
Interaction Biases in Multi-Agent Simulations :

An Experimental Study

Yoann Kubera, Philippe Mathieu, and Sébastien Picault

LIFL UMR USTL-CNRS 8022
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

Cité Scientifique - 59655 Villeneuve d’Ascq Cedex – FRANCE
{yoann.kubera,philippe.mathieu,sebastien.picault}@lifl.fr

Abstract. How to ensure that two different implementations of a sim-
ulation will produce the same results ? In order to assure simulation
reproducibility, some domain-independent functional unit must be pre-
cisely described. We show in this paper that the management unit that
rules the participation of an agent in simultaneous interactions is one of
them. Usually, many choices concerning this unit are made implicitly,
even if they might lead to many simulation biases. We illustrate this
issue through a study of biases that appear even in simple cases, due
to a specification lack, and we propose as a solution a classification of
interactions that makes those choices explicit.

1 Introduction

Computer simulation is the process leading from a domain-specific model to an
operational model – through knowledge representation formalisms – and then
from the operational model to its implementation in a given programming lan-
guage, on a given simulation platform [1].

There is no consensus about what informations each model should contain,
since the separation between domain-specific model, operational model and im-
plementation is ambiguous itself [2, 3]. Thence, each step of the simulation design
process involves choices – both explicit or implicit – regarding ambiguous parts of
the previous step model. Those choices have a more or less dramatic influence on
the execution and outcomes of the simulation. Since computer simulation aims at
reinforcing, invalidating or comparing hypothesis on a particular phenomenon,
the simulation biases these choices introduce must be studied. Otherwise, the
ambiguity of the models leads to simulations that do not behave as it was initially
expected and thus produce also unexploitable results.

The spectrum of implicit choices is wide, and concerns very different parts of
agent’s and simulation’s architecture. To make their study easier, the architec-
ture of a multi-agent simulation is considered through three almost independent
functional units. In this paper, a first unit of this decomposition, called the
Agents and Environments Activation Unit (AEAU for short) is considered. This

unit defines how the simulation engine manages the participation of an agent in
different simultaneous interaction, depending on the nature of these interactions.

Interactions between agents – i.e. actions involving simultaneously two or
more agents – are the source of simulation’s emergent properties. Thus, they have
a major role in Multi-Agent Based Simulations (MABS). But, because current
MABS design methodologies focus only on the behavior of independent agents,
many design choices concerning interactions are not explicit. In particular, the
participation of an agent in interactions occurring at the same time is almost
never tackled.

In this paper, the consequences of choices concerning the AEAU are elicited
in three experiments. In each of them, a particular model is implemented with
two different AEAU. The study of the different implementation’s outcomes leads
to an identification of different way to manage simultaneous interactions, that
depend on their nature. We uphold that defining the nature of every interaction
in a simulation determines precisely how the model’s AEAU is supposed to work.
Thus, it makes sure that the model is implemented without biases.

First, related work concerning the studied functional unit, the Agents and
Environments Activation Unit, are presented in section 2. Then, the functional
decomposition of a simulation, on which this paper’s studies are based, and the
notions used in that paper are presented in section 3. Section 4 describes the
protocol followed by the experiments. Section 5 to 7 describe three experiments ,
which results are interpreted to identify interaction classes, and consequences of
erroneous implementation choices. Eventually, section 8 summarizes the results
of experiments, and proposes a classification of interaction in order to avoid
implementation biases of the AEAU.

2 Related Works

In many simulation platforms, design is centered on agents and the actions they
perform, rather than on the interactions that may occur between them. Con-
sequently, the definition of what interaction an agent performs at a particular
time does rarely take into account the interactions it already participates in as
a target. This leads to many biases in the simulation and its outcomes.

