fetch the apple) can receive
different solutions (just “open” or “unlock and then open”)
depending on the target (whether it is lockable or not). Our
solution is to allow to specialize interactions by adding ex-
tra conditions, thus you create anotheropeninteraction that
“inherits” the previous one and to which you add the condi-
tion target.isLocked=true. This is this version that



is given ascan-sufferinteraction to the lockable agents.

2.3 Agents

Our agents are embodied agents that are situated in their
environment, they are influenced by it and more precisely
by where they are in it.

We distinguish two kinds of agents: inanimate and ani-
mate agents (not to mistake them with mobile/non-mobile
agents). Both are defined by properties and can suffer inter-
actions but the latter can also perform interactions and have
a behavioural engine (see Table 2). The animate agents are
cognitive and proactive agents. They are responsible for the
dynamics of the simulations. The interactions that an agent
can perform correspond to its abilities.

Agents = Animate| Inanimate
Inanimate = {Properties∗, can-suffer}
Properties = (name, value)
can-suffer = Interaction-name*

Animate = Inanimate∪ can-perform
∪ brain∪ goals

can-perform = Interaction-name*
brain = planning engine∪ memory
goals = interaction-goal| condition-goal

Table 2: Agent’s definition

The cognitive agents The structure of the animate agent’s
“mind” is presented in Figure 2. Agents have a memory that
can be seen like a “degraded environment”. This one rep-
resents the knowledge base for all the information gathered
by the agent concerning the environment: the topology of
the environment, the other agents (their position and state).
This information is used by the planning engine to deter-
mine the action that the agent must try to execute in the
environment to fulfil its goal. A perception module is used
to pick up information in the environment and to update the
memory, this perception is local. Updates are performed
by a separate module that has an influence on the planning
engine in order to adapt the currently computed plan to the
new perceived situation. This last module is a kind of “short
term memory”. From this it results that the knowledge of an
agent is not complete, then an agent may have to search for
unknown information, and can be wrong, but the agent is
supposed to behave with respect to its knowledge. This is
due to the dynamic and non monotonic nature of the envi-
ronment. Knowing that its environment is non monotonic
must be taken into account by the agent.

Goals Animate agents have goals. The satisfaction of
these goals leads the agents to behave according to a com-
puted plan. There exist two kind of goals. First, the
interaction-goals, they correspond to an (inter)action that
the agent has to execute. The target of this interaction can
be less or more precisely given: from a named agent to any
agent that can be the target of the interaction, as shown in
the next table:

Figure 2: Different elements of agent’s mind.

goal type of target
eat(apple 12) a given named apple
eat(an apple) any apple
eat(*) any eatable (ie. “who can-suffer eat”) agent

Second, thepremiss-goals(orcondition-goals), they cor-
respond to a condition that the agent wants to become true.
For example:

actor.energy > 100 :
“having his energy being greater than 100”

Planning engine In order to achieve their behaviour the
animate agents have an engine that computes plans in order
to satisfy the goals given to them. The plan is produced by
a backward chaining on thecan-performinteractions of the
agents. The plan building depends on the information stated
in the memory (ie. the beliefs base) of the agent. In a rather
classical way, the plan can be viewed as a tree (see Figure 3).
The nodes are made of the different goals and subgoals
encountered during the resolution. Some areinteraction-
goals, others arepremiss-goals. Thus the tree is an alterna-
tion of condition and interaction nodes and corresponds to
anAND-OR tree. AND-nodes correspond to condition-nodes
(for condition-goals) andOR-nodes to interaction-nodes (for
interaction-goals).

The condition and interaction nodes are classical case.
The sons of a condition node are interaction-nodes built
from the interactions whose action part offers a way to sat-
isfy the condition (or help to satisfy it). The interaction-
node’s sons are built from the conditions that can be found
in the condition and guard parts of the interaction: from
these, condition-nodes are built. This is classical in back-
ward chaining.

