
Towards an interaction-based design of behaviors

Ph. Mathieu S. Picault

Université des Sciences et Technologies de Lille, SMAC team, LIFL.

Cité Scientifique, 59655 Villeneuve-d’Ascq Cedex, FRANCE.

Abstract

In this paper we defend the advantages of pushing the interaction as a concrete means (not
just an abstraction) in the representation of agent behaviors. While the behavior of an agent
is usually deeply encoded in its architecture and relies on its very abilities, we rather dissociate
agents from interactions, regarding as well the conceptual viewpoint as the implementation.
Indeed, we associate both agents and interactions with a specific ontology. This approach is
especially valuable for increasing the reutilisability of the interactions, which can be written
very often in a generic way even when agents are bound to specific domains. We show here
that this approach is particularly well adapted to broad simulation scales, regarding as well the
number of individuals as the diversity of the behaviors. This paper clearly addresses issues at
the intersection between software engineering and knowledge representation in agent simulation
systems ; thus we present the IODA methodology which provides guidelines in the design of
such simulations.

Keywords

Simulation, Interaction, Behavior

1 Introduction

In recent years, agent-based simulations have been widely used to model living entities, in order
to understand the mechanisms of living entities, or to reproduce their features into entertaining
applications (video games, movie animation, etc.). The design of such simulations addresses issues
that belong to both implementation and modeling.

Thus, a large number of multiagent platforms have been developed. Especially, many open
platforms provide the developers with advances in software engineering (reusability, genericity, at
least through object-oriented programming, and in some cases design patterns or components),
e.g. Swarm [1] or Madkit [2]. On the one hand, some of them are not specifically dedicated to
simulation design. Their interest mainly relies on the reusability of the code, which is developed in
a generic software context. On the other hand, other platforms, like Netlogo [3], are designed to be
used without a lot of knowledge in computer science, and are based on very simple programming
languages. Especially in Netlogo simple “turtles” are running procedures in parallel, without any
assumption regarding the application field of the simulations. Unfortunately, the openness of such
platforms and their genericity are provided to the detriment of a precise, formal modeling scope
that would lead the design of agent behaviors. For instance, Netlogo does not provide abstractions;
the concept of behavior itself is not even reified in the system.

From the analysis viewpoint, some generic formalisms used to represent agent behaviors (sub-
sumption, neural networks, Petri nets, set of rules...) have a precise formalism, and thus could
provide a strong help in the modeling process, to the detriment of behavior reusability. This sit-
uation applies to simulations dedicated to the study of a specific phenomenon. Though the agent
behaviors developed in this context are shaped by a specific architecture, and thus can be reused
by other simulations involving agents with the same architecture, there is often a tight relation
between the behaviors and the application field in which the simulation takes place. One exception
to mention would be the BDI architecture, which appear to provide generic (logic-based) frame

for representing behaviors independently of the application domain; unfortunately, its logic and
symbolic base makes it generally inadequate for simulation purposes.

The ideal approach would consist in designing both generic and reusable behaviors, not only
from a software engineering point of view, but also regarding knowledge representation. It also
should take place in a formal methodology, precise enough to lead the design of the simulation.
Nevertheless, different agent architectures are based on different paradigms, aiming for different
qualities, and should not sweeped together into a heap.

This implies to extract all generic features from the agent, such as movement, interactions that
can be performed or undergone. The agent should keep only specific perception/action capabilities,
and possibly a reasoning engine. For instance, a behavior like eat has the same purpose in any
simulation, and matches the same function too; it can always be described with the same trigger
(hunger) and the same prerequisite (to posses something edible). On the other hand the details in
carrying out this interaction depend on the physical particularities of each agent. The same applies
to motion: many behaviors have to express that eg. to do X the agent has to go from A to B, but
often the concrete way of moving from A to B is not the main point (some agent could achieve it
using the A* algorithm, others with random search).

In order to work towards this idea, we propose in this article to reify the concept of interaction
independently form those of agent and behavior. This leads to define on the one hand the activities
that can be performed during a simulation, and on the other hand the agents that will be able
to perform them. In the model we propose, interactions are sets of atomic actions, released by
prerequisites and triggers; agents are more or less complex entities endowed with the ability of
performing or undergoing interactions; and finally, behaviors are all effective interactions that
occur during a simulation.

We also demonstrate how the notion of behavior becomes a mere consequence of the interactions
abilities given to the agents, each generic interaction being carried out according to the elementary
perception, cognition and action capabilities of the agents.

