
The Epistemic View of Belief Merging:
Can We Track the Truth?

Abstract. Belief merging is often described as the process of defin-
ing a belief base which best represents the beliefs of a group of agents
(a profile of belief bases). The resulting base can be viewed as a syn-
thesis of the input profile. In this paper another view of what belief
merging aims at is considered: the epistemic view. Under this view
the purpose of belief merging is to best approximate what is the true
state of the world. We point out a generalization of Condorcet’s Jury
Theorem from the belief merging perspective. Roughly, we show that
if the beliefs of sufficiently many reliable agents are merged then in
the limit the true state of the world is identified. We introduce a new
postulate suited to the truth tracking issue. We identify some merg-
ing operators from the literature which satisfy it and other operators
which do not.

1 Introduction
In many areas of computer science, including distributed databases
and multi-agent systems, one needs to synthesize pieces of informa-
tion issued from several sources. What makes this problem difficult
is, among other things, that the information sources typically contra-
dict each other. When the available pieces of information are beliefs
represented in propositional logic, this problem is called (proposi-
tional) belief merging. Many different belief merging operators have
been pointed out so far. In this paper we focus on the purely logical
case, i.e., we assume that belief bases are sets of propositional formu-
lae (see e.g. [2, 20, 12, 11, 9]). Other operators have been provided
in more general settings, such as weighted logics (possibilistic logic
or settings based on ordinal conditional functions) [3, 16, 4], which
prove useful when more information are available (especially, when
all the pieces of belief are not equally certain). In these more general
settings, the merging problem becomes close to preorder (preference)
aggregation, as studied in social choice theory [1, 19].

Logical properties of merging operators have been investigated in
several works [20, 14, 12]. In [12] a set of logical properties have
been put forward to characterize the family of IC (Integrity Con-
straints) merging operators. IC merging operators have been advo-
cated to be suited to both belief merging and goal merging. Even if
it might look strange at a first glance that very different concepts,
such as goals and beliefs, can be handled in the same way with re-
spect to aggregation, the adequacy of IC merging operators to propo-
sitional merging (whatever goals or beliefs are to be merged) has not
been challenged so far. This makes sense since in both cases merging
aims at synthesizing the information represented in the given profile
of propositional bases.

In this paper we introduce a new point of view about belief merg-
ing, that goes beyond the usual synthesis view: the epistemic view.

Synthesis View: Under the synthesis view, belief merging aims at

characterizing a base which best represents the beliefs of the input
profile. This is the view adopted in previous belief merging works.

Epistemic View: Under the epistemic view, the purpose of a belief
merging process is to best approximate what is the true state of the
world.

In the general case, no agent has a perfect view of the real world,
her beliefs are pervaded with uncertainty:

• An agent typically does not know which one of the models of her
base represents the true state of the world,

• She is not even ensured that the true state of the world is really
among the models of her base.1

Belief merging under the epistemic view can be considered as a
way to circumvent such an uncertainty at the group level, by track-
ing the true state of the world. Interestingly, the truth tracking issue
allows to discriminate belief merging from goal merging. Indeed, the
concept of truth tracking is meaningless when goals are considered:
there is no notion of ”true goal” which would be analogous to the
true state of the world in the goal merging setting.

The problem of truth tracking has been studied for centuries in so-
cial choice and in political science, in order to justify the foundations
of democratic elections or of decisions made by jury trials. The main
theoretical result here is Condorcet’s Jury Theorem [7]. This theorem
states that if a jury is composed of reliable and independent individ-
uals, and if they have to find the right answer to a yes/no question,
then the probability that the decision made by the jury is the right
one tends to 1 as the size of the jury tends to infinity.

