
CPU Sharing for Autonomous Time-Aware Agents

Cédric Dinont1,2, Emmanuel Druon2, Philippe Mathieu1, Patrick Taillibert3

1: Laboratoire d’Informatique Fondamentale de Lille
59655 Villeneuve-d’Ascq Cedex - FRANCE

2: Institut Supérieur de l’Electronique et du Numérique
41 Bd Vauban 59046 Lille Cedex - FRANCE

3: Thales Aerospace Division
2 Avenue Gay Lussac 78990 Elancourt - FRANCE

Abstract: In this paper, we investigate time-aware agents
programming. A time-aware agent is able to manage sev-
eral tasks working on disparate data. It reasons about its
tasks durations and it is also able to cooperate with other
agents to share CPU resources in order to meet its deadlines.
Time-awareness should not be at the expense of agent au-
tonomy, to which we must pay attention at programming
and execution levels. Moreover, time-aware agents may
need to quickly react to data provided by sensors. Taking
into account these objectives leads us to introduce two agent
classes: extrovert agents which are always turned towards
the external world and introvert agents which allow to guar-
antee tasks durations. We show that our architecture enables
autonomous time-aware agents to share a single CPU. We
also introduce a Time Services Agent (TSA) which collects
CPU usage requests and returns time slots ensuring dead-
lines meeting.

Keywords: Autonomous agents, CPU reservation, reac-
tive processing.

1. Introduction

1.1 Autonomous Cognitive Agents

One of the major concepts brought by the agent paradigm is
autonomy [1]. It can be defined as agent capacity to decide
itself of its actions. The respect of temporal constraints in
a context of autonomy raises a lot of difficulties, either at
agent or MAS level. As we evolve in the Distributed Ar-
tificial Intelligence field [2], the reasoning of our cognitive
agents can make use of complex algorithms to solve plan-
ning problems for example. A problem search space can
have critical regions: for a small variation on input data, the
computing time to find the solution can tremendously vary

and even become prohibitory. Needed processor resources
are thus very variable and difficult to envisage. Numerous
problems are solved by using more or less powerful heuris-
tics. It is not easy to predict that a heuristic will give a bet-
ter result and/or more quickly than another heuristic, just
according to the input data. When the choice of a particu-
lar heuristic becomes too hard, one comes to start several
of them at the same time. We stop them as soon as one of
them has found a satisfying solution. Our proposal makes
it possible, among others, to answer this kind of problems.

We expect from agents that they are aware of their environ-
ment. They must permanently be turned towards the exter-
nal world to quickly take into account changes in the en-
vironment and quickly answer other agents messages. For
software agents, it consists in regularly having enough pro-
cessor time which they will use to update their state accord-
ing to their environment. Guessoum and Dojat presented
in [3] an agent model which mixes cognitive and reactive
behaviour aiming at meeting hard deadlines.

We now define active and inactive periods of the agents and
we associate an “agent time” clock to agents which allows
to evaluate the quantity of work that an agent has already
carried out at a given time instant.

Definition 1 (Active agent / inactive agent)An agent is
inactive over a period of time if it does not have any ac-
cess to the processor during this period. Otherwise, it is
active over the considered period.

Definition 2 (Agent time) The agent time advances at the
rhythm of the operations executed by the agent.

The agent time belongs to each agent: there is an “agent
time” clock per agent. Each can advance at a different
rhythm. Note that if agents use agent time to reason about
their processing durations, their reasoning will be indepen-
dent of the CPU power and the other agents that may share

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



the CPU. This thus allows to program agents regardless of
the execution environment. However, possible reasoning
could only be local to the agents. We will later introduce
another concept to allow reasoning at MAS level.

As we have just seen, agents get involved in processings
which durations (in agent time) are not necessarily known
before they were executed. An agent that wants to have
control on what it is doing will not execute its processings
completely and in one run. It will rather decide to start them
during a certain time, analyze the partial result obtained and
possibly start them again for a new period of time.

Definition 3 (Processing / task)A processing is a compu-
tation work. A task is the execution of a processing during
a fixed agent time.