This approach is especially adequate for simulations that require a large number of agents or a
large number of agent species (i.e. about thousands or more), and in fields where entities are not
important by themselves (as individuals like in ethology, AI, game theory) but rather through their
functional relationships: e.g. transport, biology, markets...

Finally, we describe the IODA1 methodology which provides empirical processes to interaction-
based analysis for designing simulations relying on our model. For example, we advocate to translate
the intended behavior into dynamic matrixes to describe the interactions between entities, then to
refine the structure of agents and their interaction abilities.

2 The notion of interaction

We first have to emphasize that we do not intend here to deal with interaction protocols (and e.g.
problems of local synchronization of actions such as discussed in [5]), nor consider interactions as
coordination situations involved in groups, that could be formalized in an algebraic way [6]. Other
approaches such as Vowels [4] involve a notion of interaction that is close to ours, but do not lead
to a practical implementation. We rather use the term “interaction” in its etymological meaning:
“action between” agents, as an alternative representation of agent behavior, not centered on the
agent itself.

Among many attempts to introduce abstraction in the development of multi-agent systems, the
notion of role for example has been used to express and reify a distinction between individual agents
and their functional involvement in groups and organization [8].

In the same way, in order to simulate the global behavior of a system, the classical approach
consists in designing entities with their own, domain-dependent behaviors ; we propose instead to
design separately entities endowed with perception and action primitives on the one hand, and
the way those perception and action abilities are carried out in consistent, generically-defined
interactions.

Thus, the notion of interaction describes sets of elementary primitives (named actions) that
imply simultaneously some agents and constitute a semantic whole in a given simulation [7]. For

1meaning Interaction-Oriented Design of Agent simulations

instance, eat or open are not mere actions, but should be seen rather as structured sets of actions
involving two different agents, and that can be performed only under specific conditions.

This definition of interaction makes it completely independent from the agents that are able to
use it. It is indeed a concept general enough to be reused in various simulations (the interactions
open has, of course, the same meaning in a simulation of building emergency evacuation or in a
treasure hunt video game) and to be applied to different agents (regarding the prerequisites and
the consequences upon the state of the world, the interaction open can be described the same way
for opening either a door, a chest or a tin). In addition, this distinction is also a practical way to
enable the designers to test the consequences of assigning a specific interaction to specific agents,
and thus setting up a simulation step by step (it is particularly the case in video games or artificial
worlds).

Hence, the design of a simulation consists in first determining the basic action primitives that
will be used, then in aggregating them into interactions, and finally in assigning those interactions
to agents.

2.1 The basic primitives of a simulation.

The basic action primitives define the smallest elements that are to be represented in the simulation,
in spatial (resolution), temporal (time steps) and behavioral terms (atomic perception, cognition
and action capabilities) at the same time.

Among those primitives, we can cite the perception operations, aimed at looking at the state of
the environment, receiving communications from other agents, taking into account internal stimuli
(state changes), and sometimes representing also beliefs or goals. We make no particular assump-
tion regarding the cognitive abilities of the agents in our interaction model, so that the notion of
“perception” can refer as well to endogenous or exogenous stimuli, as to the result of a sophisticated
reasoning process.

The second subset of primitives is related to motion or action in the environment, or on other
agents, including destruction or creation of new entities. Those action primitives can also refer as
well to mere reactions induced by stimuli, as to deliberate acts resulting for a planning process.

Thus, an interaction can be defined as a sequence of action primitives, applied to several agents,
triggered by specific perceptions and liable to prerequisites for running. Those perception and
action primitives may be realized differently in distinct agents, but their sequence is described in a
generic and consistent way by the interaction (cf. fig. 1).

Triggers Conditions

Actions
X.energy++
destroy(Y)

Hunger(X) Has(X,Y)

(a) (b)

Figure 1: (a) General representation of an interaction. An interaction contains a set of perceptions
(on the one hand, a trigger and on the other, prerequisites). When all are fulfilled, they enable the
realization of a sequence of actions. (b) Example : the interaction eat can be described in a general
way through an internal motivation (hunger) which is used as trigger, prerequisites (having some-
thing that can undergo the interaction), and the sequence of actions resulting from the interaction,
i.e. increase of the energy of the source agent (performing eat) and destruction of the target agent
(undergoing eat).

