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Abstract

In driving simulators, the realism of road traffakes an important part in users immersion. It
relies upon different elements, and in particulatiee decision model of autonomous vehicles
and the variety and consistency of their behavilorshis paper, we describe the new traffic
module of SCANeR™, which includes important impnments. New behavioral parameters
have been introduced to take into account infomuials in the vehicles decisions. In addition,
the dynamic model of the autonomous vehicles waarmred to realistically render additional

properties. Finally, a specific model takes intoant the variety and consistency of drivers
behaviors, which are crucial elements of the realiks implementation in the software is

described, and the improvements it introduces ameothstrated using experimental results.
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Introduction

Road traffic realism is an essential issue in dgvsimulation. Both behavioral and physical
aspects of autonomous vehicles have to be reatstimmerse the driver in the simulated
environment, and assess the validity of the expartations.

The realism relies upon different elements. On¢hem is the behavior of the autonomous
vehicles, resulting from their decision model. Tih#oduction of dynamic parameters is an
interesting solution to improve it, as it allowsnsilating the evolution of driver’s internal
state. The trajectories of the vehicles on the rasa also crucial for the immersion: the
dynamic model has to be accurate and to refledtdmgers evolutions. In addition, to be
credible, the behaviors have to be various and istams. These elements are often not
specifically taken into account, and most of thmetithe influence of the different models
parameters is not totally controlled. The conceptid simulations by scenario designers
remains thus a complex work, as unbalanced parasneda lead to incoherencies.

In this paper, we first describe the traffic demisimodel used in the driving simulation
software SCANeR™. Various improvements have beesudht in by the use of new

behavioral parameters in the decision model, as$ aglan enhanced dynamic model for
autonomous vehicles. Then we introduce a behavabfi@rentiation model aiming at easily

creating various and coherent behaviors. We prateihplementation in traffic simulation,

as well as experimental results to demonstratentkeest of the approach.

Traffic simulation in driving simulators

The simulation of road traffic in the context ofiwing simulators presents different
specificities, as the main objective is to immetse driver in a realistic environment and to
confront him with specific situations. The traffi@as to be autonomous, but also controllable
using scenario rules.

In most of the driving simulation software, the eggrh used to simulate the traffic is based
on multi-agents systems architectures. The vehiatesconsidered as autonomous agents,
interacting in the road context. Their internal idem model can be based on driving
psychologist studies (Espié et al.,, 1994): in neakld situations, drivers tend to reduce
certain categories of interactions with other digyehis mechanism is used as decision model
for the autonomous vehicles. In other approachegers actions are reproduced using sub-
models of the driving tasks, like car following,n& changing, merging... A finite state
automaton often handles the switch between therdifit available actions. It is sometimes
improved to introduce parallelism and hierarchytlie computation (Wang et al., 2005):
parallelism allows different states to be activawditaneously, and hierarchy to use automata
as the parent automaton state; it enhances magyusard behavior producing. To limit the
computation cost of the traffic simulation, the m¥ds level of details can also be reduced
depending on their distance to the interactive elehfaraway vehicles are simulated using a
mesoscopic model, instead of a microscopic onetg§®Is2005).

The variety of the produced behaviors is crucialtfee realism of the simulation. Wright,
Ward and Cohn (2002) showed that providing the raartious vehicles with virtual
personalities increased the immersion feeling ofusators users. Indeed, psychological
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factors are involved in driving (Dewar, 2002), airivers take into account various elements
to determine their actions (Bjorklung & Aberg, 200tormal rules (mostly the rules of the

road), informal rules (practices and conventiongliad while driving, which may not respect

the formal rules), design of the road (which ofteads to the creation of informal rules), and
other drivers behavior (their current behavior gre@lbehavior we think they will adopt). Each
of these elements can be used in the simulatiomfwove the realism of autonomous

vehicles behavior.

The SCANeR™ traffic module

The driving simulation software SCANeR™ uses a riisted architecture, allowing
balancing the load by distributing the differenhdtional modules on computers connected
through the network. The traffic module is basedaomulti-agent architecture, where each
vehicle is an agent (Champion et al., 1999). Thimreamous vehicles use a perception-
decision-action architecture (Figure 1): during therception phase, the vehicles acquire
knowledge of the surrounding world; during the dami phase, they compute their next goal,
and during the action phase, their next positiatetermined.
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Figure 1: SCANeR™ vehicles architecture

Perception phase

The vehicles use two methods to get informatiorth@ir environment. The first one is based
on the logical data available from the road netwdeéscription (Lacroix et al., 2007). For
instance, road signs, next intersections or spieeitislare retrieved this way. The logical
description is also used to hierarchically organize information about the surrounding
vehicles: each vehicle is able to know which vehisldriving on the same lane, on the same
road, or approaching the same crossroad. The detaenge is a function of the speed: a
driver with a high speed looks farther than a stme.