In this paper we formalize the truth tracking issue from a belief
merging perspective. We show that some belief merging operators
can be used to identify the true state of the world by considering suf-
ficiently many reliable, homogeneous and independent agents. To be
more precise, we present a generalization of Condorcet’s Jury Theo-
rem under uncertainty (i.e., when each base may have several mod-
els). We introduce a Truth Tracking (TT) postulate, and we point
IC operators satisfying it and other IC operators which do not. This
shows that TT is independent of the (conjunction of the) IC postu-
lates. We also provide experimental results in order to investigate the
convergence speed of truth tracking for the belief merging operator
∆dD,Σ. In most cases the number of agents to be considered for en-
suring that the merged base identifies the true state of the world with
high probability is not so large.

1 If one supposes that the agent is ensured that the true state of the world
is a model of her belief base, then one talks about “knowledge” − this
assumption is the only difference between belief and knowledge − and
knowledge merging is not so interesting, since the only sensible knowledge
merging operator is conjunction.



The rest of the paper is organized as follows. In the next section,
we give some formal preliminaries. Then we recall Condorcet’s Jury
Theorem, and some of its generalizations. In the third section we
point out new generalizations of Condorcet’s Jury Theorem suited to
the belief merging perspective. Then we introduce the TT postulate
and we show that IC postulates and TT are logically independent.
Finally we present the experimental results we obtained and we dis-
cuss them. For space reasons, we report the proof of the main result
(Theorem 3), and omit the other ones.

2 Preliminaries

We consider a propositional language L defined from a finite set of
propositional variables P and the usual connectives.

For any subset c of P , |c| denotes the number of elements of c.
An interpretation (or state of the world) is a total function from P
to {0, 1}. The set of all interpretations is notedW . The true state of
the world is noted ω?. An interpretation ω is a model of a formula
φ ∈ L if and only if it makes it true in the usual truth functional
way. [φ] denotes the set of models of formula φ, i.e., [φ] = {ω ∈
W | ω |= φ}.

A base K denotes the set of beliefs of an agent, it is a finite set
of propositional formulae, interpreted conjunctively. We identify K
with the conjunction of its elements. Basically, a base K represents
a set [K] of states of the world.

A profile E denotes the beliefs from the group of n agents that
are involved in the merging process. In this paper agents express
sometimes only a single possible world. In this case a profile is
a vector of complete bases. In order to avoid heavy notations, we
assimilate each complete base with its model and write such pro-
files as Ec = 〈ω1, . . . , ωn〉. Elsewhere agents express sets of pos-
sible worlds, hence E is a vector of bases E = 〈K1, . . . ,Kn〉,
as usual in propositional merging. Inclusion of profiles is given by
E = 〈K1, . . . ,Kn〉 v E′ = 〈K′1, . . . ,K′m〉 iff n ≤ m and
∀i ∈ 1, . . . , n, we have [Ki] = [K′i].

In the following, agents 1, . . . , n are identified with the corre-
sponding belief bases K1, . . . ,Kn. When unknown, each Ki can
also be viewed as a discrete random variable, ranging over 2W (or
W when each agent has to report a complete base). The true state of
the world is usually unknown as well so it is also viewed as a random
variableW∗, ranging overW .

Two important notions about sets of agents will be considered in
the following: independence and homogeneity.

Agents 1, . . . , n are independent if knowing the true state of the
world and a set of states of the world reported by any other agent j
does not give any further information on the states of the world given
by an agent i (this means that the agents choices are independent
conditionally to the true state of the world in a standard Bayesian
way [17]). Formally, agents 1, . . . , n are said to be independent if
∀ω, ω1, . . . , ωn ∈ W:

P (

n̂

i=1

ωi |= Ki | W∗ = ω) =

nY
i=1

P (ωi |= Ki | W∗ = ω).

Obviously, when agents report complete bases, the formal definition
of independence can be stated as follows: agents 1, . . . , n are inde-
pendent if ∀ω, ω1, . . . , ωn ∈ W , P (

Vn
i=1[Ki] = {ωi}) | W∗ =

ω) =
Qn
i=1 P ([Ki] = {ωi} | W∗ = ω).