For instance, [4] presents an ecosystem simulation where an agent may repro-
duce more than twice at the same time (once as a source, and one or more times
as a target). This bias was identified in [5], and corrected with a modification

of the model through the addition of a gestation period.
Yet, this issue is not restricted to ecosystem simulation. Indeed, it applies to

every simulation where agents have to perform particular interactions at most
once at a time (for instance agents that trade goods). Thus, it has to be dealt
with in the domain-independent architecture of the simulation rather
than in the models.

This problem lead Michel in [3] to manage interactions depending on their
Strong or Weak nature. This solution is adequate if agents are the only par-
ticipants in interactions. Thus, it does not solve the problem for interactions

between an agent and an object. Indeed, interactions like Withdraw cash from
an automated teller machine may be performed simultaneously by two different
agents with the same machine.

Weyns proposes in [6] a more refined solution through the qualification of the
relationship between two actions1. Two actions may be Independent, Joint, Con-
current or Influencing. This solution manages interactions by getting from each
agent ”I intend to perform the I interaction with the A agent as target” like mes-
sages. A mastering unit then gathers these messages, finds out the relationship
between them and executes compatible ones.

In spite of its undeniable advantage of concurrent and influencing interac-
tions handling, this solution has a major issue. Indeed, because interactions not
compatible with already occurring interactions are not considered during deci-
sion making, an agent may try to perform an impossible interaction. Thus, the
agent performs nothing at that time, even if it another interaction is possible.

To fill this gap, simultaneous interactions have to be considered at decision
making. This requires an interaction-oriented design of decision making, like the
one shortly presented in the next section.

3 Multi-agent Simulations

Even if the application domains of multi-agent simulations are heterogeneous,
they can be split into different and weakly dependent functional units [7, 8], like
agents scheduling, communications, modification conflicts solving, etc.

We consider here a particular decomposition of a simulation (see Fig. 1) in
three main units, called Agents and Environments Activation Unit (AEAU),
Interactions Definition Unit (IDU) and Interaction Selection Unit (ISU).

Agents and Environments
Activation Unit (AEAU)

Interactions Definition
Unit (IDU)

Interaction Selection
Unit (ISU)

Fig. 1. The three main functional units of a multi-agent simulation.

This kind of separation in different software units is usual in cognitive agent
architectures with plans like the Act-R [9] or Soar [10] language, where knowl-
edge representation is at the center of the simulation, but does not exist in

1 Although the author uses the term “action”, it keeps the same meaning than our
“interaction” (see section 3.1).

reactive simulation platforms. Moreover the notion of interaction – i.e. semantic
block of actions involving simultaneously a fixed number of agents (see Sect. 3.1)
– is generally hard-coded in the behavior of agents. Because the design of sim-
ulations implies crucial choices about those three units, we claim that it is im-
portant to make this separation clear, even in reactive simulations, in order to
make modeling choices explicit.

3.1 An Interaction-Oriented Design of Simulations

The definition of interactions, and how they are integrated in the knowledge
of agents, are based on IODA concepts [11]. Please note that IODA provides
advanced methodological and software engineering tools to design interactions
in MABS. Since we do not need all refinements it provides, we use a simplified
version of [11] definitions.

To make the difference between the abstract concept of agent (for instance
Wolves), and agent instances (a particular Wolf), we use the notion of agent

families as abstract concept of agent. Thus, in this paper, the word agent

refers to an agent instance.

Definition 1. An agent family (or agents equivalence class or agent class) is
an abstract set of agent instances, which share all or part of their properties and
behavior.
From this point on, if F is an agent family and x an agent, x ≺ F means x is
an instance of the F agent family.

Without that ambiguity concerning the word agent, we define interactions
as following.

Definition 2. An interaction is a structured set of actions involving simulta-
neously a fixed number of agents instances that can occur only if some activation
conditions are met.
Thus, an interaction is represented as a couple (conditions, actions), where
condition is a boolean function and action is a procedure. Both have agent in-
stances as parameters.

Agents involved in an interaction do not play the same role. We make a difference
between Source agents that may perform the interaction (in general the one
selected by the AEAU) and Target agents that may undergo it.

