
INTERACTION-BASED APPROACH FOR GAME AGENTS

Damien Devigne
Philippe Mathieu

Jean-Christophe Routier∗

LIFL - CNRS UMR8022
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq Cédex - FRANCE

KEYWORDS
Cognitive agents, Agent model, Believable behaviour,
Simulation design

ABSTRACT

Most often, agents in simulations are based on reac-
tive models. Such systems do not plan actions for the
agents and are too limited to express complex realistic be-
haviour. We propose here an agent model for spatially sit-
uated simulations, like computer games are. The involved
agents are cognitive (or deliberative) ones: they are able to
build plans and to adapt them according to the dynamics
of the simulation. Our main goal is to obtain believable
behaviours for the agents in simulations.

Thus we propose a generic model for cognitive situated
agent in simulations of which video games are a typical
example. The proposed ideas promote re-usability from
one simulations to another and then favour good software
design.

The two main problems can easily (and without sur-
prise) be identified:how to represent knowledge ?and
how to build plan using this knowledge. To solve the first
we propose to describe the laws that manage the simu-
lated world in term of interactions that can be performed
by some agents and suffered by others. Concerning the
second problem, we propose a planning algorithm that is
based on the interactions and take into account the facts
that agents are situated and that plans must be executed
in a situated environment that is in permanent evolution.
Thus the plans are actually incrementally built through
partial replanning.

INTRODUCTION

The simulation of rational or believable behaviour is,
quite from the beginning of Computer Science, one of the
major objectives of this field, especially in the purpose
of Artificial Intelligence, ie. to reproduce the intellectual
abilities of the human being. This issue has been initially
addressed from a logical and linguistic viewpoint, which

∗This work is supported by the CPER TAC of therégion Nord-Pas
de Calaisand the FEDER europeand fund.

raises huge difficulties. In addition, it appeared rapidly
that a large number of AIapplicationsdid not require a
human-like intelligence level.

Now this is not still true. New research fields need a
human-like level AI, not in order tosolve complex prob-
lems, but rather todevelop harmonious interactionswith
human partners: for instance, social robotics (Brooks
and al. 1999), the use of virtual reality in teaching or
training, or the large domain of video games (Nareyek
2004, Magerko, Laird, Assanie, Kerfoot, and Stokes
2004) are illustrative examples.

According to J. Laird, the latter constitutes a “Killer
Application” for human-level AI (Laird and van Lent
2000). The characters involved in video games have in-
deed to be perceived as autonomous entities with increas-
ing realistic behaviours. They have to beconvincing,
thus their behaviour must comply with the rational ex-
pectations of their partner or opponent human players.
They also need to adapt to new situations, acquire addi-
tional abilities throughout the game, etc. In addition, team
strategies are also often useful. In order to develop such
kind of interactions, the agents have to make the human
observer thinks that, in order to achieve their goals, they
behave in an “intelligent”, “rational” way, ie. like the hu-
man would have behaved. Our research aims at this goal :
modelling believable characters for simulations in general
and games in particular. Let us precise at this point that
we do not consider here the problem of the simulation
of “emotions” (Allbeck and Badler 2003), but consider
“simulation” in the sense of “simulation of sequence of
actions”.

In the case of video games, theses “cognitive” con-
straints meet additional “economical” ones: the time
needed for developing the game. This depends to a large
extent on the reusability of previous works. In the case
of character’s AI, it is often difficult to reuse from one
game to another or even, inside a game, from one charac-
ter to another. This is mainly due to the almost systematic
use of scripts whose drawbacks have been many times un-
derlined (Tozour 2002), and that are only partially solved
with dynamic scripting (Spronck, Sprinkhuizen-Kuyper,
and Postma 2004).

More generally, this domain of modelling believable
characters combines difficulties that can be encountered

in classical AI (knowledge representation), in distributed
AI (coordination of agents having most of the time dif-
ferent individual goals), and in Software Engineering
(reusability of conceptual and software tools).

Some propositions have been done concerning agents
and games (Nareyek 2000), and most of them concern re-
active agents (Niederberger and Gross 2003). But reac-
tive agents, while effective in several cases, offer limited
behaviours. Indeed their behaviours are “short term di-
rected” and not “goal oriented”. Their ability to perform
some tasks depends on the immediate surroundings and
does not result of wilful acts. Our proposition aims at of-
fering cognitive (or deliberative), driven by goals, proac-
tive agents. Let us precise that we do not consider the
interesting problem of behaviour’s learning (Ponsen and
Spronck 2004).