A processing can be done with one or several tasks. When
a task ends, a new task can continue the processing where
it was stopped.

1.2 Time-Aware Agents

Cognitive agents continuously reason to know which goals
to achieve and how to achieve them. Time is a part of the
reality agents must be aware of to make right decisions. We
thus define a time-aware agent as follows:

Definition 4 (Time-aware agent) An agent is time-aware
if its behaviour depends on time which runs.

An agent does not only need to reason about time to be
aware of time that runs. It also needs to reason about the
passing of time during its actions and decision making. The
knowledge of the passing of time is gained by consulting
the time from a clock. The chosen clock does not matter.
Moreover, it is not necessary to be the same for all the time-
aware agents of a same MAS.

A time-aware agent is able to plan its processing, estimate
their durations in agent time, launch tasks to carry out these
processings, monitor them and make decisions according
to its observations [4]. An agent which breaks a processing
into several tasks will, for example, be able to detect that
the processing lasts for an unusually long time. It needs to
be able to go on working without the data it was waiting for
from a processing output if it chooses to stop it before it is
finished. Let us also notice that an agent does not need to
be always active to be time-aware.

Taking into account the duration of processing is a recurrent
problem in the AI and MAS fields [5].Anytime algorithms

[6] have a function indicating the answer quality according
to time. When they exist for a given problem, their use al-
lows agents to reason about the tasks durations they allocate
to problems and even to make it a rule to meet constraints
on solution quality. Zilberstein et al. present in [7] a meta
level to reason about the uncertainties linked with the dura-
tions and the answer qualities. Adelantado et al. add in [8] a
reactive mechanism to anytime agents that enables them to
be used in embedded real-time applications. Other reason-
ing can also be done on the necessary compromise between
computing time and answer utility as in [9]. Wagner de-
tails in [10] design-to-time proposal [11] and its extension
design-to-criteria [12] which allows to take into account the
processing durations and other criteria for planning. Fi-
nally, Prouskas presents in [13] an extension of April which
reifies two different levels of temporal constraints: tem-
poral constraints between agents and between humans and
agents. The periods of time considered are longer in the
case of interactions with humans. Real-time constraints are
also less strong when they are linked to a human agent.
Prouskas also gives a definition for time-aware agent that is
appropriate to applications where temporal constraints are
dictated by the interactions with human agents.

We finally notice that a real-time process executed on a real-
time system is not inevitably time-aware. It was just pro-
grammed to give an answer in a bounded time.

1.3 Agents Sharing One CPU

An architecture for time-aware agents must provide the
means to deal with several agents sharing one CPU.

One of the roles of the operating system is to manage the
scheduling of tasks on the available processors. This is dif-
ferently done according to seeked properties. Thus, systems
like Windows or Unix, said to be time-sharings, guarantee
that all processes will be able to regularly have a quantum
of processor time. What is searched for here is the illusion,
at user abstraction level, that all processes are excuted atthe
same time. Unfortunately, these systems do not guarantee
anything on tasks deadlines.

This guarantee is on the other hand given by real-time sys-
tems, but this is often at the expense of the illusion that
processes are always active. Indeed, algorithms classically
used like Earliest Deadline First (EDF) [14, 15] will instead
launch a task until it is finished and then go to the next one
rather than to assign small quantums of time to each task.
We do not investigate more real-time systems as our pur-
pose is to run our agent systems on top of classical systems
used in workstations.

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



The management of the conflicts of processor allocation is
also a significant issue which is among others approached
by [16]. In a MAS, these conflicts are preferably managed
at multi-agent level. We also can use interaction and nego-
ciation mechanisms to process them while taking into ac-
count the autonomy of agents. If this is the operating sys-
tem which decides what to do in case of conflict, it will
make decisions which will go against the principle of au-
tonomy. For example, and that is the most common case,
consider that the operating system or the MAS framework
uses priorities to manage conflicts. When an inconsistency
appears in the scheduling, we see the authoritative ousting
of the tasks of weaker priority. However, we want, when an
agent decides to launch a task, to have the guarantee that it
will finish as foreseen. That must be valid for all the agents,
without any distinction. The principle of autonomy goes
against the management of conflicts by priorities and sub-
mission to the authority of a third party. Indeed, two agents
can rightly think that their tasks have high priorities. If there
is a conflict for the execution of a new task, it is preferable
that an agent decides to sacrifice itself by stopping one of
its tasks or that this is the new task which cannot be carried
out if no agent wants to sacrifice itself.