This definition is more general than the coordination language’s one where
an interaction is restricted to a structured set of messages between agents : we
consider here all kinds of actions, including messages exchanges.

The declaration of all possible interactions is summarized in a representa-
tion called interaction matrix, which describes what instances of different agent
families are able to perform together.

Definition 3. The interaction matrix M of a MABS summarizes all possible
interactions between agents.

If S and T are agent families, we note aS/T the set of all interactions an instance
of the S agent family is able to perform with an instance of the T agent family
as target.

Thus, M = ∪S,T

(

aS/T

)

. By extension, if x ≺ S and y ≺ T , ax/y and aS/T are
equivalent notations.

Adding to that, we use the notion of realizable interaction to determine if
agents can participate in an interaction.

Definition 4. Let I be an interaction, and x ≺ S, y ≺ T two agents. The tuple
(I, x, y) is realizable if and only if :

– I ∈ aS/T (agents of S family have the ability to perform I on agents of T
family) and

– I.conditions(x, y) = TRUE.

Thus, at a time t, x agent’s perceived affordances Rt(x) are the set of all
realizable tuples that x may perform.

Definition 5. Let At be the set of all agents present in the simulation at a time
t, and x ∈ At.
Then, the list Rt(x) of all realizable tuples that x may perform at time t is :

Rt(x) = ∪y∈At
∪I∈ax/y

{(I, x, y)|r(I, x, y)}

For convenience, and to unify knowledge representation, we use degenerate
interactions.

Definition 6. A Degenerate Interaction is an interaction with no target
agent family.

Degenerate interactions represent interactions between a source agent and
an implicit target (the agent itself or the environment), like to Move or to Die.

3.2 Functional Decomposition of a Multi-agent Simulation

A simulation is a repetition of 3-steps sequences, where each step exploits a
different functional unit :

1. the Agents and Environments Activation Unit either selects the next agent
that will behave, and does 2, or updates the environment and does 1 again;

2. the Interaction Definition Unit lists the space of all possible interactions the
selected agent may perform as a source – i.e. all realizable tuples (Inter-
action, Selected Agent, Target agents), also corresponding to the perceived
affordances of the source, as defined in [12];

3. the Interaction Selection Unit selects a tuple among the space of all possible
interactions, according to a particular policy, and executes the related action.

Each unit is in charge of a specific feature of a multi-agent simulation :
The AEAU tells when agents or the environment may act (or update their

state), the time elapsed between their actions, what to do if an agent tries to
interact with an already acting agent, etc. It describes all time-related elements
in the simulation.

The IDU lists all interactions in the simulation, under what conditions and
between what kind of agents they are possible, and what actions they launch. It is
the set of all possible behaviors, defined independently from agents specificities.

The ISU describes the cognitive or reactive process an agent uses to select
which interaction it performs, and, if many are possible, decides among them
the one to perform.

We already argued in [11] for the advantage of agent-independent defined
interactions and proposed a formal definition for it, thus creating a software
separation between the IDU – which is domain dependent – and both ISU and
AEAU.

4 Experimental Frame

The goal of this paper is to measure to what extent modifications of the Agents
and Environments Activation Unit (AEAU) may change simulation outcomes,
and how an adequate one may avoid simulation biases. This point is illustrated
through three experiments, each confronting two different implementation of the
AEAU. Thus, the only variating parameter in an experiment is the AEAU : its
Interaction Definition Unit (IDU) and Interaction Selection Unit (ISU) remain
the same.

This section presents the IDU, ISU and protocol used in our experiments.

4.1 Interaction Definition Unit

The Interaction Definition Unit (IDU), which defines all domain-dependent in-
formations, will change from one experiment to the other. In order to make the
comprehension of our examples easier, every experiment deals with the same
overall simulation problem : the evolution of an ecosystem containing preda-
tors and preys. Please note that experiments provide only an illustration of the
general issue we deal with. The solutions presented in this paper are obviously
not restricted to that particular simulation, and do not avoid only the three
emphasized biases.

