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Abstract. The Classical Iterated Prisoner’s Dilemma (CIPD) is used to study
the evolution of cooperation. We show, with a genetic approach, how basic ideas
could be used in order to generate automatically a great numbers of strategies.
Then we show some results of ecological evolution on those strategies, with the
description of the experimentations we have made. Our main purpose is to find an
objective method to evaluate strategies for the CIPD. Finally we use the former
results to add a new argument confirming that there is, in order to be good, an
infinite gradient in the level of complexity in structure of strategies.

1 The Classical Iterated Prisoner’s Dilemma

Introduced by Merill M. FLOOD and Melvin DRESHER in the RAND Corporation in
1952, see [3], who tried to introduce some irrationality in the game theory of John VON

NEUMANN and Oskar MORGENSTERN [8], the Classical Iterated Prisoner’s Dilemma
(CIPD) is based on this simple story quoted by Albert TUCKER for instance in [5, pages
117–118]:

Two men, charged with a joint violation of law, are held separately by the
police. Each is told that
(1) if one confesses and the other does not, the former will be given a re-
ward. . . and the latter will be fined
(2) if both confess, each will be fined. . .
At the same time, each has a good reason to believe that
(3) if neither confesses, both will go clear.

It seems clearly obvious that the most reasonable choice is to betray its partner. More
formally the CIPD is represented, using game theory, as a two-person non-zero-sum
non-cooperative and simultaneous game where each player has to choose between two
moves:

– COOPERATE, let us write C, and let us say to be nice
– DEFECT, let us write D, and let us say to be naughty



Table 1. CIPD payoff matrix. Row player score are given first.

Cooperate Defect

Cooperate
R = 3, R = 3

Reward
for mutual cooperation

S = 0, T = 5

Sucker’s payoff
Temptation to defect

Defect
T = 5, S = 0

Temptation to defect
Sucker’s payoff

P = 1, P = 1

Punishment
for mutual defection

The payoff of each player depends on the moves played by the two people. Table 1
provides the score in each case.
To have a dilemma, the following inequation has to be respected:

S < P < R < T (1)

The dilemma stands on the fact that individual interests differ from collective ones.
As the one shot game is solved by the NASH equilibrium, which is to always betray its
partner, the model is extended: in the iterated version players meet each other more than
one time, without knowing if it is the last time or not. The payoff of a player is then
simply the sum of each of its meeting’s payoff. To favour the cooperation, and also to
keep this difference between individual and collective interest the following inequation
has to be respected:

S + T < 2R (2)

The classical choice of values for the four parameters is given in Table 1.
Of course, with such an iterated game, what the opponent did on the past moves may
influence the way a player will choose their next one. It is then possible to define more
strategies than in the one shot version.
Let us define some simples ones:

all c corresponds to the C strategy of the one shot game applied without modifica-
tions in the CIPD: it always plays C

all d corresponds to the D strategy of the one shot game applied without modifica-
tions in the CIPD: it always plays D

tit for tat cooperates on the first move and then plays its opponent’s previous
move.

per cd plays periodically C then D, let us note (CD)∗
soft majo cooperates, then plays opponent’s most used move, if equal then cooper-

ates
prober plays (DCC), then it defects in all other moves if opponent has cooperated in

move 2 and 3, and plays as tit for tat in other cases
spiteful cooperates until first opponent’s defection, then always defects.



2 Round Robin Tournament and Ecological Evolution

Now the main problem is to evaluate strategies for the CIPD, in order to compare them.
Two kinds of experimentation could be used for this purpose. The basic one, is to make a
pairwise round-robin tournament between some different strategies. The payoff to each
one would be the total sum of each iterated game. A ranking could then be computed
according to the score of each strategy. The higher a strategy is ranked, the better it is.
Good strategies in round-robin tournament are well adapted to their environments, but
often are not very robust to environment modifications.
The second kind of experimentation is a kind of imitation of the natural selection pro-
cess, and is closely related to population dynamics. Let us consider a population of N

players, each one adopting a particular strategy. At the beginning we consider that each
strategy is equally represented in the population. Then a tournament is made, and good
strategies are favoured, whereas bad ones are disadvantaged, by a proportional popula-
tion redistribution. This redistribution process, also called a generation, is repeated until
an eventual population stabilisation, i.e. no changes between two generations. A good
strategy is then a strategy which stays alive in the population for the longest possible
time, and in the biggest possible proportion.
An example of evolution between all strategies described in the previous section is
shown in Figure 1. The x-axis represents the generation number, whereas the y-axis
represents the size of the population for each strategy. For simplicity we make our
computation with a fixed global population size.
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Fig. 1. Example of ecological evolution.