We promote a generic approach that assumes that a sin-
gle formalism can be used to design realistic (ie. believ-
able) behaviours in an artificial world in general and in
games in particular. Thus from one simulation to another
the cognitive behavioural engine stays the same even if
the context changes and the behavioural components can
be (partially) reused. The main principle is to base the dy-
namics of the simulations (and the knowledge represen-
tation too) on interactions between agents: some agents
can perform interactions and other agents can suffer them.
Our main goal is then to provide a uniform and generic
frame for simulations. Our target is multi-agent spatially
situated simulations like most of computer games are.
More precisely role-playing games are a privileged tar-
get for our work. Agents are situated in an environment
provided by an euclidean space. This space has a “geog-
raphy” (a “map”) and notions like “position”, “neighbour-
hood”, “move”, “distance”,... have a meaning. The agents
have, at each moment, a partial perception of their envi-
ronment. This environment is dynamic and concurrent,
and thus non monotonic (insofar once an agent knows
some data, this knowledge can become wrong - or irrel-
evant - after some times). The agent’s knowledge about
the environment is incomplete and can be wrong. The
abilities of the agents can differ. Agents may have cog-
nitive abilities. Some of them have objectives (or goals)
that direct their actions in the environment. To achieve its
goals each cognitive agent has a behavioural engine. This
engine chooses at every moment an action to do. This ac-
tion must allow the agent to fulfil its goals “at best” and
rationally. The “rational” notion of a behaviour is rather
subjective and is actually evaluated by a jury that is exter-
nal to the simulation. Thus, we will consider as rational a
behaviour if the decision to perform an action could have
reasonably been taken by a human which would have had
the same information than the agent.

First section concerns knowledge representation. We
first present the environment that models the geography
of the simulated world, second the agent model is de-
scribed. These two points are not sufficient, we must pre-
cise how these agents can have an influence on the en-
vironment, that is, what the laws that rule the world are.

This knowledge representation is crucial since it is used
by the agent’s behavioural engine in order to act in the
environment. We use what we call interactions to achieve
this. The following section is dedicated to the agent’s
behavioural cognitive engine. We present the structure
of this engine and more precisely the planning and re-
planning algorithm.

KNOWLEDGE REPRESENTATION

Simulations consist inagents that evolve in anenviron-
mentandinteractwith the environment and other agents,
according to the laws that rule the environment. There-
fore, it is essential to describe these different core notions.
We will first present the environment that is the basis of
the situated side of the simulations. Second, we define
the agents involved in our simulations, they are divided in
passive (closer to “things”) and active agents that are re-
sponsible of the dynamics of the simulation. These agents
can suffer or perform interactions that are described in the
third part. They represent the atomic knowledge beans
used by the deliberative agent to act.

Environment

The environment describes the geography of the simula-
tion. It provides the support to situate the agents and then
to control the possibility of the realisation of some of their
actions, when the notion of neighbourhood has an impor-
tance for example. The environment gives a meaning to
the notion ofmovefor an agent, although it is simple, this
notion is full of importance since it impacts a lot on the
dynamics, at least the visible one, of the simulation and
it makes our concerns different from the pure planning
problems. It is the environment too, that is in charge to de-
termine which information can be perceived by an agent.

We represent the environment by a graph where ver-
tices areplacesand edges denotepath from one place to
another.

environment := {place * ,path * }
path := (place origin,

place destination,
condition)

condition := boolean expression

A place is a geographical elementary area. The granu-
larity of a place depends on the simulation, the only con-
straint is that inside a place there is no restriction neither
for moves, nor for perception (restrictions due to the other
agents, like collision problems, excepted). A place can
represent a room, a town or any other part of the environ-
ment, and inside a place the position of an agent can be
managed discretely or continuously depending on needs.

A path denotes an oriented transition between two
places. It is defined by the places that it links, and a con-
dition that must be satisfied if an agent wants to use this
path. The edge is oriented and the condition to go from

some placea to a placeb is not necessarily the same than
the one to go fromb to a.

This formalism allows to describe, for example, that a
door between two rooms must be opened if we want to
go from one room to the other, or that an agent must be
able to swim to cross a river between two fields. In this
last case, our approach allows, depending on needs, to
choose to model or not the river with a place. It depends
on whether the crossing of the river has a meaning in the
simulation (see figures 1 and 2).

areaa river r areab

Figure 1: River is modelled. The paths are: (a,r,“agent
can swim”), (r,a,true), (b,r,“agent can swim”), (r,b,true)

areaa areab

Figure 2: River is not modelled. The paths are:(a,b,“agent
can swim”),(b,a,“agent can swim”).

The environment is the place where the agents are sit-
uated. It plays the role of a reference for the agents (then
in this context the environment can not itself be an agent).
Each agent is located in a place and can not be in a path.
If the path must be put into concrete form, this must be
done using a place, like we have seen it with the river ex-
ample. Then a place is mainly characterised by the set of
the agents that belongs to it.

The relative position of the agents inside a place (when
this has a meaning) will be managed by the place itself,
and is a parameter of the simulation.