We want to underline a point that introduces differences
in comparison with planning in non situated context. In-
deed, since we consider embodied agents situated in a geo-
graphical environment and since we want to simulate their
behaviour in such an environment, agents must perform



moves. Typically an agent must move next to a target to
interact with it. It is here that the guards that we have in-
troduced in our interactions play their roles. To be allowed
to fire the action part of the interaction, the agent must sat-
isfy the conditions and the guards. But guards, since they
imply moves that are a crucial side-effect in situated sim-
ulations, require specific consideration. We have discussed
this problem in [DMR04] where we show in which ways the
situated context has an influence on “planning while execut-
ing”. Indeed, considering only conditions and actions leads
to abstract plansthat are valid independently of any situ-
ated context: “to open a door only requires that it is closed
and makes it opened”. However, simulations in situated en-
vironment implies that in theexecution planmoves must be
done, and then “to open a door” requires also the actor be-
ing next to the door as expressed in the guard of theopen
interaction. This guard must be considered while building
the plan. The backward chaining on the guard produces the
moves and these moves can require specific planning in or-
der to be achieved. The conditions that must be satisfied
in order to be able to perform a move are the conditions
that exist between the places in the computed path. Then
the sameabstract plancan lead to severalexecution plans
each depending on the execution context where the agent is
situated.

Let us just add that the plan is not rebuild at each step but
partial replanning is done according to the new perceived
information given by the updates module.

A small example To illustrate the different points de-
scribed in the previous paragraph we will consider a very
small and simple example. We consider a world with two
places/rooms separated by a doord, the path between these
two rooms has the condition “d.locked=false”. Four interac-
tions define the laws:unlock, take, move, push(see Table 3).
In the world are an animate agenta that can perform these 4
interactions, and three inanimate agents, the doord that can
sufferopen, a keyk that can suffertake(and can be used to
unlockd) and a buttonb that can sufferpush. The goal of
the agent is to push onb. The figure 3 presents the planning
in two different situations.

unlock:

{

condition = “target.locked = true”
guard = “distance(actor, target) < 1”
action = “target.locked = false”

take:

{

condition = true

guard = “distance(actor, target) < 1”
action = “actor.own(target) = true”

push:

{

condition = true

guard = “distance(actor, target) < 1”
action = “target.pushed = true”

move:

{

condition = conditionsfoundinpath

guard =
action = “distance(actor, target) < 1”

Table 3: Definitions of the interactions (adapted - but with-
out distortion - to shorten the example)

unlock(d)

b k

d

a

push(b)

d(a,b)<1

move(b)

true

push(b)

d(a,b)<1

move(b)

d.locked = false

d(a,d)<1

move(d)

own(k)

take(k)

d(a,k)<1

move(k)

true

Figure 3: An animate agenta is situated in an environment
where are also 3 inanimate agents, a doord, a buttonb and
a keyk. The goal ofa is to pushb. a must build a plan
to achieve it. A plan can be drawn as a tree, nodes due
interaction-goals are drawn with dashed lines and nodes due
to condition-goals with solid lines. Depending on the execu-
tion context, different plans can be obtained. Left is the tree
obtained whend is not locked and right is the case whered

is locked.a must adapt its plan to the context.

3 Teams

In the previous section we have briefly described our ap-
proach to model the simulated world and the agents. In par-
ticular we present how we obtain individual agent behaviour
that allows agents to achieve tasks. However individual be-
haviours are not enough, sometimes tasks must be done by
groups, or teams, of agents. In computer games the need of
teams is important: teams of fighters in FSP games, groups
of units in strategy games, teams of characters in role-player
games, etc.

Several situations can require the use of teams. First,
getting a number of agents to do a job can speed up its
achievement, this corresponds to task parallelization when
several agents have the same abilities and perform similar
tasks simultaneously, one agent could have done it alone
but it would have taken more time. Second, in some cases,
one agent is not sufficient to perform a task, and several
must cooperatesimultaneouslyto do it, by example this is
the case when a heavy load must be carried and two or more
agents are required in order to lift it, of course they must do
this simultaneously. Third, complex tasks require a lot of
different abilities and it is not often the case that one agent
alone has all of them, then several “specialist agents” that
together gather these abilities must cooperate to achieve the
task. Of course, these three cases can mix. In this paper we
mainly address this last case.

3.1 Teams of cognitive agents with leader

Making teams of agents work has been the subject of sev-
eral approaches. Emergence is a solution to obtain a team
behaviour [CGGG03]. But in this case we think that the



notion of team work is only “apparent” since the team be-
haviour is a collateral effect of the sum of the individual be-
haviours and is not deliberate. We mean that the agents are
not conscious that they work in a team and no team strategy
is explicitly planned.

Our objective is to make our cognitive agents work in a
team and being aware of it. To perform this we make some
choices in this paper:

1. the team is assumed to be already created, that means
that we are not concerned here with the problem of re-
cruiting an able agent or constituting the team before
doing the job.

