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Abstract 

In driving simulators, the realism of road traffic takes an important part in users immersion. It 
relies upon different elements, and in particular on the decision model of autonomous vehicles 
and the variety and consistency of their behaviors. In this paper, we describe the new traffic 
module of SCANeR™, which includes important improvements. New behavioral parameters 
have been introduced to take into account informal rules in the vehicles decisions. In addition, 
the dynamic model of the autonomous vehicles was enhanced to realistically render additional 
properties. Finally, a specific model takes into account the variety and consistency of drivers 
behaviors, which are crucial elements of the realism. Its implementation in the software is 
described, and the improvements it introduces are demonstrated using experimental results. 
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Introduction 

Road traffic realism is an essential issue in driving simulation. Both behavioral and physical 
aspects of autonomous vehicles have to be realistic to immerse the driver in the simulated 
environment, and assess the validity of the experimentations.  

The realism relies upon different elements. One of them is the behavior of the autonomous 
vehicles, resulting from their decision model. The introduction of dynamic parameters is an 
interesting solution to improve it, as it allows simulating the evolution of driver’s internal 
state. The trajectories of the vehicles on the road are also crucial for the immersion: the 
dynamic model has to be accurate and to reflect real drivers evolutions. In addition, to be 
credible, the behaviors have to be various and consistent. These elements are often not 
specifically taken into account, and most of the time the influence of the different models 
parameters is not totally controlled. The conception of simulations by scenario designers 
remains thus a complex work, as unbalanced parameters can lead to incoherencies.  

In this paper, we first describe the traffic decision model used in the driving simulation 
software SCANeR™. Various improvements have been brought in by the use of new 
behavioral parameters in the decision model, as well as an enhanced dynamic model for 
autonomous vehicles. Then we introduce a behavioral differentiation model aiming at easily 
creating various and coherent behaviors. We present its implementation in traffic simulation, 
as well as experimental results to demonstrate the interest of the approach. 

Traffic simulation in driving simulators 

The simulation of road traffic in the context of driving simulators presents different 
specificities, as the main objective is to immerse the driver in a realistic environment and to 
confront him with specific situations. The traffic has to be autonomous, but also controllable 
using scenario rules. 

In most of the driving simulation software, the approach used to simulate the traffic is based 
on multi-agents systems architectures. The vehicles are considered as autonomous agents, 
interacting in the road context. Their internal decision model can be based on driving 
psychologist studies (Espié et al., 1994): in real world situations, drivers tend to reduce 
certain categories of interactions with other drivers; this mechanism is used as decision model 
for the autonomous vehicles. In other approaches, drivers actions are reproduced using sub-
models of the driving tasks, like car following, lane changing, merging... A finite state 
automaton often handles the switch between the different available actions. It is sometimes 
improved to introduce parallelism and hierarchy in the computation (Wang et al., 2005): 
parallelism allows different states to be active simultaneously, and hierarchy to use automata 
as the parent automaton state; it enhances modularity and behavior producing. To limit the 
computation cost of the traffic simulation, the vehicles level of details can also be reduced 
depending on their distance to the interactive vehicle: faraway vehicles are simulated using a 
mesoscopic model, instead of a microscopic one (Olstam, 2005). 

The variety of the produced behaviors is crucial for the realism of the simulation. Wright, 
Ward and Cohn (2002) showed that providing the autonomous vehicles with virtual 
personalities increased the immersion feeling of simulators users. Indeed, psychological 
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factors are involved in driving (Dewar, 2002), and drivers take into account various elements 
to determine their actions (Björklung & Aberg, 2005): formal rules (mostly the rules of the 
road), informal rules (practices and conventions applied while driving, which may not respect 
the formal rules), design of the road (which often leads to the creation of informal rules), and 
other drivers behavior (their current behavior and the behavior we think they will adopt). Each 
of these elements can be used in the simulation to improve the realism of autonomous 
vehicles behavior. 

The SCANeR™ traffic module 

The driving simulation software SCANeR™ uses a distributed architecture, allowing 
balancing the load by distributing the different functional modules on computers connected 
through the network. The traffic module is based on a multi-agent architecture, where each 
vehicle is an agent (Champion et al., 1999). The autonomous vehicles use a perception-
decision-action architecture (Figure 1): during the perception phase, the vehicles acquire 
knowledge of the surrounding world; during the decision phase, they compute their next goal; 
and during the action phase, their next position is determined. 