Agents

The agents involved in the simulations we are interested
in, are situated in a place of the environment. It is the
environment that is in charge of the creation or removal
of an agent in the simulation, even if the decision of these
creations or removals is the result of the behaviours of the
present agents.

We callagent, every entity that has some relevance in a
simulation, that is, that can have an influence over the sim-
ulation. Among these agents, we distinguish two special
classes: thepassive agentsand the(pro-)active agents.
We use the terms ofinanimateandanimateagents too. It
is for the latter that the notion of behaviour as a meaning.

In a rather natural and classical approach, agents are de-
fined by a set of properties, a property being a pair (name,
value). However, we will refine this definition (see Fig-
ure 3) and precise some particular properties imposed to
our agents. We spend no time on thenameproperty which
allows to have a symbolic reference of the agent, but we
rather insist on what characterize the agents: their abilities
expressed by interactions.

Our agents (passive or active) are, at first, characterised
by the actions (in the following we rather use the term “in-
teraction” which denotes the way an action is coded) they
can suffer. Atreeagent could be cut, adoor agent could

be opened or painted, asheepagent could be sheared, etc.
We namecan-sufferthis property, the associated value is
the list of interactions that the agent can suffer (that is for
which he can be a target). The interactions are presented
in the next section.

We must now study the particular case of the active
agent. It is easy to guess that these agents have the pos-
sibility to interact with their environment, that is with the
other agents (seen through their “passive” facet). These
abilities are expressed by a collection of interactions they
can perform, and defined in a property; we namecan-
performthis property.

However, this property remains a declaration of abili-
ties. In order for an active agent to have an impact over
the simulation, he must be provided with a behaviour en-
gine that takes at every moment the decision of the action
undertaken by the agent, and then of the used interaction.
This decision depends on the context. This engine is in-
fluenced/directed by the existence of goals for the agent.
The section is dedicated to the presentation of this engine.

Confusion must not be made between “active” or “an-
imate” agent and the modelling of “living” entity. Thus,
if in a simulation there is a machine which produces reg-
ularly some objectso, this must be modelled by an active
agent whose goal would be the production of agents cor-
responding too and whose behaviour would be the satis-
faction of this goal.

We can point out another particular property: the mem-
ory of the active agent. It represents the knowledge base
for all the information gathered by the agent concerning
the environment: the topology of the environment, the
other agents (their position and state), etc. This mem-
ory is a degraded environment insofar as it corresponds
to the data the agent knows about the environment. This
knowledge can be incomplete, for instance the agent does
not know that others exist. It can even be wrong, for in-
stance because the agent is not necessarily aware when
other agents act and modify the state of some entities.

To come back on what we said at the beginning of this
paragraph, an element must be considered as being rep-
resented by an agent in a simulation (ie. has an influence
over the simulation), if and only if either it is active and
the list of the interactions it can perform is not empty, and
there exists at least one possible target for one of these in-
teractions, or it is passive and the list of the interactionsit
can suffer from is not empty, and at least one active agent
can perform one of these interactions.

It results from this definition that the interactions play
an essential role in our simulations. Agents are differ-
ent because they perform or suffer different interactions.
Moreover the interactions define the “laws” of the simu-
lated environment, and then play a central role in knowl-
edge representation. We now define this notion.

Interactions

Interactions are the backbone of our simulation model,
we could even speak ofinteraction oriented simulations.

agent := passive-agent | active-agent
passive-agent := { ("name", Symbol),

("can-suffer", {interaction * }),
property * }

active-agent := passive-agent ∪
{ ("can-perform", {interaction * }),
("goals", goal *),
("memory", (degraded) environment),
("engine", engine) }

Figure 3: Definition of an agent

These interactions are the basis of the knowledge repre-
sentation in the simulations. They define the laws of the
modelled world, that is the actions that can be performed
in the simulations. They are central since the agent’s en-
gine uses them to build the agent’s behaviour.

These interactions are the units of knowledge that de-
scribe the laws of the simulated world. They represent
a declarative knowledge. A consequence is that an in-
teraction must not, very special case excepted, be at-
tached to one simulation but must represent a rather uni-
versal knowledge. This constitutes a difficulty in regards
with the representation of these interactions, but allows to
reuse them from one simulation to another one.

We characterize an interaction by anactorand atarget.
Theactor is instantiated by an active agent who can per-
form this interaction and thetarget is any agent who can
suffer from this interaction.

An interaction is defined in a rather classical way as
presented in figure 4. Thenameis a unique identifier.
The other three parts are:

• the condition, it tests the current context of execu-
tion of the interaction and consists mainly of tests on
values of target or actor properties.

• the guard, it checks general conditions for the in-
teraction applicability, typically it defines that to be
fired an interaction requires that the distance be-
tween the target and the actor must be less than some
given value.
The guard is separated from the condition since it
corresponds to the knowledge due to the geograph-
ically situated feature of the simulations. In a non
situated context, one would have only the condition
and action parts. The guards are at the origin of the
moves in the plan, and this is these moves that are in-
deed specific to situated problems. Thus, we do not
express explicitly in an interaction that the agent has
a move to do in order to fire it, we want the agent to
plan it when required by a guard.