Ultimately, we want agents to be turned towards the exter-
nal world and to be able to ensure temporal constraints in a
context of autonomy and of sharing a single CPU. Because
of their autonomy, agents can decide to launch a task and
want it to be finished before a given date. We need a means
to ensure that when an agent execute a task, other agents
let it enough processor resources to finish its task before its
deadline i.e. we need a means to know if the set of temporal
constraints linked to active tasks is satisfied. We also need
a way to manage conflicts which arise when a new task re-
quest brings an inconsistency.

2. Proposed Architecture

For the remainder of this paper, we choose a granularity
such that an agent has only one execution path i.e. one agent
can be executed by one process or one thread but cannot
consist of several concurrent processes or threads.

2.1 General Description

We classify agents into two exclusive classes defined in
the next paragraph: extrovert agents and introvert agents.
These classes are characterized by the deadline separating
two consultations of their mailboxes. Extrovert agents rea-
son about the temporal behaviour of introvert agents. They

also delegate to them the realization of long processings as
tasks. They finally have a link which allows them to sus-
pend and to start again introvert agents at any time.

The Time Services Agent (TSA), described in section 3, is
a particular extrovert agent. Other extrovert agents have to
interact with it when they want to launch a task. It col-
lects temporal constraints of all tasks carried out by intro-
vert agents and it commits itself so that they are checked.
In particular, it finds a schedule for the tasks and indicates
the corresponding execution time slots to introvert agents.
If they respect them, the TSA guarantees that all tasks ter-
minate before their deadlines.

2.2 Agent Classes

Definition 5 (Extrovert / introvert agent) An agent is ex-
trovert if the agent time which separates two checks of its
mailbox is bounded. Otherwise, it is introvert.

This definition implies that an extrovert agent cannot
blindly commit itself in long processings which would pre-
vent it from consulting its mailbox regularly. It is some-
times possible to envisage the regular consultation of the
messages in a processsing loop. In this case, an agent will
be able to launch long processings. That is however not
possible in all cases, in particular when using legacy code
or when using processings like constraints solving. For this
kind of processings, once launched, it is generally impos-
sible to suspend them just to consult the mailbox. The ex-
trovert agents will delegate the execution of the processings
that cannot be interrupted to introvert agents.

We can also notice that an extrovert agent cannot have idle
periods longer than the limit fixed between two checks of
the mailbox. On the contrary, an introvert agent can have
unlimited idle periods. Afterwards, we will particularly fo-
cus on extrovert agents that are permanently active. Time-
sharing is the only property required from the operating sys-
tem so that agents can be regarded as constantly active. In-
deed, if we place all the agents at the same priority with
respect to the operating system scheduler, each agent will
have regularly a little processor time. Just like the user of
such a system who considers that its various programs work
permanently, we can consider that some agents are perma-
nently active. That obviously only becomes true for suffi-
ciently long periods of time.

2.3 Respect of Temporal Constraints

Separation into two agent classes makes it possible to reach
part of the goal that we set ourselves: to carry out long pro-

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



cessings while having agents permanently turned outside.
That is not enough to ensure that the long processings check
temporal constraints like deadlines. As we will further see,
the deadline management will be done by means of a partic-
ular agent which will indicate which tasks must be carried
out and which tasks must be paused at a given moment.
That implies that introvert agents can be paused and started
again as needed. The agents mail system cannot be used for
this purpose, because once an introvert agent has started the
execution of a task, it does not react any more to the mes-
sages which accumulate in its mailbox. Thus, an additional
means becomes necessary to ensure the suspensibility of the
agents.