Agents 1, . . . , n are homogenous if for every world ωj ∈ W , the
probability P (ωj |= Ki) that ωj is a model of the base Ki of the
profile E is the same for all the agents i ∈ 1, . . . , n of the set. In

particular, the real world ω? has the same probability to appear as a
model for each agent.

3 Condorcet’s Jury Theorem and Extensions
We first consider a profile Ec of n agents where each agent i votes
for an alternative, let us say a state of the world ωi ∈ W . Among the
possible states of the world is the true one ω?.

The hypotheses used in Condorcet’s Jury Theorem are that agents
are both independent and reliable. Since several notions of relia-
bility will be considered in the following, we call the first one R1-
reliability:

• The R1-reliability pi of an agent i is the probability that i gives
the true state of the world, i.e., pi = P ([Ki] = {ω?}).

• An agent i is R1-reliable if her R1-reliability is strictly greater
than 0.5. (R1)

The majority rule simply returns as result the interpretation which
receives a strict majority of votes. Formally, let us first define the
notion of score of a world with respect to a profile of complete bases:
s(ω) = |{ωi ∈ Ec s.t. ωi = ω}|.

Definition 1 (Majority) Given a profileEc of n complete bases, the
majority rule m is defined as: m(Ec) = ω if s(ω) > n/2.

We are now ready to recall Condorcet’s Jury Theorem. In this the-
orem, only two alternatives are considered so that each agent votes
for one of them:

Theorem 1 ([7]) Consider a set W = {ω, ω?} consisting of two
possible states of the world and a profile Ec of complete bases from
a set of n independent and R1-reliable agents sharing the same R1-
reliability. The probability that the majority rule on this profile re-
turns the true state of the world ω? tends to 1 as n tends to infinity,
i.e.:

P (m(Ec) = ω?) −−−−→
n→∞

1.

This theorem is a consequence of the (weak) law of large numbers.
Roughly, it states that if the individuals in a jury are sufficiently re-
liable (they perform better than pure randomizers) and independent,
then the probability that the jury makes the right decision tends to
1 when the size of the jury tends to infinity. It is interesting to no-
tice that the homogeneity assumption is not used explicitly in Con-
dorcet’s Jury Theorem. However, it is implicitly there, just because
R1-reliability implies homogeneity when only two alternatives are
considered (the probability that any agent chooses a world different
from ω? is 1− p if p is the agents’ R1-reliability).

Clearly enough, the assumptions used in Condorcet’s Jury The-
orem are quite strong. First, usually agents in a jury are not fully
independent: they often have a similar background, listen the same
opinion leaders, etc. Furthermore, in general, all the agents do not
have exactly the same reliability: there are usually agents more com-
petent than others. Interestingly, some extensions of Condorcet’s Jury
Theorem show that these strong assumptions can be relaxed without
questioning the conclusion. Thus, the theorem still holds when the
opinions of the individuals are not independent [8]. And as far as re-
liability is concerned, it is enough to assume that the mean reliability
of the individuals is above 0.5 [10].

A further limitation of Condorcet’s Jury Theorem is that it con-
siders only two alternatives. A recent result by List and Goodin [15]
allows to extend the theorem to any finite number of options. In or-
der to present this result, we first need to recall the definition of the
plurality rule:



Definition 2 (Plurality) Given a profile Ec of complete bases, the
plurality rule pl is defined as: pl(Ec) = {ω s.t. ∀ω′ ∈ W s(ω) ≥
s(ω′)}.

The reliability assumption (R1) has to be extended to more than
two alternatives. List and Goodin [15] define the following notion of
reliability; consider a set W = {ω1, . . . , ωk−1, ω

?} of k possible
states of the world:

• An agent is R2-reliable if the probability that she votes for ω?

is strictly greater than the probability that she votes for another
world. (R2)

List and Goodin showed that:

Theorem 2 ([15]) Consider a set W = {ω1, . . . , ωk−1, ω
?} of k

possible states of the world and a profile Ec of complete bases from
a set of n independent, homogeneous, and R2-reliable agents.2 The
probability that the plurality rule on this profile returns the true state
of the world ω? tends to 1 as n tends to infinity, i.e.:

P (pl(Ec) = {ω?}) −−−−→
n→∞

1.