2.2 The notions of trigger and prerequisite.

We now have to define how an interaction can occur between two (or more) agents. First, there is a
structural constraint (depending on the definition of the agents): one of the agents has to be able to
perform the interaction (it is the source of the interaction), and another one must be able to undergo

it (it is the target). Then, an interaction, seen as the abstract expression of a behavior, contains
also conditions for performing the sequence of action primitives. We have already distinguished
between those conditions:

• the trigger, which expresses a motivation (either explicit or implicit) for the interaction to
be performed: for instance, the trigger of the interaction eat is “being hungry”. This trigger
is indeed a kind of (implicit) goal: the interaction will be performed in order to eliminate
the sensation of hunger. More generally, it is likely that the state of the world described by
the trigger will be inversed or corrected by the execution of the corresponding sequence of
actions.

• the prerequisite itself, which expresses physical or logical necessities that must be fulfilled in
order to run the action sequence: e.g. in order to eat, it is necessary to “possess something
edible”. If not, it is logically impossible to perform the primitives.

2.3 Source and target(s)

In principle, an interaction occurs between a source and a target. The source is an agent that
can perform the interaction, and the target is one that can undergo it. The task of the simulation
engine (cf. § 3.1) essentially consists in scanning, for each agent candidate for being a source of
interaction, if potential targets can be reached by the possible source (in a given radius), and in
chosing the interaction to perform according to a priority order.

The following interaction (coming from a simulation of gene regulation mechanisms) expresses
the translation of a gene. In order to undergo the interaction translate, the gene has to encounter
an enzyme able to perform translate. They become then respectively the target and the source of
the interaction, according to the code given below. The interaction can effectively occur (and the
actions be run) only if both parts of the condition (trigger and prerequisites) are fulfilled at the
same time. The prerequisite indicates that the transcription of a gene can occur only in specific
states of the DNA, while the trigger uses a stochastic model to determine the activity level of the
transcription factor, and whether or not the gene may be translated.

TranslateGene :
Prerequisite(source, target) :

return (target.state != PACKED)
Trigger(source, target) :

if (target.activation == ACTIVE)
return (random < probaActivation)

if(target.activation == NEUTRAL)
return (random < probaNeutral)

if(target.activation == INHIBITED)
return (random < probaInhibition)

Actions(source, target) :
createNewProtein(target.encodedProtein)

Through this model, it is also possible to design interactions without defined targets: in that
case they are performed by a single agent (the source), either for state modifications or for actions
on the environment.

IODA also allows interactions to cope with multiple targets at the same time, in order to
represent activities that require coordination between agents. Yet the interaction uses a single
source only. In fact, in our method, we can treat interactions based on one source and one target,
and also one source and multiple targets. The symmetric case can be expressed by switching
source and targets. For example, in order two represent two agents that have to carry a load
simulatenously, we will not use the carry interaction (which would involve several sources), but
instead the is_carried interaction (which uses only one source and two targets). The only situation
that cannot be modelled with IODA is a multiple source/multiple targets interaction (but we did
not encounter any need for that).

It is important to keep in mind that the representation used in our model does not require any
specific cognition level, since a same generic interaction can be performed through either reactive or
cognitive conditions and actions, depending on the nature of the agents involved in the interaction.

2.4 Assigning interactions to agents

Once the designer of the simulation has designed the relevant interactions, the entities that could
act as source or target are generally quite clear (especially since the usual design methodology
starts from the identification of the entities and focuses on the behaviors only in a second stage).
There are still two points to elicit:

• Agents usually interact only with other agents when they are “close” enough (may it be a
spatial distance in the environment or any measurement in a state space). Thus there is to
define a condition for the distance allowed between the source and the target.

• Since each agent is generally able to perform or undergo a large number of interactions, each
interaction must be associated, in each agent that is able to perform it, with a priority level,
in order to ensure that functional features are assumed in a consistent way

We must emphasize that both features cannot be addressed only in the definition of interactions,
nor in the properties of the agents. For instance, the interaction eat as defined in fig. 1 can ordinary
be performed only when agents are at the same place, but could allow a 3-meter distance for a
chameleon! Such an interaction would also have a higher priority than reproduction in human
beings than in butterflies.

It is through this matching between generic interactions and concrete agents, and through the
determination of priorities and distance conditions associated with each interaction/agent couple,
that the behaviors produced during the simulation can be refined.

3 The behavior of an agent

In our interaction-based model, the behavior of an agent, defined as the sequence of actions that
it effectively carries out during a simulation, appears to be the result of the interactions that are
performed. Therefore, we use a simple action selection engine.