Classical results in this field, which were presented by AXELROD in [1], show that to
be good a strategy must:

– be nice, i.e. not be the first to defect



– be reactive
– forgive
– not be too clever, i.e. to be simple in order to be understood by its opponent

The well-knowntit for tat strategy, which satisfies all those criteria, has, since [1],
been considered by a lot of people using the dilemma -but not by game theorist- to be
one of the best strategies not only for cooperation but also for evolution of cooperation.
We think that the simplicity criterium is not so good, and have thus introduced a strategy
called gradual which illustrates our point of view.
Gradual cooperates on the first move, then after the first opponent’s defection defects
one time, and cooperates two times, after the second opponent’s defection defects two
times and cooperates two times, . . . , after the nth opponent’s defection defects n times,
let us call it the punishment period, and cooperates two times, let us name it the lull
time. Gradual had better results than tit for tat in almost all our experiments,
see [2].
It is easy to imagine strategies derived from gradual, for instance in modifying the
function of punishment, which is the identity in the gradual case (n defections ⇒

punishment of length n).
Our main research direction to establish our ideas about a strategy’s complexity is to

– try a lot of different strategies, in an automatic and objective manner
– have a general and, as far as possible, objective method to evaluate strategies, for

instance to compare them.

3 Complete Classes of Strategies

To make our research process easier, we have to find a descriptive method to define
strategies, which is less risky than an exhaustive method, which are never objective, nor
complete. One of the ways we have chosen is to use a genetic approach. We describe a
structure (a genotype), which can be decoded in a particular behaviour (a phenotype).
Then a way to have a strategy, is simply to fill this structure. A manner to have a lot of
strategies is to consider all the ways of filling this genotype, i.e. to consider all possible
individuals based on a given genotype. Let us call the set of all strategies described by
a particular genotype, the complete class of strategies issued by this genotype.
We have described three genotypes based on the same simple idea, in order to remain
objective. This idea is to consider the observable length of the game’s history. Such idea
of strategies has already been studied in [4, 7]. Those three genotypes are:

memory: Each strategy can only see Mml moves of its past, and Oml moves of its
opponent’s past. The strategy is then started by max(Mml, Oml) moves predefined
in the genotype. All other moves are coded in the genotype, according to the visible
past configuration. The genotype length is then max(Mml, Oml) + 2(Mml+Oml).

binary memory: The same as the previous one, but the reply to an opponent’s move
depends not only on the visible past but also on the fact that past opponent’s defec-
tion are more numerous, or not, than past cooperation. The genotype length is then
max(Mml, Oml) + 2(Mml+Oml+1).



memory automata: Represents classical two-state automata, which starts in state
0. Each strategy can only see Mml moves of its past, and Oml moves of its op-
ponent past. The strategy is then started by max(Mml, Oml) moves predefined in
the genotype. All other moves are coded in the genotype, according to the visible
past configuration and the automata’s current state. State transitions are also coded
in the genotype. The genotype length is then max(Mml, Oml) + 2(Mml+Oml+2).
Strategies of such a kind, with Mml = Oml = 3, have already been studied in [6].

Despite the apparently simplicity of the strategies described by those genotypes, many
classical ones are included in those classes, tit for tat for instance.
Let us describe the behavior of one of those strategies, in order to understand how
the genotype works. We consider a strategy of the complete class of memory with
Mml = 1 and Oml = 1.
One of the individuals of this class plays C on the first move then:
- if on the previous move I played C and the opponent played C then I play C
- if on the previous move I played C and the opponent played D then I play D
- if on the previous move I played D and the opponent played C then I play D
- if on the previous move I played D and the opponent played D then I play D
The genotype of the strategy is then: C C D D D
This strategy is one way of coding spiteful.

4 Some Experiments

We have conducted some experiments using those complete classes. The main purpose
was to evaluate other strategies in big ecological evolution, but also to try to find some
new good strategies. In all our experiments we have computed one ecological evolution
between all strategies of a class, and then another with gradual added to the popula-
tion. Thus we have been able to partially confirm our ideas on the strength of this strat-
egy, as shown in Table 2. In all the results of Table 2, gradual is better evaluated than
tit for tat. We, however, do not show results of the evaluation of tit for tat
here since it is included in some of the classes explored, thus its evaluation is only
partial.