This theorem is a generalization of Condorcet’s Jury Theorem.
When considering only two states of the world, the hypotheses used
in List-Goodin’s theorem are equivalent to the ones used in Con-
dorcet’s Jury Theorem, so that the two theorems are identical in this
case, as expected. Observe that the plurality rule is used in List-
Goodin’s theorem (not the majority rule as in Condorcet’s Jury The-
orem). and that the reliability assumption only requires that the prob-
ability of voting for the true state of the world is strictly greater than
the probability of voting for another world, so that the probability of
voting for the true state of the world can be less than 0.5. See [15]
for more discussions on their theorem and its philosophical conse-
quences, and for a discussion about Condorcet’s Jury Theorem.

4 A Jury Theorem under Uncertainty

In all these previous works around Condorcet’s Jury Theorem, agents
are supposed to vote for a unique alternative. This makes them in-
adequate for our purpose since in belief merging, agents typically
give belief bases having several models (and imposing agents to give
complete belief bases would be very restrictive since it would deny
that the agents beliefs can be uncertain). Thus, from now on, we as-
sume that each agent i gives a belief baseKi which may have several
models taken from a finite setW = {ω1, . . . , ωk−1, ω

?}.
Let us show how the Jury Theorem can be extended to consider

the case when each agent may vote for several alternatives. We first
need to define a notion of agent reliability suited to this situation:

• The R3-reliability pi of an agent i is the probability that the true
state of the world ω? is among the models of her belief base Ki,
i.e., pi = P (ω? |= Ki).

• An agent is R3-reliable if pi > 0.5. (R3)

Similarly, the notion of score of a world has to be extended :
sa(ω) = |{Ki ∈ E s.t. ω |= Ki}|.

Then it is possible to state the following result:

2 List and Goodin proposed a notion of reliability which encompasses both
our R2-reliability and homogeneity.

Proposition 1 Consider a real number p? ∈ [0, 1[ and a profile E
from a set of n independent agents which have the same R3-reliability
p > p?. The probability that the score of the true state of the world
exceeds np? tends to 1 when n tends to infinity, i.e.,

P (sa(ω?) > np?) −−−−→
n→∞

1.

This result gives in the limit a lower bound on the score of the true
state of the world provided that the agents are equally R3-reliable. It
is interesting because it ensures for some voting rules that the true
state of the world belongs to the set of states returned by the rule.
Consider for instance the following voting rules:

Definition 3 (M and Qp) Let E be a profile from a set of n agents.

• The majority rule M is defined as: M(E) = {ω s.t. sa(ω) >
n/2}.

• More generally, given k ∈ ]0, 1[, the k-quota rule Qk is defined
as: Qk(E) = {ω s.t. sa(ω) > kn}.

The majority rule M corresponds to the 0.5-quota rule.
As a direct corollary to Proposition 1 we get:

Proposition 2 LetE be a profile from a set of n independent agents.
If all agents have the same R3-reliability p > k, then the true state
of the world belongs to the set of states returned by the k-quota rule
in the limit , i.e.,

P (ω? ∈ Qk(E)) −−−−→
n→∞

1.

Let us stress that this proposition only mentions the membership
of the true state of the world in the result of the voting process, but
it does not exclude that many other states can also appear in this
result. Obviously, this is problematic from the truth tracking point
of view. In particular, if each agent i gives all the possible worlds
([Ki] = W), then for the corresponding profile E we get all the
possible worlds (for instanceQk(E) =W whatever k), which is not
informative at all about the true state of the world.