• the action, it describes the consequence of the in-
teraction, it can be a change in the state of the ac-
tor and/or of the target (ie. a change of the value of
a property), and/or the activation of an environment
action (like the creation of an agent).

Some interactions does not naturally obey to this
schema of interaction between a target and an actor. This
is the case, for example, for the “sleep” action. However,
in this case it suffices to consider that the actor and the
target are the same agent: the actor decides to make the
target (himself) sleep, and thus he changes the state of the
target. Such action can then be represented with the same
interaction model.

More generally the consequence of an action is a
change in the state of the target or actor. Thus toopen
an object (door, chest, window, etc.) makes it changing
from openedstate toclosedone. The precise essence of
the target is of no importance here, this knowledge must
then be represented in a “universal” way by the interac-
tion:

open:

condition = “target.opened = false”
guard = “distance(actor, target) < 1”
action = “target.opened = true”

Such an action can be used by an engine to generate
a plan such that: “to push a button in the next room I
mustopenthis obstacle” (or more precisely the knowl-
edge would bethe obstacle must be opened, and when
this is not satisfied the given plan is produced). Whether
this obstacle is a door or a window or anything else that is
openable, the plan remains valid.

A problem arises when considering more “specific”
agents. For instance, let us consider the case where the
obstacle is alockabledoor. To push the button, the above
plan is still valid with respect to the knowledge that must
be used and then with respect to the behaviour engine.
The difference exists only in the condition for the exe-
cution of the action. This lockable door requires that, in
its particular context, something liketarget.lock = false
must be satisfy too. Then, from an abstract point of view
the plan is still valid, but theopeninteraction must be un-
derstood as “make the door change fromclosedto opened
statewhen it is unlocked”. The problem is then how the
same abstract plan (ie. “open the door to push the but-
ton”) can receive different solutions (just “open” or “un-
lock and then open”) depending on the target (whether
it is lockable or not). To have two different interactions,
one namedopen-when-lockable(or anything else) and the
other namedopenis not relevant. As a first consequence

actor := the agent who performs the interaction
target := the agent who suffers the interaction

interaction := name, condition, guard, action)
name := Symbol
guard := d op Integer
d := distance between actor and target
op := = | > | < | ≤ | ≥
condition := test property | predicate primitive(args)
test property := { actor | target }.property name op Value
predicate primitive := primitive
action := affect property | primitive
affect property := { actor | target }.property name = Value
primitive := { actor | target }.primitive name(args)
primitive name := Symbol
property name := Symbol

Figure 4: Definition of an interaction

this leads to a multiplication of interactions and implies
that the active agents must be finely tuned. Moreover, the
agent engine must take into account the different possible
cases, although they conceptually represent the same ac-
tion (openhere). Thus it is more than probable that we
would fall again into one of the major pitfall of the script
approach for designing agent’s behaviour.

Therefore, our proposition consists in the possibility
to specify at the target level (ie. the agents having the
considered interaction as a “can-suffer” one), the specific
process. One can notice that only the nature of the tar-
get requires a change in the manipulation, not in the plan.
During an interaction between such a target and an actor,
the target “tells” to the actor the particular knowledge to
be used while interacting with this target. For the actor
(active agent), there is still only one generic interaction.
Thus, thecan-sufferproperty of alockable-dooragent
contains theopeninteraction, with a specialization of the
condition like: target.locked = true. Thus, when an ac-
tor tries to interact, usingopen, with this door, he gets the
full condition “target.opened = false and target.locked =
false”. This leads the actor to (try to) unlock the door
before it can open it. This can be seen as a kind of in-
heritance for interaction. It offers to the game designer
the possibility to add new targets that specifies an existing
one in order to take into account some particularity of the
simulated world (for instance alockable doorthat spec-
ifies adoor). And this specification does not require the
possible actors to be modified, at least their engine must
not be changed. This flexibility eases the design of sim-
ulations and the ability to reuse interactions and agents
from one simulation to another.

THE AGENT ENGINE

This section details the engine of the active agents. We
first present the structure of the “mind” of the agent and
the dependences between the different elements and sec-
ond the planning and behaviour engine.

The Agent Structure

The decision cycle applied by the agent is presented in
the figure 5. Continuously the agent perceives its envi-
ronment. The acquired information are forwarded to an
update module that can influence the memory and the cur-
rently established plan. An action is then chosen and the
agent tries to execute it in the environment, and so on. To
apply this cycle the agent is provided with a “mind”.

Figure 5: Agent decision cycle.