Definition 6 (suspensibility) An agent can be suspended if
it is possible at any time to order him to become active or
inactive.

A suspensible agent remains autonomous, e.g. it can decide
not to answer a message, but it has to suspend itself if it
is asked to. When an agent is suspended, it is inactive and
thus does not use the processor any more. Especially, it is
not able any more to give its progress report to the extro-
vert agent which controls it. If the knowledge of this report
is needed by the temporal reasoning done by the extrovert
agent, it must take advantage of its conscious moments to
communicate its progress report to it.

We note that introvert agents have to be suspensible so that
a management of deadlines can be set up. We should accept
that agents lose a part of their autonomy, here by agreeing
to become inactive, so that the other agents can be carried
out and thus respect their deadlines. This property is not
needed for all agents. It does not concern extrovert agents
since they must be constantly active.

3

2

1
TSA

Introvert
Agent

Extrovert
Agent

Request

Play/Pause
Commands

Time slots

Figure 1: Main relations between the TSA, extrovert
agents and introvert agents.

We finally note that agent properties described up to now
(active, time-aware, extrovert and suspended) are intrinsic
to the agent and independent of the execution environment.

3. The Time Services Agent

We have seen that each agent has its own clock indicating its
“agent time”. It also needs to refer to an unspecified clock
to be aware of time. The TSA collects tasks deadlines from
the agents. These deadlines must all refer to a common
clock. For this purpose, we define the “TSA time”.

Definition 7 (TSA time) The TSA time is a common time
to all agents that use the services of the TSA.

We would often choose the system clock to give the TSA
time, but it may also be a virtual clock which gives it, for
example in the case of simulations. We have seen that the
agent time could be used by a reasoning that needs to be
independent of the processor and the other agents. On the
contrary, the TSA time is used by a reasoning that depends
on the current CPU load.

3.1 Task Request Protocol

An agent which wants to allocate a task to advance a pro-
cessing does a request to the TSA in the form[TE, TCs]

whereTE is the asked agent time for the task andTCs

is a list of temporal constraints. The TSA evaluates if the
new temporal constraints do not bring inconsistency. If an
inconsistency is detected, the TSA returns a refusal to ex-
ecute the task to the requesting agent. The last can send a
new request if it wants to. If the request does not bring in-
consistency, the TSA returns the list of time slots (in TSA
time) to the requesting agent during which the task can be
carried out. The requesting agent must honour these time
slots by sending orders of suspension and resuming towards
the agent which will carry out the task. An agent can at any
moment tell the TSA that it gives up using some of the time
slots which were attributed to it.

3.2 Scheduling

Required Properties:The scheduler that we need must have
particular properties. It is constructed on top of the oper-
ating system scheduler. It can take into account at its level
that several tasks can be carried out in parallel. Especially,
it must particularly manage always active extrovert agents.
It also must manage deadlines, while being easily extensi-
ble to other temporal constraints.

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



We consider that it is interesting to begin tasks as soon as
possible. The behaviour of a scheduler like EDF, which will
entirely execute the task whose deadline is the earliest and
then turn to the next task, is not adapted to the resolution
of a problem by various agents running in parallel different
heuristics. In this kind of application, it is interesting to
start the various heuristics as soon as possible and to stop
the resolution as soon as an agent has found the required
solution.

Modeling:Requests are sudmitted as[TEi, DLi]. TEi is
the agent time to affect to taski before deadlineDLi. For
TEi, we may also say that it is the total processing energy
to assign to taski. We considern requests whose dead-
lines are sorted in ascending order:DLi ≤ DLi+1, 1 ≤

i ≤ n − 1. We getn intervals: [T0 to DL1, DL1 to DL2,
...,DLn−1 to DLn], with T0 the scheduling beginning date.
We also consider a fixed numberNEA of always active
extrovert agents.