The problem is due to the notion of R3-reliability that is not strong
enough for the truth tracking purpose. Intuitively, asking the agents
to give the true state of the world with a high probability is necessary
but not sufficient since it does not prevent agents from giving (as
models of their bases) too many states. Especially, an agent i whose
base is always a tautology ([Ki] =W), obviously carrying no infor-
mation, is considered fully R3-reliable (i.e., her R3-reliability pi is
equal to 1), which is unexpected. Thus a stronger notion of reliabil-
ity is necessary. The following notion of R4-reliability is intended to
this purpose:

• Let us note qj,i the probability that the world ωj belongs to the
set of models of the base of an agent i, i.e., qj,i = P (ωj |= Ki).
If there is no ambiguity on the agent then we will simply note qj
instead of qj,i.

• The incompetence Qi of an agent i is the maximal probability
that a world different from ω? belongs to the set of models of her
base, i.e.,Qi = maxωj∈W\{ω?} qj,i. The competence of an agent
is ci = 1−Qi.

• An agent is competent if ci > 0.5.
• An agent is R4-reliable if it is more R3-reliable than incompetent:
pi = P (ω? |= Ki) > Qi. (R4)

Intuitively, while R3-reliability expresses the ability of an agent
not to miss the true state of the world, the notion of competence



deals with the quantity of uncertainty pervading her beliefs. Taken
together, R3-reliability and competence are natural and important no-
tions for characterizing the intuitive notion of “reliable agent” in the
belief merging setting. While, in the specific case whenW consists
only of two alternatives, an agent is competent if and only if she is
R3-reliable, in the general case competence and R3-reliability are
two different notions. Furthermore, it is easy to prove that the notion
of R4-reliability extends the previous notions of reliability:

Proposition 3

• When considering only profiles Ec of complete bases, R4-
reliability is equivalent to R2-reliability.

• When considering only profiles Ec of complete bases and a
set W of interpretations containing only two elements {ω, ω?},
R4-reliability, R3-reliability, R2-reliability and R1-reliability are
equivalent.

With the notions of R4-reliability and competence, we can state
the following Jury Theorem under Uncertainty:

Theorem 3 Let W = {ω1, . . . , ωk−1, ω
?} be a set of possible

worlds and let E be a profile from a set of n independent, homoge-
nous and R4-reliable agents. Then ∀i ∈ {1, . . . , k − 1},

P (sa(ω?) > sa(ωi)) −−−−→
n→∞

1.

Proof:

Let (sa(ω1), . . . , sa(ωk−1), sa(ω?)) be a vector of random vari-
ables where sa(ωi) = l (i ∈ {1, . . . , k − 1}) (resp. sa(ω?) = l)
means that the score sa(ωi) (resp. sa(ω?)) is equal to l (l ∈ 0 . . . n).
As the set of agents is homogeneous, we have qj,i = qj,k for ev-
ery world ωj and all agents i, k. We note qj this probability, i.e.,
qj = qj,i = P (ωj |= Ki), for any agent i. We note p the probability
that an agent gives the true state of the world, i.e., p = P (ω∗ |= Ki),
for any agent i.

Each of the random variables sa(ωi) (i ∈ {1, . . . , k − 1}) (resp.
sa(ω?)) follows a binomial distribution with parameters n and qi
(resp. n and p). Subsequently, we have that ∀j ∈ 0 . . . n:

P (sa(ωi) = j) = (nj )qji (1− qi)
n−j

and
P (sa(ω?) = j) = (nj )pj(1− p)n−j .

The mean of each sa(ωi) (i ∈ {1, . . . , k− 1}) is nqi, its variance is
nqi(1− qi), the mean of sa(ω?) is np and its variance is np(1− p).

The (weak) law of large numbers applied to sa(ωi) (i ∈ {1, . . . , k−
1}) and sa(ω?) gives that ∀ε > 0:

P (| sa(ωi)

n
− qi |≥ ε) −→n→∞ 0, (1)

P (| sa(ω?)

n
− p |≥ ε) −→n→∞ 0. (2)

Let q = maxi∈{1,...,k−1}qi and ε1 = p−q
2

. Since each agent is R4-
reliable, we have that qi < p for each i ∈ {1, . . . , k − 1}, so q < p.
As a consequence, we get that ε1 > 0. Using inequations (1) and (2),
one concludes that for each i ∈ {1, . . . , k − 1}:

P (| sa(ωi)

n
− qi |≥ ε1) −→n→∞ 0,

and
P (| sa(ω?)

n
− p |≥ ε1) −→n→∞ 0.