2. the team is directed by a leader which is an agent that
plays a particular role in the team. It is known at the
beginning.

3. the leader is in charge of the team strategy and co-
ordination, therefore our work does not consider the
cases where agents negotiates to cooperate and to find
an agreement on a plan. For example, plan merging
[KMS98, AFH+97] is not our interest here.

Having a leader that builds the team plan can be seen as
a restriction since this implies that control is partially cen-
tralized. However one can see by oneself that this is often
the case in real life: firemen in a squadron or workers in a
building site obey to the orders of their leader. The point
is that in such teams, even if the leader gives orders, team
members still have their autonomy. They must behave ac-
cording to the leader plan but have to use their knowledge
and abilities to achieve these orders.

Indeed, an important feature is the granularity of the
leader orders. A site foreman does not order a bricklayer
“ take this red brick, bring it there and put it on the foun-
dation, then take this second one, bring it there and put it
next to the first one, then take this third one...”. His order is
simply “build this brick wall here”. How the wall is built is
the responsibility and the competence field of the bricklayer.
As we see here, the leader gives rather high level orders and
is not concerned with details. Moreover these orders can be
abstract insofar as they are not necessarily tied to a partic-
ular situated context: the foreman can use the plan of con-
struction in his office to show the bricklayer the walls to be
built, this one is in charge to do it according to the site con-
straints and situation. The worker is autonomous once the
order has been given, probably he only must report when
he succeeds or even informs his leader when a problem he
cannot solve occurs.

Therefore, the leader is in charge to build the plan that
solves the team goal but this plan does not describe the so-
lution in full details.

In the following (see paragraph 3.3) we propose a solu-
tion to reproduce this behaviour: the leader has the knowl-
edge about its team members abilities, it builds an abstract
plan to solve the team goal and it distributes orders to the
members. The members autonomously resolve their tasks
and report to the leader.

3.2 Description of a team

Describing a team simply as a group of agents is not suffi-
cient. Our proposition consists in describing the team struc-
ture independently of any concrete agent and then to instan-
tiate it with the members.

Since we are interested in teams that gather several com-
plementary specialists, we design the team structure in term
of roles. A role corresponds to a set of abilities (ie. interac-
tions) required to play it (see Table 4). We add a cardinality
to each role, this allows to precise when several agents of
the same type are required in a team. This information is
for example useful to handle dynamic reorganization of the
team, but we will no more use it in the following of this
paper.

To instantiate a team consists in selecting existing able
agents and to attribute them some role in the team. Of
course to be able to play a role an agent must have all the in-
teractions that describe it in itscan-performproperty. Then
a team is given by a team-structure and a mapping from the
role in the structure and the agents members of the team.

TeamStructure = (Role, Cardinality)*
Role = Interaction*

Cardinality = Natural..Natural
Team = TeamStructure× (Role,Agent)*

Table 4: Definition of team

The knowledge concerning the team is given to the team
leader. In this paper we are not interesting in how the leader
recruits its team-mates.

3.3 Our proposition

Giving autonomy to the team members is an important
point. First, as said before, this is more realistic and simu-
lates what happens in real life. Second, this avoids to obtain
stupid behaviours, in particular because we consider situ-
ated agents in dynamic environments like game worlds are.
One must not forget that, as we say earlier, agent’s knowl-
edge, and by way of consequence the leader’s knowledge, is
not necessarily correct. Then, in the case where the leader
builds the plan in every detail and gives very precise or-
ders to the team members, those having no right to modify
them, it is more than probable that members will be con-
fronted with unexpected situations and will not be able (nor
authorized actually) to handle them. As an example, such
situations can be due to objects that are not where they are
supposed to be. Then a precise order like “go to a given pre-
cise location and take the brick” can not be solved by a non
autonomous agent if the brick has been moved. This is not
the case with the more abstract order “take the brick” given
to an autonomous agent that can decide and plan how to find
the brick according to the environment it is confronted with.
As a third advantage this provides an easy way to consider
team of teams, we will discuss this later in the paper.

As it has been described earlier our agents are cognitive
ones and are able to build plan according to their knowl-
edge. Insofar as individual and team plans are of the same



nature, there is no reason that the individual planning strat-
egy could not be applied to team planning.

So, the problem that arises is:How to adapt the individ-
ual planning to team work in order to let some team mem-
bers autonomy. Here follows our proposition.