4.2 Interaction Selection Unit

The Interaction Selection Unit (ISU), which corresponds to agent’s decision
making process, will keep the same architecture in the three experiments.

The architecture we use is the mostly used one for reactive agents : a
subsumption-like architecture [13] that tries every interaction sequentially until
a realizable one is found. Every source agent gives to every interaction it can

perform a priority value, which denotes the order it tries interactions (see Fig. 2).

Let Rz(a) = the set of all realizable interactions a may perform.

Let P = the decreasing set of all priorities a gave to the interactions it can perform.

Let L = ∅.
For All p in P Do :

| For All (I, a, t) in Rz(a) Do :

| | If I has p priority for a Then :

| | | Set L = L ∪ {(I, a, t)}.
| | End If.

| End For.

| If L 6= ∅ Then :

| | a performs a tuple of L chosen at random.

| | The algorithm stops.
| End If.

End For.

a performs nothing.

Fig. 2. Algorithm of the Interaction Selection Unit (ISU) used in the experiments of
this paper. It defines how an agent a chooses what interaction it performs at a time z.

4.3 Experimental Protocol

The experimental protocol used in this paper is :

1. first, the aim of the experiment is outlined;

2. then, the IDU and ISU used by both implementations of this experiment
are defined;

3. next, the two AEAU used in the experiment, and experiment’s initial con-
ditions, are described;

4. eventually, the results of the execution of both implementation of the exper-
iment are presented and discussed. From this discussion, an interaction class
is emphasized to avoid a possible simulation bias.

Each experiment illustrates a problem in which previously presented solutions
introduce biases, and proposes correct solutions. Thus we incrementally define
classes of interactions, specified in the modeling step, in order to produce correct
implementation and outcomes.

Please note that all experiments presented below are voluntary basic to stress
out where the problems lie : they obviously do exist in more complex situations
as well.

For All z in [1, MAX] Do :

| Update the environment.
| For All a in all agents in the environment at time z Do :

| | Let Rz(a) = all realizable tuples that a may perform.

| | Let (I, a, t) = a tuple of Rz(a) selected with a particular ISU .

| | If (I, a, t) 6= null Then :

| | | Execute I with a as source and t as target.
| | End If.

| End For.

End For.

Fig. 3. ”Naive AEAU Algorithm”, where a simulation is executed in Max simulation
steps, during which every agent may participate in at least one interaction.

For All z in [1, MAX] Do :

| Update the environment.
| For All a in all agents in the environment at time z Do :

| | Tag a as operative
| End For.

| For All a in all agents in the environment at time z Do :

| | Let Rz(a) = all realizable tuples that a may perform.

| | For All (I, a, t) in Rz(a) Do :

| | | If a is not operative or t is not operative Then :

| | | | Remove (I, a, t) from Rz(a)
| | | End If.

| | End For.

| | Let (I, a, t) = a tuple of Rz(a) selected with a particular ISU .

| | If (I, a, t) 6= null Then :

| | | Execute I with a as source and t as target.
| | | Tag a and t as not operative.
| | End If.

| End For.

End For.

Fig. 4. ”Single Interaction AEAU Algorithm”, where a simulation is executed in Max

simulation steps, during which every agent may participate in at least one interaction.

5 First Experiment : Multiple Participation to

Interactions Bias

This experiment studies the limits of the usual naive algorithm and introduces
as a solution a first interaction class called exclusive interaction.

Model used : This simulation studies an ecosystem composed by grass and sheep.
Because sheep can move, classical analytical models cannot be used to model
the population of species : this simulation requires multi-agent systems.