 

 

Figure 1: SCANeR™ vehicles architecture 

Perception phase 

The vehicles use two methods to get information on their environment. The first one is based 
on the logical data available from the road network description (Lacroix et al., 2007). For 
instance, road signs, next intersections or speed limits are retrieved this way. The logical 
description is also used to hierarchically organize the information about the surrounding 
vehicles: each vehicle is able to know which vehicle is driving on the same lane, on the same 
road, or approaching the same crossroad. The detection range is a function of the speed: a 
driver with a high speed looks farther than a slow one. 

The second method is based on a geometric computation, used for emergency situations. 
Indeed, the logical data, relying on the description of the environment, might lead to miss 
vehicles being currently out of the road. Emergency are detected by computing the time to 
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collision to close vehicles, according to their respective speed and direction. If a collision is 
imminent, the model switches to emergency status. 

Decision phase 

The decision phase is built on three levels: strategic, tactical and operational. The strategic 
level plans the itinerary: it is either defined by the users, or computed randomly at runtime.  

The tactical level selects a short-term goal, combining the high-level goal with the 
environmental constrains. The objective is to optimize the displacement between intersections 
using lane changes, overtaking… A pre-existing finite state machine internally manages this 
level, allowing vehicles to decide which sub-models of the driving tasks they will use. The 
possible states are: “drive on” (the vehicle follows the car ahead, if any, or drives at its desired 
speed); “pre change lane” (the vehicle is preparing a lane change); “change lane” (the vehicle 
is changing lane); “pre overtake” (the vehicle is preparing to overtake); “overtake” (the 
vehicle is overtaking). A “blocked” state acts as fail state for all others. The transition 
between states is based on a scoring method.  

At the operational level, the vehicles compute the acceleration and wheel angle needed to 
perform the maneuver determined at the tactical level. For instance, during the “drive on” 
state, the vehicle uses a car following model to compute its acceleration: 

( ) vvtda ∆+−∆= ... βα  

where a is the resulting acceleration, ∆d and ∆v the distance and speed between current and 
ahead vehicle, t.v the security distance (t a parameter of the model), and α, β adjustment 
control variables. A subsumption architecture is then added to select the final acceleration, 
checking that all rules are respected (emergency, road signs, maximal acceleration of the 
vehicle…). The wheel angle is computed to follow the road curvature, including two 
particularities: when the road turns, the vehicle cuts the curve, and a lane deviation factor is 
included to simulate the fact that vehicles do not always remain in the middle of their lane.  

Different pseudo-psychological parameters are taken into account in this decision model. 
They are defined by the users, during the design of the simulation. The “maximal speed” 
parameter is the maximal speed the driver will use. The “safety time” describes the security 
margin it will adopt with the preceding vehicle, using its own instantaneous speed. The 
“overtaking risk” represents the risk a driver will accept to overtake, depending on the gaps 
with oncoming vehicles on other lanes. The “speed limit risk” allows it to bypass speed limits, 
and finally “observe priority” and “observe signs” are boolean rules regarding the respect of 
signalization and priorities. 

Action phase 

The action phase computes the new position of the vehicle. It is composed of  two elements: a 
pilot and a dynamic model. The pilot uses the decision model outputs to provide the input 
values to the dynamic model. The trajectory to reach the goal point is computed, and a 
geometric algorithm is used to stay close to it. The instantaneous target is a point on the 
trajectory, where the vehicle should be in a few time steps. This algorithm regulates its own 
errors, using a short update loop on the position and speed.  

The dynamic model uses simplified dynamic equations to lower the computation time and 
limit the number of parameters. However, each part of the car is modeled (engine, damper…), 
allowing a realistic dynamic behavior of the vehicle. For instance, animation during 



DSC 2009 Europe – Monaco – 4 – 6 February 2009 

 

acceleration or brake phases has been improved, turn trajectories are more realistic and take 
into account the type of vehicle (buses, trucks and cars do not turn the same way), and local 
road depressions affect the vehicle. 

Informal rules 

Dynamic parameters have been added to the application to take into account the behavior of 
other drivers. First, an aggressiveness parameter is computed during the simulation. Using a 
short term memory structure, its level is increased if the driver did not reached its desired 
speed during a sufficient duration in the past. In contrary, when the driver is close to its 
desired speed (at least 80% of it), the level slowly decreases. A second element is taken into 
account in the computation: the waiting time at intersections. The aggressiveness increases 
with it, finally leading to break sign and priority rules 

This aggressiveness level is used to dynamically influence the other parameters of the 
simulation: the maximal speed, the safety time, the speed coefficient... The decision model 
thus takes into account the behavior of others vehicles: slow vehicles or traffic jams cause 
aggressiveness increases, which results in changes in the behavior of the agent. 