The “mind” of our active agents is made of several
modules: a knowledge or beliefs base, a new information
management module, a planning engine, an action selec-
tion module and an execution module. The articulation
between these parts is illustrated in Figure 6.

The Knowledge Base.
The knowledge of the agent can be divided in two. On one
side, the knowledge about the actions the agent can do and
on the other side the knowledge about the environment he
belongs to.

The first is defined by the set of all the interactions that
the agent can perform. These interactions represent the
absolute knowledge of the agent about an environment in-
dependently of any given particular context. They are the

Figure 6: Different elements of agent mind.

basis of the behaviour engine to build plans.

The second corresponds to a base of beliefs and is
called thememoryof the agent. It is a contextual knowl-
edge. It evolves according to the information perceived by
the agent. It consists in the knowledge concerning the ge-
ography of the environment and in the information about
the other agents. The memory is like a degraded environ-
ment and corresponds to the perception that the agent has
of the environment. In the memory, some of the informa-
tion can be markedunknown. Every known information
is timestamped, this helps to estimate a confidence in the
data: the older an information concerning the position of
a mobile agent is, the less confident it is. The information
in the memory are used by the behaviour engine to de-
termine the one among thecan-performinteractions that
must be applied in order to achieve goals. These informa-
tion are beliefs and not absolute knowledge, consequently
when the agent tries to perform an action for which it be-
lieves all the conditions are satisfied, it is necessary to
check if it is indeed the case in the environment.

Perception.

An innate and absolute knowledge of the environment
in which the agent evolves will not produce realistic be-
haviour. Then it is necessary to provide the agent with a
way to perceive new information while he is acting. Ac-
tually we content on a simple “visual” perception. The
agent perceives the information of the environment that
are inside its field of view (whose shape and radius can
be changed at will). The perceived information are for-
warded to the new information management module that
is in charge to manage their influence. Since the percep-
tion module is only in charge of the perception and not of
the treatment of the new information, it is easy to extend
it to new kind of perceptions such as sound.

The update module.
As we previously say, the new information management
module is in charge of the new perceived information. It
is a kind of short term memory. It operates on two levels:
first the memory in order to update the beliefs, and sec-
ond the planning engine in order to adapt, if needed, the
current computed plan through a partial re-planning. This
is detailed in the following.

Planning, selection, execution.
These points will be more detailed in the next section.
The engine is in charge of the resolution of the objectives
of the agent. It uses thecan-performinteractions of the
knowledge base to build a plan of actions according to the
memory. The built plan is valid according to the memory
but can be wrong in the environment, this is checked at
the execution step. This plan determines at every moment
which actions the agent can undertake, an action selection
strategy is then applied to choose the next effectively fired
action. This strategy can be changed from one agent to the
other to obtain different behaviours and then different in-
dividuality, even if the planning engine is the same. Once
the action is chosen, the agent tries to execute it. Either
the beliefs of the agent were right and the action is effec-
tively performed in the environment, or they were wrong
and the action can not be done and the agent must update
its knowledge.

The Planning

The planning algorithm we use is a kind of backward
chaining. To fulfil its goal, among all the interactions that
it can perform, the (active) agent searches those that can
help to achieve it, and then selects one. If the conditions
of this action are satisfied (according to the agent mem-
ory), the (inter)action can be fired and the plan is done.
Otherwise, the non satisfied conditions become new goals
that need to be planned.

The goals.
There exist two kinds of goals. First theinteraction-goals,
they correspond to an (inter)action that the agent wants to
execute. The target of this interaction can be less or more
precisely given: from a named agent to any agent that can
suffer the interaction, as shown in the next table:

goal type of target
eat(apple 12) a given precise apple
eat(an apple) any apple
eat(*) any eatable (ie. “who can-suffer

from eat”) agent

Second, thecondition-goals, they correspond to a con-
dition that the agent wants to bring to true. For instance:

actor.energy > 100 “having actor energy to
be greater than 100”

Planning tree.
In a rather classical way, the plan produced by the back-
ward chaining can be viewed as a tree. The nodes are
made of the different goals and subgoals encountered dur-
ing the resolution. Some are interaction-goals, others
are condition-goals. Thus this tree is anAND-OR tree.
AND-nodes correspond to condition-nodes (for condition-
goals) andOR-goals to interaction-nodes (for interaction-
goals).

Condition-nodes and interaction-nodes:A condition-
node has sons only if its condition is not satisfied. These
sons are interaction-nodes built from the interactions
whose action part offers a way to satisfy the condition
(or to approach this satisfaction, for example by increas-
ing the energy for the above given condition-goal exam-
ple). The tree leaves are the satisfied condition-nodes (ie.
whose conditions are satisfied).

The interaction-node’s sons are built from the condi-
tions that can be found in the condition and guard parts
of the interaction: from these, condition-nodes are built.
These sons are always built. An interaction-goal is said to
be satisfied when all its sons are satisfied, the associated
interaction is then declared runnable.