The environment is a two dimensions toroidal continuous space split into
unitary square parcels. Every parcel P has a grass quantity attribute q(P) in-

creasing of one unit at every environment update. P is said containing grass
when q(P) > 0. If P is emptied by an agent, then q(P) = 1 − rgrass (i.e. rgrass

is the time grass needs to grow) . A sheep S is an agent with an energy attribute
e(S) representing its health which can perform the interactions :

1. To Die if e(S) ≤ 0. Then :
– S is removed from the environment.

2. To Reproduce with an other sheep S ′ at a maximal distance of 1 from S
if e(S) > 0 and e(S ′) > 0. Then :
– A new sheep S ′′ is created at S’s location, and e(S ′′) =

Min(e(S), erepr) + Min(e(S ′), erepr), where erepr stands for the energy
consumed by reproduction.

– e(S) and e(S ′) are decreased by erepr.
– S, S ′ and S ′′ execute the Wander interaction (see below).

3. To Eat grass on S’s parcel if it contains some. Then :
– e(S) increases from eeat, where eeat is the energy gained by eating.
– S empties the parcel he is onto.

4. To Wander with no conditions. Then :
– S turns his-self from an angle in [−π, π[and moves forward from 1 unit.
– e(S) decreases from ewan, where ewan is the energy consumed by moving.

Sheep behave by using the order 1 > 2 > 3 > 4 in their ISU, thus they first try
to Die, if they don’t, they try to Reproduce, if they don’t, they try to Eat,
. . .

Experimental design : We used this model in a 33 × 33 environment containing
1089 parcels, where 30% have q(P) = 0 and 70% q(P) ∈] − rgrass,−1], and 70
sheep such that e(S) = 2 × erepr. We also set rgrass = 10, erepr = 15, ewan = 2
and eeat = 7.

Figure 5 compares the evolution of the sheep population of this model im-
plemented with respectively the naive (single interaction) algorithm as AEAU,
from Fig. 3 (from Fig. 4).

Results and Discussion : The experiment using the naive algorithm produces
in overall 68 more sheep than the one using the single interaction algorithm.

This difference lies in the number of interactions an agent may participate in
during a simulation step. In the naive algorithm, a sheep targeted by a Repro-

duce interaction can be the source of an other interaction. On the opposite, in
the single interaction algorithm an agent participates at maximum in one inter-
action, either as a source or as a target. This difference has a great impact on
the sheep energy dynamics, their reproduction and death rate, and their density,
and, as a consequence, on the sheep population dynamics.

In this simple experience, this difference may be considered as the result of
different interpretations of the model, thus it cannot be considered as a bias.
Nevertheless, it corresponds to a bias in other experiences, as shown in [3] : if a
sheep participates in more than one reproduction per time step, then the sheep
reproduction probability is different from the one designed in the model.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

30
0

Time (steps)

S
he

ep
 p

op
ul

at
io

n

SAA (b)
SAA (c)

Fig. 5. Sheep population evolution against time (in simulation steps) respectively dis-
played in dots (in line), for the model 5 implemented with the naive (single interaction)
algorithm of Fig. 3 (Fig. 4).

We outlined with this experience that the number of interactions an agent
can participate in has to be restricted. To cope with this problem, we identified
a first interaction class called exclusive interactions. An agent can participate in
such an interaction only once per time step, either as source or as target.

6 Second Experiment : Single Participation to

Interactions as Target Bias

This section illustrates a simulation problem concerning the target of an inter-
action that exclusive interactions alone are too restrictive to solve.

Model used : This model adds to the one of experiment 5 a new agent named
wolf, and a new interaction to a sheep S :

5. To Flee from a wolf W at a maximal distance of 10 from S. Then :
– S turns his back towards where W is and moves forward from 1 unit.
– e(S) decreases from ewan.

Sheep behave using the order 1 > 5 > 2 > 3 > 4 in their ISU, and wolves only
Wander in the environment.

In this simulation, sheep Flee systematically wolves. As a consequence,
wolves are supposed to be at the center of an empty area.

Experimental design : They are the same as in experiment 5, except that there
is a wolf at a random position, and that the simulation is implemented with :

– firstly with the single interaction algorithm as AEAU (from Fig. 4);
– then with the parallel interactions algorithm as AEAU (from Fig. 6) where

• Flee is from I2 interaction class;
• other interactions are from I1 class.