In addition, a specific handling of the road signs is added. As presented above, the signs were 
only considered using a boolean rule allowing either to respect or bypass them. However, this 
approach is limited: drivers do not adopt the same behavior when confronted to a red traffic 
light, a give way sign or a stop sign. These three elements have been distinguished, to increase 
the variety while producing realistic behaviors. Not only are the drivers allowed to break the 
rule (i.e. not respect the signalization), but the way they break it is specified: for a stop sign, 
respecting the rule leads to a full stop, followed by a few seconds wait aimed at observing the 
oncoming vehicles. Violating drivers use shorter waiting durations, the extreme behavior 
being to consider a stop sign as a give way one. For give way signs, the parameter influences 
the speed used to cross the priority road (emergency stops are easier at slow speeds), once a 
violation has been decided.  

 

  

Figure 3: Introduction of informal rules in intersections: a vehicle takes the right of way 

Behavioral differentiation 

The variety and consistency of the behaviors are important factors for the simulation’s 
realism, and depend on the drivers behavioral parameters presented in the previous section: 
they constitute the inputs of the traffic decision model. In simulations where the behaviors 
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rely upon many parameters of different kinds (discrete, continuous…), controlling their values 
and their consistency is a complex issue. The notion of norm, which presents an intuitive 
description mean of the parameters sets, has been used to answer it (Lacroix, Mathieu & 
Kemeny, 2008).  

In multi-agent based simulations, normative systems are usually used to add regulation 
possibilities to the environment, and to offer cooperation and coordination possibilities. For 
instance, Electronic Institutions (Esteva, Padget & Sierra, 2001; Castelfranchi at al., 1999) 
exploit them to regulate the interactions of the agents: the institution provides authority 
instances to control their behavior. The two main constitutive elements of the system are the 
Institution and the Norms. The Institution describes the sets of conventions that govern agents 
interactions. The norms are used to assess the consequences of their actions within the scope 
of the institution: for instance, regulative norms are used to associate punishment to certain 
agents actions. They are applied in various fields: disaster management, monitoring market 
mechanisms (Michael, Parkes & Pfeffer, 2004)… In the traffic simulation field, non-
normative behaviors have been used to improve the behavior of vehicles in intersections 
(Doniec et al., 2006).  

However, norms can be used in a descriptive way, rather than a prescriptive one. In that case, 
the Institution provides a fixed reference for the norms. It holds a finite set of parameters, 
associated to a set of definition domains. The link to the context is kept using institutional and 
environmental properties. A Norm describes a type of behavior. It holds a subset of the 
institutions parameters, associated to subsets of the definition domains. The norm handles a 
set of distance functions, which quantify the gap between a value and its domain. They are 
used to determine potential violations. Finally, a Behavior is the instantiation of a norm. Each 
parameter of the behavior has a value, taken from the norm’s definition domain. If a behavior 
violates the norm, some of these values are taken outside this domain, but have to remain 
within the institution ones. Formally: 

- an Institution is a tuple (P, DP, Pi, Pe) where: P is a finite set of parameters; DP is a set of 
definition domains; Pi is a set of institutional properties; and Pe is a set of environmental 
properties, 

- a Norm is a tuple (I, Pn, DPn, ΓPn, Pni, Pne) where: I is the institution the norm refers to; Pn 
is the subset of parameters associated to the norm; DPn is the subset of definition domains; 
ΓPn is a set of distance functions; Pni is a set of institutional properties; and Pne is a set of 
environmental properties, 

- a Behavior is a triple (N, Pb, VPb) where: N is a reference to the instantiated norm; Pb is a 
subset of the set of parameters defined in the instantiated norm; and VPb is the set of 
values associated to the parameters. 

The instantiation from norm to behavior is realized using a specific generation engine. It 
allows controlling the determinism of the generation process: the users can choose between 
fully reproducible simulations, which are needed in some experiments, and non-reproducible 
ones, where the objective is to create unexpected or unusual behaviors and to study their 
influence on the simulation.  

Using these elements, variety can be produced in two different ways. Firstly, as many norms 
as needed may be created by defining different sets of parameters and definitions domains. A 
wide range of behaviors can thus be described, and the consistency of the resulting behaviors 
is guarantied by their definitions. Secondly, behaviors violations can be introduced to increase 
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the variety with unexpected ones. However, in that last case, their consistency can no more be 
guaranteed.  