These correspond to the general cases, however since
the simulations take place in situated environment, moves
must be taken into account. They must receive particu-
lar considerations as discussed in (Devigne, Mathieu, and
Routier 2004), this leads to introducemove-nodes

Move-nodes and exploration-nodes: To moveor to
explorethe environment correspond for the agent to ex-
ecution of interactions. The associated nodes must then
be present in the planning tree as particular cases of
interaction-nodes.

The exploration case can be reduced to the move case.
To explore the agent must indeed make move towards a
chosen location. The existence of the exploration-nodes
are justified by the need to choose the targeted position
before making the move. The agent must then apply its
own exploration strategy to make its choice. Thus in the
following we will only concentrate on the move case.

One problem is: what are the condition-nodes sons of
a move-node? This problem amounts to ask what are the
conditions that must be satisfied to make a move possible.
To a move corresponds a computed path that is a sequence
of elementary paths presented in the “Environment” sec-
tion. With these elementary paths come conditions. A
move is possible if these conditions are satisfied. With
these conditions we create condition-nodes that become
the sons of the considered move-node.

A classical backward chaining.
The planning tree is built according to the algorithm pre-
sented (in broad lines) in Figure 7. Every calculus are
based on the memory (ie. beliefs base) of the agent. It is
in particular the case when the agents checks a condition
or computes a path for a move. Therefore, the computed
plan is valid according to the agent memory, but can be
wrong once it faces up to the reality of the environment.

For the exploration-nodes, the principle is roughly the
same once the exploration strategy has provided a place
to reach.

Every details are of course not presented in this algo-
rithm. In particular if the same (sub)goal occurs more
than one time during the planning, the corresponding
node is not expanded twice, it is shared by its fathers. The
tree is then an oriented graph.

But, actually, our algorithm builds the plan in an in-
cremental way as we will see in section on replanning.
Indeed, according to perceived information, the plan is
adapted: the plan’s tree is locally modified and not fully
rebuilt.

A small example To illustrate the different points de-
scribed in the previous paragraph we will consider a very
small and simple example (for instance, we do not con-
sider theopen interaction). We consider a world with
two places/rooms separated by a doord (see figure 8),
the path between these two rooms has the condition
“d.locked=false”. Four interactions define the laws:un-
lock, take, move, push(see Table 1). In the world are an
active agenta that can perform these 4 interactions, and
three passive agents, the doord that can sufferopen, a key
k that can suffer fromtake(and can be used to unlockd)
and a buttonb that can suffer frompush. The goal of the
agent is to push onb. The figure 8 presents the planning
in two different situations.

unlock:

condition = “target.locked = true”
“actor.own(target.key)”

guard = “distance(actor, target) < 1”
action = “target.locked = false”

take:

condition = true

guard = “distance(actor, target) < 1”
action = “actor.own(target) = true”

push:

condition = true

guard = “distance(actor, target) < 1”
action = “target.pushed = true”

move:

condition = conditionsfoundinpath

guard =
action = “distance(actor, target) < 1”

Table 1: Definitions of the interactions (adapted - but
without distortion - to shorten the example)

As one can see, different plans are obtained depending
on the context. Moreover in this case, this is because the
agents are situated in the environment that two different
plans exist. Indeed, it is because the actor must move near
the button in order to push it that the state of the door is of
importance. It results that the notions of neighbourhood
and distance have a direct influence on the produced plan.

A partial replanning.
Active agents evolve in a dynamic environment. They es-
tablish a plan according to their knowledge, that can prove
to be incorrect and then they can then be brought to adapt
the computed plan according to new perceived informa-
tion. These information can be of several types:

actor = the agent that builds the plan

this = interaction-node
expand()

for each condition c in this.condition and this.guard
newNode = createConditionNode(c)
this.sons.add(newNode)
newNode.expand()

this = condition-node
expand()

If this.condition.isSatisfied()
then finished
else

// gets the action that allows to solve condition
BA = this.condition.getBackwardAction()

// the list of can-perform candidates for BA
LI = actor.getCanPerform(BA)
for each I in LI

if I is "moveTo"
then this.sons.add(createMoveNode())

else
// list of known agents that can suffer I

lAgents = actor.getKnownAgents(I)
for each a in lAgents

if actor.execute(I,a) satisfied this.condition
newNode = createInteractionNode(I, a)
this.sons.add(newNode)
newNode.expand()

end if
end if
if this.sons.isEmpty()

then this.sons.add(create-exploration-node)

this = move-node
expand()

path = actor.computePath()
If path = null // no path found

then this.sons.add(createConditionNode("false")
else

// list of conditions 6="true" on paths
conditionsList = path.getPathsConditions()
If conditionsList.isEmpty()

then this.sons.add(createConditionNode("true")
else for each condition c in conditionsList

newNode = createConditionNode(c)
this.sons.add(newNode)
newNode.expand()