It easily gives that:

P (
sa(ωi)

n
> qi + ε1) −→n→∞ 0, (3)

and
P (
sa(ω?)

n
< p− ε1) −→n→∞ 0. (4)

pq0 1

ǫ1 ǫ1

The picture above explains the idea of the proof: when the weak law
of large numbers can be used for a random variable, the values of this
variable are close to its mean with a high probability. Schematically,
the probability that all the values of the variable are in a sphere with
the mean as center and ε1 as radius tends to 1 in the limit. As a
consequence, as p > q, the probability that the two spheres intersect
tends to 0 in the limit.

The problematic case for the proof is when sa(ωi)
n

> sa(ω?)
n

. Sup-
pose that sa(ωi)

n
≤ qi + ε1 and that sa(ω?)

n
≥ p − ε1. Then, as

∀i ∈ 1 . . . k − 1, by definition of ε1, qi + ε1 ≤ p − ε1, we get
sa(ωi)
n
≤ qi + ε1 ≤ p− ε1 ≤ sa(ω?)

n
. As a consequence, sa(ωi)

n
>

sa(ω?)
n

may happen only if sa(ωi)
n

> qi + ε1, or sa(ω?)
n

< p − ε1.
In this case, we have:

P ( sa(ωi)
n

> sa(ω?)
n

) = P ( sa(ωi)
n

> qi + ε1 and sa(ωi)
n

>
sa(ω?)
n

) +P ( sa(ω?)
n

< p− ε1 and sa(ωi)
n

> sa(ω?)
n

)−P ( sa(ωi)
n

>

qi + ε1 and sa(ω?)
n

< p− ε1 and sa(ωi)
n

> sa(ω?)
n

).

Since P ( sa(ω?)
n

< p − ε1 and sa(ωi)
n

> sa(ω?)
n

) ≤ P ( sa(ω?)
n

<

p − ε1), and P ( sa(ωi)
n

> qi + ε1 and sa(ωi)
n

> sa(ω?)
n

) ≤
P ( sa(omegai)

n
> qi + ε1), we get:

P ( sa(ωi)
n

> sa(ω?)
n

) ≤

P ( sa(ω?)
n

< p− ε1) + P ( sa(ωi)
n

> qi + ε1).

Finally, with assertions (3) and (4), we obtain:

P (
sa(ωi)

n
≥ sa(ω?)

n
) −−−−→
n→∞

0,

or, equivalently

P (sa(ω?) > sa(ωi)) −−−−→
n→∞

1.
2

Theorem 3 is a generalization of Condorcet’s Jury Theorem to an
uncertainty framework, where the agents can give a set of worlds in-
stead of a single one. Indeed, Condorcet’s Jury Theorem is recovered
when each agent reports a complete base and only two states of the
world are possible. Notice that, in Theorem 3, agents are not required
to be R3-reliable or competent. Indeed, the conclusion holds as soon
as the R3-reliability of each agent is greater than her incompetence.

Interestingly, allowing the agents to vote for any number of
worlds, and to choose as result the worlds with the greatest score
is just approval voting [6]:

Definition 4 (Approval) Given a profile of bases E, the approval
rule av is defined as: av(E) = {ω s.t. ∀ω′ ∈ W sa(ω) ≥ sa(ω′)}.

Thus, Theorem 3 shows that approval voting ensures to track the
true world in the uncertain framework, just as plurality voting does
in the “standard” framework.



5 Truth Tracking for Belief Merging
The ability of a merging operator ∆ to achieve the truth tracking
issue can be modeled as a new postulate, called Truth Tracking pos-
tulate:

TT Let ω? be the true state of the world. Let (En)n∈N be
any sequence of widening3 profiles from a set of n indepen-
dent, homogenous and R4-reliable agents. Then P ([∆(En)] =
{ω?}) −−−−→

n→∞
1.