The outcomes of such implementations of this model are displayed in Fig. 7.

For All z in [1, MAX] Do :

| Update the environment.
| For All a in all agents in the environment at time z Do :

| | Tag a as operative
| End For.

| For All a in all agents in the environment at time z Do :

| | Let Rz(a) = all realizable tuples that a may perform.

| | For All (I, a, t) in Rz(a) Do :

| | | If I is from I1 class and (a is not operative or t is not operative) Then :

| | | | Remove (I, a, t) from Rz(a)
| | | Else If I is from I2 class and a is not operative Then :

| | | | Remove (I, a, t) from Rz(a)
| | | End If.

| | End For.

| | Let (I, a, t) = a tuple of Rz(a) selected with a particular ISU .

| | If (I, a, t) 6= null Then :

| | | Execute I with a as source and t as target.
| | | Tag a and t as not operative.
| | End If.

| End For.

End For.

Fig. 6. ”Parallel Interaction AEAU Algorithm”, where a simulation is executed in Max

simulation steps, during which every agent may participate in at least one interaction.

Results and Discussion : The parallel interactions algorithm produces the ex-
pected result (right on Fig. 7), and the single interaction algorithm (left on
Fig. 7) is obviously biased : there is no empty halo around the wolf.

The difference lies in the number of interactions a wolf can undergo. When
a wolf is the target of a Flee interaction, it is set not operative, thus it cannot
be the target of an other Flee interaction. Consequently, a wolf is fled once per
simulation step, and other sheep behave as if there was no wolf.

We outlined with this experiment that all interactions do not put the same
restrictions onto their target agent. Interaction classes have to reflect this dif-
ference, thus, in addition to exclusive interactions, we introduce parallel inter-
actions, where agents may be targeted as many times as needed.

7 Third Experiment : Single Participation to Interactions

as Source Bias

This section illustrates a simulation problem concerning the source of an inter-
action that both exclusive and parallel interactions are too restrictive to solve.

Model used : This experiment aims to study the propagation of a disease in a
model similar to experiment 5. In this experiment, an ill sheep infects an healthy
one with a pinf probability, only if they are close enough (distance of 2). Thus,

Fig. 7. Outcomes screenshot of experiment 6 respectively implemented with the single
interaction (parallel interactions) algorithm from Fig. 4 (from Fig. 6), displayed to the
left (right), where respectively light (dark) arrows are sheep (wolves), and light (dark)
squares are empty (full) parcels.

a sheep S possesses an attribute called i(S) set to true if it is infected by the
disease, and can perform :

6. To Infect a sheep S ′ at a maximal distance of 2 from S if i(S) = True,
i(S ′) = False and random(100) < pinf . Then :
– i(S ′) = True

Sheep behave using the order 1 > 6 > 2 > 3 > 4 in their ISU.

Experimental design : They are the same as in experiment 5, except that
pinf = 50%, that 50% of the initial population of sheep is infected, and that
the simulation is implemented with :

– firstly with the parallel interactions algorithm as AEAU (from Fig. 6) where
• Infect is from I2 interaction class;
• the other interactions are from I1 interaction class;

– then with the multiple interactions algorithm as AEAU (from Fig. 8) where
• Infect is from I3 interaction class;
• the other interactions are from I1 interaction class;
• Infect checks that a source agent did not already tried to infect a target

within the current time step.

Figure 9 compares the evolution of the effective infection rate of healthy
sheep by infected sheep – i.e. the ratio between the number of times an ill sheep
infects an healthy one and the number of its neighboring healthy sheep.

Results and Discussion : The implementation using the parallel interactions
algorithm (from Fig. 6) produces an effective infection rate greatly below the
expected 50% obtained with the multiple interactions algorithm (from Fig. 8).