4.1 Some Memory and Binary memory Classes

We performed many experiments on those classes, since they are the most simple and
objective.
Evolution of two classes are presented on Figures 2 and 3.
Noticed that when Mml ≥ 1 or Oml ≥ 1, the population is no longer uniform since,
there are more naughty strategies than nice ones, due to the starting moves.
We then compute some subclasses, including the same number of naughty than nice
strategies. In order to create such classes we limit the starting moves to those containing
only C moves or only D moves.
In almost all cases when we add gradual in those kinds of population it is well eval-
uated too.



Table 2. Some results of the evaluation of gradual in complete classes. Class size is the number
of described strategies, whereas evaluation is the rank of the strategy at the end of an evolution
of the complete class.

Mml Oml class size
evaluation

gradual tit for tat spiteful

memory

0 1 8 1 1 1
0 2 64 5 2 21
1 1 32 2 3 1
1 2 1024 6 13 37

binary memory
0 1 32 1 2 1
1 1 512 1 7 13

memory automata 0 1 512 1 31 32
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Fig. 2. Evolution of class memory (Mml = 0 and Oml = 1). Strategies issued from such
complete classes are named strMmlOml <genotype>.

When gradual is not the winner of the evolution, we almost always find a variation
of it, like gradual n4 (n defections ⇒ punishment of length n4)) which does win. It
is not exactly the case when those gradual’s variation are added in complete classes
as shown in Figure 3.
One example of evolution of a binary memory class is given in Figure 4.

4.2 A Memory automata class

Due to the explosion of memory automata class size relatively to parameters Mml

and Oml, we just present the result of one of those classes, the case with Mml = 0 and
Oml = 1 which contains 512 strategies.
As we can see on Figure 5 the best strategy of the memory automata class with
Mml = 0 and Mml = 1, is a strategy we called str01e c 0111 cccd, which has
the following genotype C 0 1 1 1 C C C D
The behavior of the strategy is then:
It begins (in state 0) to cooperate (playing C) then:
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Fig. 3. Evolution of class memory (Mml = 1 and Oml = 2). Strategies issued from such
complete classes are named strMmlOml <genotype>.
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Fig. 4. Evolution of class binary memory (Mml = 0 and Oml = 1). Strategies issued from
such complete classes are named strMmlOmlb <genotype>

– if I am in state 0 and opponent played C then I go to state 0 and play C;
– if I am in state 0 and opponent played D then I go to state 1 and play C;
– if I am in state 1 and opponent played C then I go to state 1 and play C;
– if I am in state 1 and opponent played D then I go to state 1 and play D;

This automata is represented by the scheme of Figure 6.
This strategy, which acts in a manner very close to the one of tit for tat is beaten
by gradual, when the latter is added in the population.

5 Conclusions

The genetic method we use to define strategies for the CIPD offers two big advantages:

– It is easy to define a large number of strategies ;
– The way the strategies are defined is objective, i.e. without biased choice, so that it

could be used to be part of the evaluation of a strategy.
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Fig. 5. Evolution of class memory automata (Mml = 0 and Oml = 1). Strategies issued from
such complete classes are named strMmlOmle <genotype>.
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Fig. 6. Best strategy of class memory automata (Mml = 0 and Oml = 1). Transitions on the
arrows specify the opponent’s last move and the reply of the strategy.

Evaluation of strategies based on complete classes cannot be considered as subjective
as long as the genotype used is sufficently general, and based on basic ideas. Evaluation
can, however, not be based only on the results of complete classes evolution, since a
strategy could have a behavior well adapted to this kind of environment, and not well
adapted to a completely different environment, with mixed strategy, in the game theory
sense, for instance.
The results we obtained mainly confirm our ideas about a strategy’s complexity, which
is, there may exist an infinite gradient of complexity in the definition of strategy, each
level defining a new criterium of quality.
We plan to include this kind of evaluation, in a more general, objective and complete
evaluation method. We also plan to explore larger classes of strategy, which implies to
find optimization method of computation, enabling us to describe and to use very large
sets of strategies.
A simulation software with many strategies is already available for Unix, DOS or Win-
dows on the World Wide Web at http://www.lifl.fr/˜mathieu/ipd or by
anonymous ftp on the site ftp.lifl.fr in pub/users/mathieu/soft.
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