This postulate is satisfied by a merging operator when it allows
to identify the true state of the world by listening sufficiently many
homogeneous independent agents who are more R3-reliable than in-
competent.

Let us now investigate the behaviour of some well-known belief
merging operators with respect to this postulate. We first recall the
definition of distance-based merging operators (see [12] for details).

Definition 5 (distance-based merging operators) Let d be
a pseudo-distance between worlds and f be an aggrega-
tion function. The merging operator ∆d,f (E) is defined by:
[∆d,f

µ (E)] = min([µ],≤E)
where the pre-order ≤E onW induced by E is defined by:

• ω ≤E ω′ if and only if d(ω,E) ≤ d(ω′, E), where
• d(ω,E) = fK∈E(d(ω,K)), where
• d(ω,K) = minω′|=Kd(ω, ω′).

Usual (pseudo-)distances are dD the drastic distance
(dD(ω, ω′) = 0 if ω = ω′ and 1 otherwise), and dH the
Hamming distance (dD(ω, ω′) = n if ω and ω′ differ on n vari-
ables). Usual aggregation functions are Σ, Gmax (see [13]) and
Gmin (see [9]).

We obtained the following results:

Proposition 4

• ∆dD,Σ (= ∆dD,Gmax) satisfies TT.
• For each pseudo-distance d, ∆d,Gmin satisfies TT.
• ∆dH ,Σ does not satisfy TT.
• ∆dH ,Gmax does not satisfy TT.

This proposition shows that TT and (the conjunction of) the IC
postulates are independent in the sense that there exist IC merging
operators satisfying TT (e.g. ∆dD,Σ) but it is not the case that each
IC merging operator satisfies it (e.g. ∆dH ,Σ).

6 Some Experimental Results
The results about truth tracking we pointed out in the previous sec-
tions all concern the identification of the true state of the world ω?

in the limit. None of them gives any information about truth tracking
from the pratical side, in the sense of a bound on the number of bases
from which the identification is achieved with high probability.

In order to investigate this issue, we performed a number of ex-
periments using ∆dD,Σ, that is an IC merging operator which satis-
fies TT and that is easy to implement. We investigated the conver-
gence speed of truth tracking using ∆dD,Σ, depending on the agents
R3-reliability p and incompetence Q = q; for simplicity reasons,
we made the assumption that all worlds ωi (different from the true

3 (En)n∈N satisfies ∀i ∈ N, Ei v Ei+1.

world) have the same probability (i.e., ∀ωi ∈ W \ {ω?}, qi = q).
We considered sets of interpretations of various sizes (up to 215),
we fixed the true state ω? as the world mapping each propositional
variable to 0, and we generated profiles E from n homogeneous and
independent agents, with R3-reliability p and incompetence q, for
different values of n. For each value of n, we computed 1000 pro-
files E. For each E, we computed ∆dD,Σ(E) and check whether
[∆dD,Σ(E]) = {ω?} holds. The proportion of the 1000 profiles for
which [∆dD,Σ(E]) = {ω?} holds gives an estimate of the probabil-
ity of success of truth tracking.
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Figure 1. Convergence speed (7 variables, p=0.9)

Figure 1 gives the probability that [∆dD,Σ(E]) = {ω?} given
the number n of agents, when p = 0.9 and |W| = 27 worlds, for
several values of q. Interestingly, we can observe on Figure 1 that
the convergence speed is high: to get [∆dD,Σ(E)] = {ω?} with
a probability greater than 90%, 800 agents are necessary for q =
0.85, 230 agents are necessary for q = 0.8 and only 40 agents are
necessary for q = 0.6.