This difference comes from the parallel interactions algorithm, where an agent
is the source of at maximum one interaction. As a result, an ill sheep infects at
maximum one healthy sheep per simulation step. Thus, an ill sheep, which has
n healthy ones close to it, cannot reach the average n

2
infection number.

For All z in [1, MAX] Do :

| Update the environment.
| For All a in all agents in the environment at time z Do :

| | Tag a as operative
| End For.

| Let L = all agents in the environment at time z.

| For All a in L Do :

| | Remove a from L

| | Let Rz(a) = all realizable tuples that a may perform.

| | For All (I, a, t) in Rz(a) Do :

| | | If I is from I2 class and a is not operative Then :

| | | | Remove (I, a, t) from Rz(a)
| | | End If.

| | End For.

| | Let (I, a, t) = a tuple of Rz(a) selected with a particular ISU .

| | If (I, a, t) 6= null Then :

| | | Execute I with a as source and t as target.
| | | If I is from I2 class Then :

| | | | Tag a and t as not operative
| | | Else If I is from I3 class Then :

| | | | Add a to L

| | | End If.

| | End If.

| End For.

End For.

Fig. 8. ”Multiple Interaction AEAU Algorithm”, where a simulation is executed in
Max simulation steps, during which every agent may participate in at least one inter-
action.

We outlined with this experiment that all interactions do not put the same
restrictions onto their source agent. Interaction classes have to reflect this differ-
ence, thus, in addition to exclusive and parallel interactions, we introduce sys-
tematic interactions, in which agents may participate as many times as needed.

8 Experiments Summary : A Classification of Interactions

Through these experiments, we have shown that the model has to answer the
question ”is the source (or target) agent of an interaction allowed to be the source
(or target) of an other interaction during a simulation step ?”. Otherwise the
lack of specifications leads to ambiguities from which many biases may result.

As a solution, we identified three interaction classes, each answering differ-
ently to the question above (a summary is proposed in Fig. 10). The association
of a class to each interaction in a model describes explicitly how they are man-
aged, and thus avoids many biases at implementation. Those classes are 2 :

2 Note that in those definitions, ”later” means ”later in the same simulation step”

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0

Time (steps)

R
at

e
(in

 %
)

SAA (c)
SAA (d)

Fig. 9. Effective infection probability evolution against time (in simulation steps) re-
spectively displayed in dots (in line) for the model 7 implemented with the parallel
interactions (multiple interactions) algorithm from Fig. 6 (from Fig. 8).

Exclusive Parallel Systematic
S T S T S T

Exclusive
S × × ×
T × × ×

Parallel
S × × ×
T × × × × × ×

Systematic
S × × × × × ×
T × × × × × ×

Fig. 10. Summary of the interaction classes an agent can still participate in after
participating in a particular interaction. The gray cell is read ”The source (S) of an
exclusive interaction can be later in the simulation step the target (T) of a parallel
interaction”.

Definition 7. An exclusive interaction is an interaction that forbids :

– to source and target agents to be later the source or target of an other exclu-
sive interaction;

– to source and target agents to be later the source of a parallel interaction.

In the experiments and in the algorithms of Fig. 4 and 6, it corresponds to I1

interaction class. It is the case of the Reproduce interaction.

Definition 8. A parallel interaction is an interaction that forbids :

– to source agents to be later the source or target of an exclusive interaction;
– to source agents to be later the source of an other parallel interaction.

In the experiments and in the algorithms of Fig. 6 and 8, it corresponds to I2

interaction class. It is the case of the Flee interaction.

Definition 9. A systematic interaction is an interaction with no restrictions
on agents.

In the experiments and in algorithm of Fig. 8, it corresponds to I3 interaction
class. It is the case of the Infect interaction.

These interaction classes describe part of the algorithms used to process in-
teractions at implementation. Thus, knowledge on which interaction classes are
present in an operational model determines if a simulation platform is fit to
implement it. For instance, a simulation platform like Netlogo[14] which imple-
ments by default the naive algorithm of Fig. 3, is fit to implement models with
only parallel interactions, or else the user has to develop his own AEAU.