Our aim is to respect deadlines: for intervali, the goal is
thus to finish taski before the end of intervali. We also
want to give as much as possible processor time to tasks
i + 1 to n, as soon as possible in the interval. We split
the considered interval into subintervals corresponding to
all possibilities to run taski in parallel with one or sev-
eral other tasks fromi + 1 to n. For theith interval, there
are2n−i subintervals. We arrange the subintervals in de-
creasing order of the number of tasks included in them. For
a subintervalj of the intervali havingT tasks, each task
is given a sharePi,j of the available CPU power equal to

1

T+NEA
.

D1,2D1,1

100%

0%
T0 D1,3

P1,1 = 25%

D1,4

P1,4 = 50%

DL1

Processor usage

Time

IA 3

IA 2

IA 1
IA 1

IA 2

EA 1 EA 1

IA 3

IA 1
IA 1

EA 1
EA 1

Figure 2: Partitioning of the first interval with 3 intro-
vert agents and 1 extrovert agent.

This partitioning of an intervali fits well with our goal:
priority is given to finishing taski since it appears in all the
subintervals and if we can execute one or more other tasks
in parallel to taski, it will be done as soon as possible in
the interval. The problem for theith interval thus consists

in determining the durationsDi,j , Di,j being the duration
of the subintervalj of the intervali. Di,j can equal 0.

Resolution Preparation:The resolution is done interval by
interval. For each interval, we calculate the variables
needed to constitute a system of equations and inequations.
We then resolve it with the simplex algorithm [17].

We first define the limits of the considered interval. The end
date always equalsDLi. The real beginning dateBDi can
differ from DLi−1 if task i − 1 has finished before the end
of its interval. It is obtained by:

BD1 = T0 and

BDi =

2
n−i−1∑

j=1

Di−1,j , 1 ≤ j ≤ 2n−1

LetLi,j,k be1 if taskk has got one of its parts in subinterval
j of intervali and0 otherwise. And letEi,k be the total real
energy allocated to taskk in intervali.

Ei,k =

2
n−k∑

j=1

Li,j,kPi,jDi,j

We can calculateREi,k, the remaining energy for taskk
started from intervali included as follows:

RE1,k = TEk and

REi,k = REi−1,k−Ei−1,k, 2 ≤ i ≤ n, 1 ≤ k ≤ 2n−1

Since we solve the problem interval by interval, we need to
ensure that we correctly choose the tasks which will be ex-
ecuted in a particular intervali. Indeed, for the tasks which
would not be able to be entirely executed in their intervals,
we need to take into account in the previous intervals that
we have to affect them a part of the available energy. An
example in paragraph 3.2.5 illustrates that.

Let SREi be the minimal energy to affect in intervali to
other tasks than theith. And letCi,k, i + 1 ≤ k ≤ 2n−1

be 1 if task k is in the list of tasks for which we need to
affect a minimum of energy in intervali. The calculation
of the Ci,k and ofSREi is done by going back from the
last interval to intervali. We first initializeSREi and the
Ci,k to 0. At intervalm, we updateSREi and theCi,k

as follows. LetMm be the processor energy available in
intervalm. Mm = P (DLm −BDm) with P the processor
energy by unit of time. IfREi,m + SREi ≤ Mm, then we
setSREi and theCi,k to 0. Else, we add(REi,m − Mm)

to SREi and we setCi,m to 1.

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



Resolution:We now have determined all needed numerical
values. We only have to determine the variablesDi,j . The
linear program to be solved is:

Max z =
2

n−i∑

j=1

[(2n−i
− j + 1)Di,j ] [1]

Di,j ≥ 0, 1 ≤ j ≤ 2n−i [2]

2
n−i∑

j=1

Di,j ≤ DLi − BDi [3]

Ei,i = REi,i [4]

Ei,k ≤ REi,k, j + 1 ≤ k ≤ 2n−1 [5]

2
n−1∑

k=j+1

(Ci,kEi,k) ≥ SREi [6]

[1] We want to maximize the weighted sum of the durations
Di,j of intervali. Di,j is weighted by a greater factor than
the one ofDi,j+1.