Figure 7: Node’s expansion algorithm.

unlock(d)

b k

d

a

push(b)

d(a,b)<1

move(b)

true

push(b)

d(a,b)<1

move(b)

d.locked = false

d(a,d)<1

move(d)

own(k)

take(k)

d(a,k)<1

move(k)

true

Figure 8: An active agenta is situated in an environment
where are also 3 passive agents: a doord, a buttonb and
a keyk. The goal ofa is to push onb. a must build a plan
to achieve it. A plan can be drawn as a tree, nodes due
interaction-goals are drawn with dashed lines and nodes
due to condition-goals with solid lines. Depending on the
execution context, different plans can be obtained. Left is
the tree obtained whend is not locked and right is the case
whered is locked.a must adapt its plan to the context.

• a new information: the agent learns that a so far un-
known information exists. It is the case when the
agent sees a new place, meets another agent for the
first time, gets a new goal, discovers a condition on
a path of the graph, etc.

• a modification of an existing information: it con-
cerns mainly modifications about the state of known
agents, a property value change or a position change.
The position change information covers three situa-
tions:

known→known: we thought agent at a position
and we see it at another

known→unknown: we thought agent at a viewed
position and it is not there

unknown→known: we did not know where the
agent were and we now see it

To each of these situations is associated an event that
describes what must be modified (changed or added) in
the agent memory. The table 2 lists these events, one can
easily guess what they are according to the previous para-
graphs.

These events are transmitted to the update module who
is in charge to take them into account and to consider their
impact. First, the memory of the agent must be modified:
either a new knowledge is added, or an existing data must
be corrected. Second, because of the changes, it is pos-
sible that the currently established plan must be adapted.
It is the new information management module that is in

new information NewGoal, NewPlace, NewPathCon-
dition, NewAgent, NewInteraction

modification AgentModified, AgentMovedKK,
AgentMovedKU, AgentMovedUK

Table 2: List of events for new information

charge of forwarding these information to the planning
engine.

However, a new information concerns only a portion
(even none) of the planning tree. Therefore, it is nei-
ther reasonable, nor efficient, to rebuild a new plan for
every new information. Indeed, even if it is established
that, in theory, no efficiency gain can be guaranteed while
using plan reuse rather than new plan generation (Nebel
and Koehler 1993), in practice improvements can be ex-
pected. Indeed, our context of dynamic simulations cor-
responds to the case where the agent perceives very fre-
quently slight changes of its knowledge base.

In particular, this is due to the fact that the agent engine
uses uncertain information: the planning is based on the
information that are in the memory. But, since simula-
tions occur in open dynamic environments, then the built
plans are correct with respect to the memory of the agent,
but can be wrong once confronted with the real environ-
ment, at the execution step. Therefore only partial and
local adaptations can be expected in most of cases. Our
experiments confirm that.

Our approach is then to top-down propagate events
from root to leaves in the planning tree. Each node checks
if it is concerned by each event, first because it is the
good type and second because additional conditions are
satisfied. Checking these conditions is very fast, therefore
propagation costs not too much time and in particular less
than a replanning when events have no impact. Thus, only
the appropriate nodes are updated (collapsed, re-unfolded,
adding or removal of subnodes, etc.).

It would probably be a bit tedious to enumerate all the
cases and conditions for which a node is affected by an
event. Thus we give only two examples. For instance, a
new information that affects the graph topology or agent
positions can (but not systematically) have an impact on
move-nodes. Indeed a new path can “appear” or at the
opposite a computed path can become blocked, in these
cases, the move-node should be re-expanded. In a sim-
ilar way, a new met agent can affect a condition-nodes.
For instance this can be the case if this agent can be the
target of an interaction that helps to solve the condition
(that is one of the interactions stored in theLI list seen in
the algorithm presented in Figure 7). In this case a new
interaction-subnode must be added and unfolded. Other
cases are similar.

Using this principle, there is no need to recompute the
plan at each step. It is indeed probable that only few new
information occur each step, and this is not necessarily
of importance for the agent. But this principle helps the
agent to remains reactive too and to adapts as soon as it

is necessary and relevant. Moreover this partial and local
tree modification leads the plan to be incrementally built,
change after change.

CONCLUSION

The design of simulations of behaviours that will be per-
ceived and evaluated as believable by a human exter-
nal observer is not an easy problem. The solutions pro-
posed by the reactive systems are not generic and reusable
enough.

We endeavour to propose a general model for the sim-
ulation of behaviours. The dynamics of this model relies
on the description of interactions that can be performed
or suffered by some agents that are situated in a dynamic
environment. An individual generic behavioural engine
uses these interactions to propose a plan of actions to the
deliberative agents.

A natural application of this work are computer games.
Targeted games could be action and role-playing games,
where one needs complex believable non-player charac-
ters to increase the quality of the simulated world and the
interactions of the player with it.