The implementation of such specifications is made easier by a software sepa-
ration between AEAU, IDU and ISU. Indeed, it forces the user to choose interac-
tion classes explicitly, and thus forces to understand the underlying algorithms.
It is the case of the IODA methodology and the JEDI simulation platform [11]
where this separation is made by the reification of interactions through the whole
simulation process.

Note that even if these classes are defined for discrete time simulations –
i.e. with simulation steps – they remain valid for other simulations. In that
case, they answer the question ”is the source (or target) agent of an executing
interaction allowed to be the source (or target) of an other interaction ?”.

9 Conclusion

Most simulations assume and compare hypothesis on a given phenomenon. Thus
the biases that may result from modeling and implementation choices must be
identified and quantified. Otherwise simulations remain ambiguous and are nei-
ther reproducible nor viable.

In this paper we have shown that the reproducibility of a simulation is not
possible without specifying a particular domain-independent functional unit,
called Agents and Environments Activation Unit, underlying any simulation.

This unit indicates to what interactions an agent can participate in at the
same time. Experiments showed that the lack of specifications of the particular-
ities of these interactions may introduce biases in simulation outcomes. Indeed,
as an example, the target of a reproduction behavior cannot perform an other
interaction, otherwise an agent may reproduce twice at the same time.

To solve this kind of problems, we propose to characterize each interaction of
the model with one of the three interaction classes : exclusive interactions that
forbid source and target agents to perform any other interaction as a source,
or to participate in an other exclusive interaction; parallel interactions that for-
bid source agent to perform any other interaction as a source; and systematic
interactions that constrains no agents.

Taking into consideration these classes while conceiving the model removes
ambiguities that would have led to biases. Without the specification of this point,
two different developers will likely obtain very different outcomes for the same
model.

References

1. Fishwick, P.A.: Computer simulation: growth through extension. Trans. Soc.
Comput. Simul. Int. 14(1) (1997)

2. Nuno, D., Sichman, J.S.a., Coelho, H.: Towards an emergence-driven software
process for agent-based simulation. In: Proceedings of MABS 2002. (2002)

3. Michel, F., Gouach, A., Ferber, J.: Weak interaction and strong interaction in
agent based simulations. In: Proceedings of MABS 2003, Melbourne, Australia
(2003)

4. Epstein, J., Axtell, R.: Growing Artificial Societies. Brookings Institution Press,
Washington D.C. (1996)

5. Lawson, B., Park, S.: Asynchronous time evolution in an artificial society mode.
Journal of Artificial Societies and Social Simulation (2000)

6. Weyns, D., Holvoet, T.: Model for simultaneous actions in situated multi-agent
systems. In: Proceedings of MATES 2003, Erfurt, Germany (2003)

7. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: Proceedings of ECCS’95, Saint-Malo, France (1995)

8. Weyns, D., Parunak, H., Michel, F., Holvoet, T., Ferber, J.: Environments for
multiagent systems: State-of-the-art and research challenges. In: Environments for
Multiagent Systems, New York, NY, USA (2004)

9. Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y.: An
integrated theory of the mind. Psychological Review 111(4) (2004)

10. Newell, A.: Unified theories of cognition. Harvard University Press, Cambridge,
MA, USA (1994)

11. Kubera, Y., Mathieu, P., Picault, S.: Interaction-oriented agent simulations : From
theory to implementation. In: Proceedings of ECAI 08, Patras Greece (July 2008)

12. Norman, D.A.: The Psychology of Everyday Things. Basic Books (1988)
13. Brooks, R.A.: A robust layered control system for a mobile robot. iEEE journal

of robotics and automation 2(1) (March 1986) 14–23
14. Wilenski, U.: Netlogo. Center for connected learning and computer-based model-

ing, http://ccl.northwestern.edu/netlogo/ (1999)