[2] All durations are positive.

[3] Task i finishes before its deadline: the sum of the du-
rations of its parts is lower or equal to the duration of the
current interval.

[4] The sum of the energies of the parts of taski in interval
i equals the remaining energy to affect to taski.

[5] We cannot affect more energy to a task in intervali than
what remains for this task from this interval.

[6] We must devote the quantitySREi of the supplied en-
ergy in the current interval for the tasksk whose variable
Ci,k is at 1.

Resolution Examples:We consider in this paragraph that
the processor is able to execute 1000 operations per second.
Task requests are given as[TE, DL]. TE is a duration in
agent time, given as a number of instructions to execute.
DL is the deadline for the task in TSA time given in sec-
onds.

Our first example makes use of three introvert agents and no
extrovert agent. Requests are:[3000ops, 4s], [2700ops, 6s]

and [2000ops, 8s]. We point out that it is not possible to
entirely execute task 2 only in the second interval. This one
lasts two seconds and has thus an execution capacity of only
2000 operations. It is necessary to carry out at least 700
operations of task 2 in the first interval. Figure 3 illustrates
that: we must stop task 3 which turned in parallel to 1 and
2 so that the sum of the parts of task 2 in the first interval
can reach the value of 700 operations.

DL1 DL2 DL3

0%
T0

100%

Processor usage

Time

IA 3

IA 2

IA 1
IA 1

IA 2

IA 1 IA 2 IA 3

Figure 3: Taking into account, in the resolution for an
interval, of constraints on the remaining intervals.

For our second example, let us take two extrovert agents and
following requests for three introvert agents:[700ops, 4s],
[1000ops, 6s] and [1300ops, 8s]. Figure 4 shows that we
can finish task 1 before the end of its interval while carrying
out tasks 2 and 3 in parallel. The new beginning date of
the second interval is notDL1 any more, but the sum of
theD1,j . It is the same for the beginning date of the third
interval since task 2 finishes before the dateDL2.

DL1 DL2 DL3

100%

0%
T0

Processor usage

Time

EA2

EA1

IA 3

IA 2

IA 1

EA1

EA2

IA3I A2

I A3

E A1

E A2

Figure 4: Changes of intervals beginning dates.

3.3 Implementation

Each one of our agents executes in its own system process.
Extrovert agents callbacks occuring at limits of the time
slots which were attributed to them, as well as the send-
ing of the suspension and waking up orders to the introvert
agents, were implemented using system signals.

We have studied the limits of our scheduler. TheO(2n)

complexity mainly comes from the splitting into subinter-
vals. The computing time quickly becomes prohibitory. It
is in practice however possible to reduce this complexity
by studying the set of constraints. Indeed, it is often possi-
ble to determine, just after the calculation ofSREi and the
Ci,k that some tasks will not be able to be executed in the
intervali considered. If the sumSREi + REi,i equals the
duration of intervali, we do not need to consider other tasks

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



than taski and tasksk for which Ci,k = 1. Moreover, we
need to limit the number of tasks in an interval so that the
solution found does not bring too much splitting. It must
remain a difference between the orders of magnitude of the
time periods considered by the system scheduler and the
TSA scheduler. The latter must not encroach on the work
of the first by pausing and resuming too often the agents.

In the scheduling algorithm, we give to all agents a
1

nia+NEA
share of the processor, givennia the number of

introvert agents running at the instant considered. The hy-
pothesis that extrovert agents use the whole computing ca-
pacity given to them is too strong when extrovert agents are
limited to automata that only process incoming messages.
Choosing another hypothesis on the processor usage done
by extrovert agents is easily done when attributing thePi,j .

4. Related work

Wooldridge and Jennings noticed in [18] that MAS systems
are often constructed with simulated parallelism on a sin-
gle computer and then deployed on the distributed produc-
tion environment. They argue that several problems appear
when going to real distribution. However, they forget to
mention that numerous problem actually appear when sev-
eral autonomous agents have to share the CPU power avail-
able on a single computer. As a consequence, time manage-
ment in MAS with AI tasks has been and still is a challenge.
Three major approaches have been proposed to solve this
problem.