The second method is based on a geometric computaised for emergency situations.
Indeed, the logical data, relying on the descriptod the environment, might lead to miss
vehicles being currently out of the road. Emergeay detected by computing the time to




DSC 2009 Europe — Monaco — 4 — 6 February 2009

collision to close vehicles, according to theirpasive speed and direction. If a collision is
imminent, the model switches to emergency status.

Decision phase

The decision phase is built on three levels: djfafdactical and operational. The strategic
level plans the itinerary: it is either definedthg users, or computed randomly at runtime.

The tactical level selects a short-term goal, comnigi the high-level goal with the
environmental constrains. The objective is to of@rhe displacement between intersections
using lane changes, overtaking... A pre-existingtdirsitate machine internally manages this
level, allowing vehicles to decide which sub-modafighe driving tasks they will use. The
possible states are: “drive on” (the vehicle foléothie car ahead, if any, or drives at its desired
speed); “pre change lane” (the vehicle is prepasitgne change); “change lane” (the vehicle
iIs changing lane); “pre overtake” (the vehicle iegaring to overtake); “overtake” (the
vehicle is overtaking). A “blocked” state acts asl fstate for all others. The transition
between states is based on a scoring method.

At the operational level, the vehicles compute dlceeleration and wheel angle needed to
perform the maneuver determined at the tacticatllelvor instance, during the “drive on”
state, the vehicle uses a car following model toote its acceleration:

a=a(Ad-tv)+ SAv

wherea is the resulting accelerationd andAv the distance and speed between current and
ahead vehiclet.v the security distancea @ parameter of the model), and/f adjustment
control variables. A subsumption architecture isnttadded to select the final acceleration,
checking that all rules are respected (emerger@ad isigns, maximal acceleration of the
vehicle...). The wheel angle is computed to followe ttbad curvature, including two
particularities: when the road turns, the vehialesahe curve, and a lane deviation factor is
included to simulate the fact that vehicles doalatays remain in the middle of their lane.

Different pseudo-psychological parameters are takém account in this decision model.
They are defined by the users, during the desigthefsimulation. The “maximal speed”
parameter is the maximal speed the driver will 0dee “safety time” describes the security
margin it will adopt with the preceding vehicle,ing its own instantaneous speed. The
“overtaking risk” represents the risk a driver valtcept to overtake, depending on the gaps
with oncoming vehicles on other lanes. The “sp&ad tisk” allows it to bypass speed limits,
and finally “observe priority” and “observe signafe boolean rules regarding the respect of
signalization and priorities.

Action phase

The action phase computes the new position of ¢fcle. It is composed of two elements: a
pilot and a dynamic model. The pilot uses the degcisnodel outputs to provide the input

values to the dynamic model. The trajectory to mede goal point is computed, and a
geometric algorithm is used to stay close to ite Tistantaneous target is a point on the
trajectory, where the vehicle should be in a fawetisteps. This algorithm regulates its own
errors, using a short update loop on the positi@hspeed.

The dynamic model uses simplified dynamic equatimngower the computation time and
limit the number of parameters. However, each pkitie car is modeled (engine, damper...),
allowing a realistic dynamic behavior of the vehiclFor instance, animation during
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acceleration or brake phases has been improvedirajectories are more realistic and take
into account the type of vehicle (buses, trucks eard do not turn the same way), and local
road depressions affect the vehicle.

Informal rules

Dynamic parameters have been added to the applhcatditake into account the behavior of
other drivers. First, an aggressiveness parametesmputed during the simulation. Using a
short term memory structure, its level is increadetie driver did not reached its desired
speed during a sufficient duration in the pastcémtrary, when the driver is close to its
desired speed (at least 80% of it), the level stadcreases. A second element is taken into
account in the computation: the waiting time atiséctions. The aggressiveness increases
with it, finally leading to break sign and priorityles

This aggressiveness level is used to dynamicalfjuence the other parameters of the
simulation: the maximal speed, the safety time, gpeed coefficient... The decision model
thus takes into account the behavior of otherscles$t slow vehicles or traffic jams cause
aggressiveness increases, which results in chamgies behavior of the agent.