As we have seen the plan can be viewed as a tree where
root is the goal and leaves are actions to be executed in order
to solve the goal. In a team plan, leaves are then the orders
that the leader gives to the members. To be able to build this
plan, the leader must have some knowledge concerning the
members abilities, that is about theircan-performinterac-
tions.

Let us consider that the leader knows all thecan-perform
interactions of the members. Then exactly like in the indi-
vidual planning, he could build a plan to solve the goal. But
in this case he would build a full plan and team members
will no more have any planning autonomy! So the solution
is to not let the leader plans “until the end”, but to limit the
tree depth. But this can not be done arbitrarily. There is no
reason to decide that the leader unfolds the tree until it has
a depth of 3 rather than 5 or 10. The appropriate depth will
depend on the goal and the members abilities, it will be dif-
ferent at every time. In order to compute the depth’s limit
the leader would have to compute the full plan before to cut
it at a relevant depth. It is a nonsense to compute the full
plan, then to forget it and ask the members to re-build it!

Therefore this approach is not correct. We must not for-
get that we want the plan built by the leader to be abstract.
And then the leader does not need to have explicitly all the
knowledge about thecan-performof its team members. Ac-
tually, the leader only has to know what high-level tasks the
members are able to do. It even does not need to know by
itself how to perform these tasks, like a foreman does not
necessarily have to know how to build the wall, it suffices
that he knows that the bricklayer is able to do it. Indeed,
the leader has to know what things must be done but not
necessarily how to do them.

To achieve this we propose to hide some knowledge to
the leader: the guards and conditions in thecan-performof
the members are hidden to the leader. Thus the leader can
know which of the member’s interactions can be used in
its plan since, knowing their action parts, it can use them
during its backward chaining. However, since the leader
knows no condition (nor guard) for these, it considers they
are satisfied and stops the chaining. Then these interactions
become necessarily leaves of the leader tree plan and can be
distributed to the members as goals. Those members, hav-
ing full knowledge, are able to make the appropriate plan.

Let us take an example. We have one agent nameda0

who can perform some interactionI0 (see Table 5). Two
other agents, nameda1 anda2 can respectively perform in-
teractions{I1, I3, I4} and{I2, I5} (see Table 6).

a0 will be the leader of the team. The team structure is
made of two rolesr1 andr2 that are defined respectively by
interactions{I1, I3} and{I2}. This implies that the “high
level” tasks the leader can ask to the members are to satisfy
p1, p2 or p3. The conditions and guards of these interactions
are hidden toa0 (see Table 5).

leader.can-perform team.can-perform
name I0 I1 I2 I3

conditions p1, p2 – – –
guard true – – –
actions p0 p1 p2 p3

Table 5: Leader’s knowledge, conditions and guards are
hidden for the interactions of the team roles. They are con-
sidered astrue.

As we can see, agentsa1 anda2 can play rolesr1 andr2

respectively, they are chosen as team members.

name I1 I2 I3 I4 I5

conditions p3, p4 p5 true true true
guard G1 G2 G3 G4 G5

actions p1 p2 p3 p4 p5

Table 6: Definitions ofcan-performinteractions of team
members.

Now, the team is given the goalp0. The leader,a0 builds
the plan for it. According to its knowledge, the backward
chaining leads to use interactionI1

3 that requiresp1 andp2

to be solved. These lead respectively to the use ofI1 and
I2 (in this planI3 does not interfere from the leader point
of view). For the leader,I1 and I2 have their conditions
and guards satisfied (since they are hidden and seem to have
none), then it stops its planning here (see Figure 4).

a2

p1 p2

I0

I1 I2

p0

a1

Figure 4: Tree representing the plan built by the leader. It is
developed until the abstract team’s interactions are reached,
goals can then be given to the team members.

Now the leader can distribute the tasks to its team mem-
bers according to their role in the team, indeed the leader
is not able to perform the task itself sinceI1 andI2 are not
in its can-perform. Then it givesp1 to a1 as goal andp2 to
a2. Now each agent autonomously solves its goal according
to its knowledge and builds the appropriate plan (see Fig-
ure 5). Then it can determine which action to fire to solve
its goal and can inform its leader when it succeeds or if it
fails.

The importance of the autonomy of the agent is increased
while considering the influence of the surrounding environ-
ment and specially with the situated aspect. This is ex-
pressed within the guards whose resolution has not been de-

3In the following we assume conditionpi not to be satisfied.