First, AI tasks may be embedded in a real-time system[19].
This approach guarantees hard deadlines, but restricts the
range of AI techniques to the ones that can be simplified
to provide bounded response times. As said before, this
approach is not the one we want to follow: we want our
agents to run on classical systems and we want to use a
broad spectrum of AI techniques.

Second, the system may comprise a control level that uses
the full range of AI techniques and a real-time subsystem
that schedules tasks with deadlines [20]. Although this
approach guarantees deadlines for the scheduled bounded-
time tasks, it does not guarantee deadlines for system goals.

Third, AI systems may be extended with real-time features.
Anytime algorithmsare an example of solutions proposed
in this area. Lalanda and Hayes-Roth propose in [21] an-
other solution to this approach, based on the work of Gar-
vey and Lesser on design-to-time [22]. Their assumption is
that goals can be decomposed into a sequence of tasks, and
that different methods can be used to perform a task. The

actual method to perform a task is choosen at runtime by
the meta-control system, according to the different meth-
ods properties and the temporal constraints assigned to the
agent goals.

Our system falls into the second approach, while allowing
the use of the techniques proposed in the third approach. It
can be distinguished from others solutions. First, we allow
several agents to share a single CPU while other techniques
only manage the tasks of a single agent. So, in our context,
we have to take care of the autonomy of the agents. We
also want that our agents reason about the duration of com-
putational tasks while several other techniques are used to
manage tasks that are not computational.

5. Conclusion

We have proposed a definition for time-aware agents and an
architecture which allows autonomous time-aware agents to
share a single CPU. Extrovert agents are constantly active
and turned towards the external world. These agents can de-
cide at any time to launch long processings for which they
do not necessarily know the duration. They delegate them
to introvert agents as tasks. Introvert agents execute their
tasks before turning towards the external world. They also
accept to be suspended at any time. For agents sharing a
single CPU, the guarantee of temporal constraints satisfia-
bility falls to a specific agent: the Time Services Agent. We
define the communication protocol used to interact with it
and an algorithm to verify the constraints system satisfiabil-
ity and to schedule tasks. The TSA only brings a centraliza-
tion of data and not of decision. Agents decide themselves
which amount of CPU they will use. The main role of the
TSA is to point out inconsistencies in the scheduling.

Our architecture allows easier programming of time-aware
agents. Agent time allows some reasoning to be indepen-
dent of the execution environment. On the other hand, TSA
time allows reasoning to take into account the activity of
the other agents. These results will be useful for users who
want to control processing durations in AI based MAS ap-
plications and especially for applications where the same
data provided by sensors is processed by several heuristics.

6. Future work

Time-awareness implies to estimate the duration of process-
ings planned by the agent. If we want to be able to imple-
ment in agents a broad spectrum of algorithms, from AI or
not, it is necessary to have a generic system that evaluates
the processing durations.

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS



The current protocol returns a refusal message when an in-
consistency is detected in the set of temporal constraints.
An extension being currently developed is that it would
rather return a list of changes to be done to the various task
requests previously posted. Thus, interactions or negocia-
tions could be opened with other agents as in [23] to ask
them to give up some of their requirements.

We propose an architecture which allows several agents to
share a single CPU. Distributing our system could be done
by using a TSA by CPU and introducing interactions be-
tween each TSA for load balancing by agent migration. We
can reuse the work done by on the DECAF distributed mul-
tiagent system[24].

7. References

[1] S. Joseph and T. Kawamura: "Agent Engineering",
chapter Why Autonomy Makes the Agent, World Sci-
entific Publishing, 2001.

[2] K. P. Sycara, A. Pannu, M. Williamson, D. Zeng and
K. Decker: "Distributed Intelligent Agents", IEEE Ex-
pert, 11(6):36–46, 1996.

[3] Z. Guessoum and M. Dojat: "A Real-Time Agent Model
in an Asynchronous-Object Environment", In R. van
Hoe, editor, Seventh European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, 1996.