This model can be applied in various contexts: we will see below how it was used on traffic 
simulation, but its genericity allows using it on any simulation were many parameters have to 
be controlled at the same time. 

Implementation 

In SCANeR™, the model has been applied on the existing input parameters of the decision 
model: they influence the resulting behaviors of the vehicles, and can be easily modified by 
the users according to their own needs. The Institution is composed of the description of the 
set of parameters, and various norms can be defined (Table 1).  

Different tools have been introduced in the software to manipulate the model. A graphical tool 
allows the users modifying existing scenarios, by selecting the norm they want to apply on 
vehicles. A generation tool was also added: traffic generators can be positioned in the 
database. The traffic flow and proportions of vehicles using each norm is defined for each 
generator, and the simulation is thus automatically populated with various kinds of vehicles 
during the execution. 

 

Table 1: Definition domains of the Institution, and two examples of norms.  

Parameter Institution 
domain 

Norm: highway normal 
driver 

Norm: highway aggressive 
driver 

maximal speed (km/h) [0, 300] [100, 140] [140, 160] 

safety time (s) [0, 10] [1, 3] [0.1, 1.2] 

overtaking risk [-1, 2] [-0.5, 0.5] [1, 2] 

speed limit risk [0, 10] [0, 1.1] [1, 10] 

observe signs {true, false} {true} {true, false} 

observe priority {true, false} {true} {true, false} 
 

Experimental results 

In order to evaluate the approach, an experiment was done on a database representing a 11 km 
long highway. The vehicles were created at the beginning of the section, with a total traffic 
flow of 3000 veh/h. Each simulation run lasted 2h30. The data were recorded using detectors 
positioned at kilometer 2.2, 6 and 10.8. Three different sets of norms were used: no norms, 
where the differentiation mechanism was deactivated (the vehicles used only their defaults 
values); normal only, where only the highway normal driver norm was used. The third set of 
norms, all norms, used the normal and aggressive drivers, adding a highway cautious driver 
norm (slower, do not takes risks). The definition domains are truncated normal distributions 
using the limits presented in Table 1, the means being the mean of each interval [L1,L2] and 
the variance ∆L/4. 

The results are presented in Figure 4. The first graph represents the distribution of speeds at 
kilometer 6. The measured speed variety increases with the use of norms. When no norm is 
used, the concentration of values around 80 and 130 km/h is explained by the fact that 
vehicles all try to reach a similar speed, but cannot take advantage of small changes in the 
traffic flow (we observe continuous flows on both lanes of the highway). As expected, the 
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travel time decreases when the variety increases, because of  the improvement in traffic 
dynamicity. However, with all the norms, the presence of cautious drivers limits the evolution 
of aggressive ones, which explains the stability of the results. Finally, the repartition of the 
vehicles in the different lanes correctly reflects the drivers population: aggressive drivers are 
mostly present in the left lane, and cautious ones in the right one. The results are similar on all 
detectors. The introduction of different norms thus improves highly the behaviors variety in 
the simulations, while guarantying their consistency within the norms definitions. 

 

 

 

Figure 4: Total travel time, speed distribution and lane repartition at km 6 

 

Different elements might be discussed on this experiment. First, the choice of the norms 
reflects the usual driving psychologists classification, but the values used have been chosen 
empirically. An important improvement would be to calibrate the model with real data, which 
is currently under work. Another point is that we did not exploit here the notion of violation. 
This will be done in further experiments, to introduce for instance drunk drivers and study 
their influence on the simulation. 

Conclusion 

In this paper, we presented the new traffic simulation module of SCANeR™. Dynamic 
parameters have been added, allowing taking into account the behaviors of other drivers: an 
aggressiveness parameter influences the models input parameters to act on drivers behavior. 
The dynamic model of the autonomous vehicles has been improved, and various features of 
the road are now supported, like road humps or local depressions. The different types of 
vehicles are specifically computed, including multi-axle vehicles. Finally, the variety and the 
consistency of agents behaviors were handled with a specific approach. Using a description of 
the behaviors based on a normative approach, the consistency of their generation can be 
controlled. The variety is introduced through the definition of the norms, or using violations. 
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The next steps of this work are to improve the informal rules, to formalize their use in the 
simulation, and to study the issue of scenario determinism and control when using 
automatically generated traffic flows. A mechanism allowing controlling the consistency of 
the behaviors will be added, based on unsupervised learning. It will permit to calibrate 
automatically the norms from real data.  
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