In addition, a specific handling of the road siggadded. As presented above, the signs were
only considered using a boolean rule allowing eitbaespect or bypass them. However, this
approach is limited: drivers do not adopt the sdmleavior when confronted to a red traffic
light, a give way sign or a stop sign. These tlaleenents have been distinguished, to increase
the variety while producing realistic behaviors.taly are the drivers allowed to break the
rule (i.e. not respect the signalization), but Wey they break it is specified: for a stop sign,
respecting the rule leads to a full stop, follovibgda few seconds wait aimed at observing the
oncoming vehicles. Violating drivers use shorteritiwg durations, the extreme behavior
being to consider a stop sign as a give way onegive way signs, the parameter influences
the speed used to cross the priority road (emeygstops are easier at slow speeds), once a
violation has been decided.

Figure 3: Introduction of informal rules in intersections: a vehicle takes the right of way

Behavioral differentiation

The variety and consistency of the behaviors arpomant factors for the simulation’s
realism, and depend on the drivers behavioral petens presented in the previous section:
they constitute the inputs of the traffic decisimodel. In simulations where the behaviors
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rely upon many parameters of different kinds (ditercontinuous...), controlling their values
and their consistency is a complex issue. The notibbnorm, which presents an intuitive
description mean of the parameters sets, has bs&sh to answer it (Lacroix, Mathieu &
Kemeny, 2008).

In multi-agent based simulations, normative systeres usually used to add regulation
possibilities to the environment, and to offer ce@ion and coordination possibilities. For
instance, Electronic Institutions (Esteva, PadgeBi&rra, 2001; Castelfranchi at al., 1999)
exploit them to regulate the interactions of theerdg: the institution provides authority
instances to control their behavior. The two mainstitutive elements of the system are the
Institution and the Norms. The Institution descsiltiee sets of conventions that govern agents
interactions. The norms are used to assess theaamsces of their actions within the scope
of the institution: for instance, regulative norare used to associate punishment to certain
agents actions. They are applied in various fiettisaster management, monitoring market
mechanisms (Michael, Parkes & Pfeffer, 2004)... le tinaffic simulation field, non-
normative behaviors have been used to improve #t@wor of vehicles in intersections
(Doniec et al., 2006).

However, norms can be used in a descriptive wdlgerdahan a prescriptive one. In that case,
the Institution provides a fixed reference for therms. It holds a finite set of parameters,
associated to a set of definition domains. The tinthe context is kept using institutional and
environmental properties. A Norm describes a typédehavior. It holds a subset of the

institutions parameters, associated to subsetleoti¢finition domains. The norm handles a
set of distance functions, which quantify the gapsMeen a value and its domain. They are
used to determine potential violations. FinallyBehavior is the instantiation of a norm. Each
parameter of the behavior has a value, taken flemorm’s definition domain. If a behavior

violates the norm, some of these values are tak#side this domain, but have to remain
within the institution ones. Formally:

- an Institution is a tuple (P,dDR, P;) where: P is a finite set of parameters;i®a set of
definition domains; Pis a set of institutional properties; angi® a set of environmental
properties,

- aNormis a tuple (I, R Den, e, Pri, Pae) Where: | is the institution the norm refers tq; P
Is the subset of parameters associated to the magms the subset of definition domains;
I'enis a set of distance functions;; B a set of institutional properties; angk B a set of
environmental properties,

- a Behavior is a triple (N,?Vpp) where: N is a reference to the instantiated ndtms a
subset of the set of parameters defined in themtisted norm; and 8§ is the set of
values associated to the parameters.

The instantiation from norm to behavior is realiaggsing a specific generation engine. It
allows controlling the determinism of the genematfrocess: the users can choose between
fully reproducible simulations, which are neededame experiments, and non-reproducible
ones, where the objective is to create unexpectegnosual behaviors and to study their
influence on the simulation.

Using these elements, variety can be produced andifferent ways. Firstly, as many norms
as needed may be created by defining differentdgiarameters and definitions domains. A
wide range of behaviors can thus be described{f@donsistency of the resulting behaviors
Is guarantied by their definitions. Secondly, bebes/violations can be introduced to increase
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the variety with unexpected ones. However, in thsitcase, their consistency can no more be
guaranteed.