[4] R. Vincent, B. Horling, V. Lesser and T. Wagner: "Im-
plementing Soft Real-Time Agent Control", Proceedings
of the 5th ICAA, pages 355–362, June 2001.

[5] A. Garvey and V. Lesser: "A Survey of Research in De-
liberative Real-Time Artificial Intelligence", Technical
report, 1993.

[6] J. Grass: "Reasoning about computational resource al-
location", Crossroads, 3(1):16–20, 1996.

[7] S. Zilberstein and A. I. Mouaddib: "Reactive Control of
Dynamic Progressive Processing", In Proceedings of the
16th IJCAI, 1999.

[8] M. Adelantado and S. de Givry: "Reactive/Anytime
Agents - Towards Intelligent Agents with Real-Time Per-
formance", In IJCAI’95 Workshop on Anytime Algo-
rithms and Deliberation Scheduling, 1995.

[9] E. Horvitz and G. Rutledge: "Time-dependent utility
and action under uncertainty", In Proceedings of the
7th conference on Uncertainty in artificial intelligence,
pages 151–158, 1991.

[10] T. Wagner: "Toward Quantified, Organizationally Cen-
tered, Decision Making and Coordination", PhD thesis,
University of Massachusetts, 2000.

[11] A. Garvey and V. Lesser: "Design-to-time Scheduling
with Uncertainty", Technical report, 1995.

[12] T. Wagner and V. Lesser: "Design-to-Criteria Schedul-
ing: Real-Time Agent Control", Proceedings of AAAI
2000 Spring Symposium on Real-Time Autonomous
Systems, 2000.

[13] K. Prouskas: "Real-Time Extensions of April for Time-
Aware Multi-Agent Systems Programming", PhD thesis,
University of London, 2002.

[14] C. L. Liu and J. W. Layland: "Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment",
Journal of the ACM, 20(1):46–61, 1973.

[15] Stankovic, Spuri and Ramamritham: "Deadline schedul-
ing for real-time systems: EDF and related algorithms",
1998.

[16] L. C. DiPippo, V. F. Wolfe, L. Nair, E. Hodys and
O. Uvarov: "A Real-Time Multi-Agent System Architec-
ture for E-Commerce Applications", In ISADS, pages
357–364, 2001.

[17] R. Faure: "Précis de recherche opérationnelle", Dunod,
1979.

[18] M. Wooldridge and N. R. Jennings: "Pitfalls of
Agent-Oriented Development", In K. P. Sycara and
M. Wooldridge, editors, Proceedings of the 2nd Interna-
tional Conference on Autonomous Agents (Agents’98),
pages 385–391, New York, 9–13, 1998.

[19] S. Forrest, K. P. Gostelow, F. H. Roth and D. M. Smith:
"Concepts, methods, and languages for building timely
intelligent systems", Real-Time Syst., 2(1-2):127–148,
1990.

[20] D. J. Musliner, E. H. Durfee and K. G. Shin: "CIRCA:
A Cooperative Intelligent Real Time Control Architec-
ture", IEEE Transactions on Systems, Man, and Cyber-
netics, 23(6):1561–1574, 1993.

[21] P. Lalanda and B. Hayes-Roth: "Deadline Management
in Intelligent Agents", Technical Report KSL 94-27,
Knowledge Systems Laboratory, May 1994.

[22] A. J. Garvey and V. Lesser: "Design-to-Time Real-Time
Scheduling", IEEE Transactions on Systems, Man and
Cybernetics, 23(6):1491–1502, November/December
1993.

[23] A. Garvey, K. Decker and V. Lesser: "A Negotiation-
based Interface Between a Real-time Scheduler and a
Decision-Maker", Technical Report UM-CS-1994-008,
1994.

[24] J. R. Graham: "Real-time Scheduling in Dis-
tributed Multiagent Systems", PhD thesis, University of
Delaware, 2001.

COGIS 2006 – COGNITIVE SYSTEMS WITH INTERACTIVE SENSORS