Our current work concerns the application of this
model to team of agents (Devigne, Mathieu, and Routier
2005). It is clear that it is a challenge for simulations, and
games in particular, to be able to design groups of charac-
ters that act together to fulfil common objectives.

AUTHOR BIOGRAPHIES

DAMIEN DEVIGNE is Ph.D. student at the University
of Lille, in the SMAC research team (http://www.
lifl.fr/SMAC) LIFL (UMR CNRS 8022) labora-
tory.He works on simulation of teams of cognitive agents
in a geographical environment. E-mail:devigne@
lifl.fr , personal web-page:http://www.lifl.
fr/ ˜ devigne .

PHILIPPE MATHIEU is professor at the University
of Lille. He receives his Ph D. in 1991. He is leader
of the SMAC research team of the LIFL laboratory.
He is specialized in multi-agent systems, modelization
of behaviours and game theory. E-mail:mathieu@
lifl.fr , personal web-page:http://www.lifl.
fr/ ˜ mathieu .

JEAN-CHRISTOPHE ROUTIER is assistant profes-
sor at the University of Lille. He receives his Ph D.
in 1994. He is member of the SMAC research team
of the LIFL laboratory. His research centers of inter-
est cover agent platforms, agent-oriented software engi-
neering, and recently the design of believable behaviours
for simulations (like games). E-mail:routier@
lifl.fr , personal web-page:http://www.lifl.
fr/ ˜ routier .

REFERENCES

Allbeck, J.; andN. Badler. 2003. “Representing and Pa-
rameterizing Agent Behaviors,” inLife-like Charac-
ters: Tools, Affective Functions and Applications., ed.
by H. Prendinger,andM. Ishizuka, 19–39.

Brooks, R. A.;andal.. 1999. “The COG Project: Building
a Humanoid Robot,” inComputation for Metaphors,
Analogy, and Agents, vol. 1562 of LNCS, 52–87.
Springer.

Devigne, D.; P. Mathieu;andJ.-C. Routier. 2004. “Plan-
ning for Spatially Situated Agents in Simulations,”
in Proceedings of the 2004 IEEE/WIC/ACM Interna-
tional Joint Conference IAT’04, 385–388.

Devigne, D.; P. Mathieu;andJ.-C. Routier. 2005. “Team
of cognitive agents with leader : how to let them au-
tonomy,” in Proceedings of 2005 IEEE Symposium on
Computational Intelligence and Games.

Laird, J. E.;and M. van Lent. 2000. “Human-level AI’s
Killer Application: Interactive Computer Games,” in
Proceedings of the Seventeenth National Conference
on Artificial Intelligence and Twelfth Conference on In-
novative Applications of Artificial Intelligence., 1171 –
1178. AAAI.

Magerko, B.; J. Laird; M. Assanie; A. Kerfoot;and
D. Stokes. 2004. “AI Characters and Directors for
Interactive Computer Games,” inProceedings of the
2004 Innovative Applications of Artificial Intelligence
Conference, ed. by A. Press.

Nareyek, A.. 2000. “Intelligent Agents for Computer
Games,” inComputers and Games, Second Interna-
tional Conference, CG 2000. LNCS 2063., 414–422.

Nareyek, A.. 2004. “Artificial Intelligence in Computer
Games - State of the Art and Future Directions,”ACM
Queue, 1(10), 58–65.

Nebel, B.;andJ. Koehler. 1993. “Plan modification versus
plan generation: A complexity-theoretic perspective,”
in Proceedings of of the 13th International Joint Con-
ference on Artificial Intelligence (IJCAI), 1436–1441.

Niederberger, C.;andM. Gross. 2003. “Hierarchical and
Heterogenous Reactive Agents for Real-Time Appli-
cations,” in Proceedings of the Eurographics 2003,
Computer Graphics Forum, Conference Issue, ed. by
P. Brunet,andD. Fellner, 323–331. Blackwell Publish-
ing, UK.

Ponsen, M.;and P. Spronck. 2004. “Improving Adap-
tive Game AI with Evolutionary Learning.,” inPro-
ceedings of Computer Games: Artificial Intelligence,
Design and Education (CGAIDE 2004), ed. by S. N.
Quasim Mehdi, Norman Gough,and D. Al-Dabass,
389–396.

Spronck, P.; I. Sprinkhuizen-Kuyper;and E. Postma.
2004. “Enhancing the Performance of Dynamic Script-
ing in Computer Games,” inEntertainment Computing
- ICEC 2004, ed. by M. Rauterberg, no. 3166 in Lec-
ture Notes in Computer Science, 296–307. Springer-
Verlag.

Tozour, P.. 2002. “The Perils of AI Scripting,” inAI
Game Programming Wisdom, ed. by S. Rabin, 541–
547. Charles River Media.