We report the curves only for one value of p, but the general shape
of the curves for other values of p is very closed to the one reported.
More precisely, the figure obtained for other values of p, even for p
very low, is quite the same that in figure 1. Empirically, it turns out
that the ”level of R4-reliability” of agents, i.e., the value p− q seems
to have more impact on the convergence speed of truth tracking using
∆dD,Σ than the fact that these values of p and q are rather high or
rather low.

Figure 2 gives the probability of success of truth tracking given
the number of propositional variables (hence the number of worlds)
with p = 0.7 and q = 0.4.

As expected the complexity of discriminating the true state of the
world increases with the number of possible states of the world.
But, interestingly, the number of agents to be considered in order
to achieve the truth tracking issue with high probability is not that
huge compared to the number of interpretations. For instance, one
can observe on Figure 2 that, when 10 variables are considered, less
than 50 agents are enough to ensure that [∆dD,Σ(E)] = {ω?} with
probability greater than 90%, despite the fact that a single state has to
be discriminated among 1024 ones and that the agents R3-reliability
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and competence are not so high.

7 Conclusion

In this work we have discriminated two possible interpretations of
what merging aims at: the synthesis view and the epistemic view. The
synthesis view is the usual view of belief merging; it aims at finding
out the base that best (“most faithfully”) reflects the given profile.
The epistemic view that we have introduced amounts to tracking the
true state of the world.

The contribution of the paper is manyfold. First, the epistemic
view allows to draw a clear distinction between goal merging and
belief merging. Indeed, there cannot be an epistemic view for goal
merging, because there is no notion of true (“objectively correct”)
goal, echoing the notion of true state of the world. As far as we know,
this is the first time that belief merging and goal merging are sepa-
rated on formal grounds, namely, by a logical property (TT) advo-
cated to hold for only one of these two cases (belief merging).

We have also provided a generalization of Condorcet’s Jury Theo-
rem under uncertainty, and thanks to it, pointed out some IC merging
operators satisfying TT; in addition, we have proved that other IC
merging operators do not satisfy TT, showing that this new postulate
and the conjunction of the IC postulates are independent. Finally we
studied the convergence speed of a specific operator (∆dD,Σ).

The problem of truth tracking has been investigated in the related
framework of judgment aggregation [5]. In [18] the authors take ad-
vantage of the operator ∆dH ,Σ for this purpose, and give empirical
evidence that it performs quite well (typically better than other judg-
ment aggregation procedures) for mildly reliable agents. This work
departs from our own one by many aspects; especially, it focuses on
specific profiles (representing the doctrinal paradox) leading to spe-
cific results, while in our work we did not put any constraints on the
admissible profiles.

The hypotheses considered in the Jury Theorem under Uncertainty
may seem quite demanding. In most cases it is hard to ensure that
agents are both reliable, independent and homogeneous. Nonethe-
less these assumptions are exactly the same ones as those used in
previous works (Condorcet and List-Goodin theorems). Furthermore,

they are not “too strong” since they allow to discard some IC merg-
ing operators (e.g. ∆dH ,Gmax) from those which could be suited to
the truth tracking issue. Finally, like Condorcet’s Jury Theorem for
which generalizations have been obtained by relaxing for instance
the independence assumption [8] or the reliability one [10], one can
expect similar generalizations to hold for the Jury Theorem under
Uncertainty. Searching for such generalizations is an issue for fur-
ther research.
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Paris, 1785.

[8] D. Estlund, ‘Opinion leaders, independence and condorcet’s jury theo-
rem’, Theory and Decision, 36(2), 131–162, (January 1994).

[9] P. Everaere, S. Konieczny, and P. Marquis, ‘Quota and Gmin merging
operators’, in Proceedings of IJCAI’05, pp. 424–429, (2005).

[10] O. Guillermo, B. Grofman, and S. Feld, ‘Proving a distribution-free
generalization of the Condorcet jury theorem’, Mathematical Social
Sciences, 17(1), 1–16, (February 1989).

[11] S. Konieczny, J. Lang, and P. Marquis, ‘DA2 merging operators’, Arti-
ficial Intelligence, 157, 49–79, (2004).
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