I1

G1

��
��
��

��
��
��

G3

p4

I4

��
��
��

��
��
��

G5

��
��
��
��

��
��
��
��

G2

true

��
��
��
��

��
��
��
��

I1

p3 p4

I3 I4

G4
truetrue

��
��
��
��

��
��
��
��

Figure 5: Trees representing the individual plans built au-
tonomously by the 2 team members (guard’s plan are not
detailed, they depend on the context).

tailed in above trees. Indeed, as we have seen since guards
express that the actor must be near the target in order to
fire the interaction, they requires planning to be solved. But
this is highly context dependant. And it would have been
particularly irrelevant for the leader to plan it instead ofthe
members.

3.4 Team of teams

With our above described approach it is easy to build “team
of teams”, or team built as a hierarchy of agents, where one
“big leader” orders to subleaders that order to and so on, un-
til “basic members”. In fact it applies immediately to such
cases without change!

Indeed, each level of the hierarchy corresponds to a level
of decision with its type of orders. The higher in the hier-
archy an agent is, the more high-level or abstract its orders
are. For example, a works foreman can order a bricklayer
leader to have walls built and the carpenter leader to have
windows installed. Each of them orders to his team-mates
to do the appropriate work.

With our approach the leader’s planning stops with the
abstract orders that can be given to team members and be-
come a goal for them. If a team member agent is a leader
itself, it applies the same procedure: starting from the goal
that he has received, he builds a plan that stops when the ab-
stract knowledge of its team (ie. interactions where condi-
tions are hidden) is used. Then it can give orders to its team
members. As we note nothing particular has to be done in
order to consider hierarchies of teams: building the teams
with their knowledge suffices.

4 Conclusion

In this paper we propose a mean to handle teams of cog-
nitive situated agents directed by a leader. The presented
solution let the team members some autonomy in the way
they contribute to the team plan achievement. Indeed, the
leader uses abstract knowledge on team’s abilities to build
an abstract plan and then distributes high-level orders to its
team-mates.

Several problems have not been addressed in this paper
and require complementary works, among them let us cite:

• how is the team built, that is how the leader recruits
its team-mates?

• how to dynamically reorganize a team when an agent
leave it (the cardinality information that are just men-
tioned in the paper can be used here)?

• how the information are exchanged inside the team?

• how to proceed in the case of teams with no leader?

They are, with others, the subjects of future works.

Thanks Many thanks to the anonymous referee that corrects so
many of our language mistakes. Thanks to all referees for their
remarks too.

Bibliography

[AFH+97] R. Alami, S. Fleury, M. Herrb, F. Ingrand, and
S. Qutub. Operating a large fleet of mobile
robots using the plan-merging paradigm. In
Proceedings of IEEE ICRA 97, 1997.

[CGGG03] D. Capera, J-P. Georgé, M-P. Gleizes, and
P. Glize. The amas theory for complex prob-
lem solving based onself-organizing coopera-
tive agents. InProceedings of WETICE’03,
pages 383–388, 2003.

[DMR04] D. Devigne, P. Mathieu, and J-C. Routier.
Planning for spatially situated agents in sim-
ulations. In Proceedings of the 2004
IEEE/WIC/ACM International Joint Confer-
ence IAT’04, 2004.

[KMS98] Subbarao Kambhampati, Amol Mali, and Bi-
plav Srivastava. Hybrid planning for partially
hierarchical domains. InProceedings of the
15th national/10th conference on Artificial In-
telligence/Innovative applications of artificial
intelligence, pages 882–888. AAAI, 1998.

[LvL00] John E. Laird and Michael van Lent. Human-
level AI’s Killer Application: Interactive Com-
puter Games. 2000.

[MPR03] P. Mathieu, S. Picault, and J-C. Routier. Simu-
lation de comportements pour agents rationnels
situés. InActes des Secondes Journées Franco-
phones MFI’03, pages 277–282, mai 2003.

[Nar98] A. Nareyek. Specification and development
of reactive systems. In1998 AIPS Workshop,
pages 7–14, Menlo Park California, 1998.
AAAI Press.

[Nar00] A. Nareyek. Intelligent agents for computer
games. InComputers and Games, Second In-
ternational Conference, CG 2000. LNCS 2063.,
pages 414–422, 2000.

[Toz02] Paul Tozour. The perils of ai scripting. InAI
Game Programming Wisdom, pages 541–547,
2002.