This model can be applied in various contexts: vilesge below how it was used on traffic
simulation, but its genericity allows using it omyasimulation were many parameters have to
be controlled at the same time.

Implementation

In scaNeR™, the model has been applied on the existing imauameters of the decision

model: they influence the resulting behaviors @& tehicles, and can be easily modified by
the users according to their own needs. The Institus composed of the description of the
set of parameters, and various norms can be defirsdde 1).

Different tools have been introduced in the sofemarmanipulate the model. A graphical tool
allows the users modifying existing scenarios, be&ing the norm they want to apply on
vehicles. A generation tool was also added: traffenerators can be positioned in the
database. The traffic flow and proportions of védscusing each norm is defined for each
generator, and the simulation is thus automatigadigulated with various kinds of vehicles
during the execution.

Table 1: Definition domains of the Institution, andtwo examples of norms.

Parameter In§éi;1u;:gn Norm: higrr}\v/veary normal | Norm: highdv;/i?lyé?ggressive
maximal speed (km/h) [0, 300] [100, 140] [140, 160]
safety time (s) [0, 10] [1, 3] [0.1, 1.2]
overtaking risk [-1, 2] [-0.5, 0.5] [1, 2]
speed limit risk [0, 10] [0, 1.1] [1, 10]
observe signs {true, false} {true} {true, false}
observe priority {true, false} {true} {true, false}

Experimental results

In order to evaluate the approach, an experimestdeae on a database representing a 11 km
long highway. The vehicles were created at theryégg of the section, with a total traffic
flow of 3000 veh/h. Each simulation run lasted 2hB@e data were recorded using detectors
positioned at kilometer 2.2, 6 and 10.8. Threeeddht sets of norms were useo: norms,
where the differentiation mechanism was deactivdtied vehicles used only their defaults
values);normal only, where only the highway normal driver norm wasdugehe third set of
norms,all norms, used the normal and aggressive drivers, addinigltavay cautious driver
norm (slower, do not takes risks). The definitimndhins are truncated normal distributions
using the limits presented in Table 1, the meamsghbthe mean of each interval,[L,] and

the variance\L/4.

The results are presented in Figure 4. The firaplgrepresents the distribution of speeds at
kilometer 6. The measured speed variety increastbstiie use of norms. When no norm is
used, the concentration of values around 80 and ki3 is explained by the fact that
vehicles all try to reach a similar speed, but cartake advantage of small changes in the
traffic flow (we observe continuous flows on botnés of the highway). As expected, the
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travel time decreases when the variety increasesause of the improvement in traffic
dynamicity. However, with all the norms, the preseof cautious drivers limits the evolution
of aggressive ones, which explains the stabilitghaf results. Finally, the repartition of the
vehicles in the different lanes correctly reflettte drivers population: aggressive drivers are
mostly present in the left lane, and cautious améise right one. The results are similar on all
detectors. The introduction of different norms tlmgroves highly the behaviors variety in
the simulations, while guarantying their consistewtthin the norms definitions.
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Figure 4: Total travel time, speed distribution andlane repartition at km 6

Different elements might be discussed on this expet. First, the choice of the norms
reflects the usual driving psychologists classtfaa but the values used have been chosen
empirically. An important improvement would be tlibrate the model with real data, which
is currently under work. Another point is that wid dot exploit here the notion of violation.
This will be done in further experiments, to intuee for instance drunk drivers and study
their influence on the simulation.

Conclusion

In this paper, we presented the new traffic simoatmodule of SCANeR™. Dynamic
parameters have been added, allowing taking intowat the behaviors of other drivers: an
aggressiveness parameter influences the models papameters to act on drivers behavior.
The dynamic model of the autonomous vehicles has lmaproved, and various features of
the road are now supported, like road humps orl Idearessions. The different types of
vehicles are specifically computed, including mabktie vehicles. Finally, the variety and the
consistency of agents behaviors were handled wsheaific approach. Using a description of
the behaviors based on a normative approach, thsistency of their generation can be
controlled. The variety is introduced through tledimition of the norms, or using violations.
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The next steps of this work are to improve the nmi@l rules, to formalize their use in the
simulation, and to study the issue of scenario rdetesm and control when using
automatically generated traffic flows. A mechaniallowing controlling the consistency of
the behaviors will be added, based on unsupervisadhing. It will permit to calibrate

automatically the norms from real data.
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