3.1 A reactive simulation engine

We describe here the mechanism that applies to chose the interactions to run a simulation. The
principle is quite simple: at each time step, when two agents “meet” together (with regards to the
definition of the distance constraints mentioned above), they examine if one of them can perform
an interaction and if the other can undergo it. If so, that interaction becomes candidate, according
to the following rules:

I(x, y) ∈ Interactions can occur if ∃ x, y ∈ Agents so that can-perform(x, I)∧ can-undergo(y, I)

The predicates can-perform and can-undergo are given through lists of interactions which the
agents x and y can play either as source or target.

Concretely, during one cycle in the simulation, we let each agent try to perform an interaction.
This choice uses the following protocol:

1. First, the agent tries to find potential targets for each of the interactions it might perform, i.e.
other agents within the convenient distance that might undergo the corresponding interaction.

2. Then, interactions for which targets have been found are sorted according to their priority in
the potential source agent.

3. The agent inspects their trigger and prerequisites and chooses the first with both conditions
fulfilled.

4. Finally, the corresponding actions are run.

If an agent could not perform any interaction, it is still possible that it will undergo one from
another source.

3.2 Structure of the agents

Generally the agents and their primitives are the most domain-dependent features when designing
a simulation. Nevertheless, in our approach, the clear separation between the interactions and the
simulation engine reduces the agents to a lower role than in classical SMA engineering methodolo-
gies. In our model, the agent is an entity:

• with an internal state

• having specific perception and action primitives

• which is given the lists of interactions that it can perform (with priority levels and distance
constraints) or undergo

Any agent which complies to those simple specifications can be integrated in our interaction-
based simulation model; we make no particular assumption regarding the cognitive level of the
agent itself, so this point can be left to the designer.

Anyway, the action selection engine we use is reactive: interactions are not selected for example
as the result of inferences to reach a goal, but only depending on the possibilities to realize them
(contact between a source and a target and conditions fulfilled). The process that selects the
interaction is the same even if the agent tests its condition through logic proofs in a symbolic
model of the world.

3.3 The conceptual point of view (the representation of domain-related
knowledge)

The “extraction” of generic behaviors from the definition of the agents, in order to define them
in separate interactions, provides the designer with a guideline to represent the knowledge of the
domain in which the simulation takes place.

In many application fields (chemistry, biology, physics...), the notion of individual behavior
(historically drawn from ethology and sociology) is indeed not really relevant. On the one hand,
an entity can exhibit very distinct behaviors in its activity. For instance, an enzyme can change
its 3D folding and take part thus in various cell functions which have no relation one with another.
On the other hand, entities that are structurally different (e.g. in their chemical properties) might
provide equivalent functions (a protein or a RNA molecule can both act as a transcription factor
in gene expression).

So, the reification of the notion of interaction leads to the definition of two distinct ontologies,
one for the entities that take part in a given process, and the other for the functions (= interactions)
performed by those entities. The relationship between those two sets is generally not fixed during
the simulation.

To represent radical changes in behaviors that can affect some entities, it is sufficient to simply
modify the lists of interactions that those entities can perform or undergo. In a classical agent-
centered behavior design, the only way to adapt the behavior relys indeed on a sophisticated,
individual, action selection mechanism. In the interaction-oriented approach, individual adaptive
abilities are still involved, since the agent may “chose” some interactions rather than others through
the way its own perception capabilities affect the triggers of the interactions it can perform. But in
addition, the global assignment between interactions and agents may be modified during simulation,
allowing the representation of major behavioral pattern switches.

3.4 The software engineering point of view

The second benefit of our model consists in the reusability, in different simulations, of generic
interactions libraries. Of course all interactions of a given simulation are not involved in any other,
yet for applications in close enough domains, interactions are expressed in similar ways. Then it
remains simply to rewrite, for each specific simulation, the domain-dependent agents with their
own perception and action primitives.

We do not claim that our interaction-based approach makes possible some simulations that
would not be realized in other platforms. Our point is that, from the software engineering viewpoint,

the design of simulations and the reusing of interactions library is made much easier through our
approach. In the kind of problem we address, Swarm, Netlogo and Madkit are amongst the more
widely used platforms. In these three frameworks, there is no agent model, nor regarding the
behavioral architecture, nor regarding perception and action primitives. The agent is an empty shell
in which the designer can/has to put himself all the code to produce the behavior. Consequently, the
code of the agent is a mixture of features that concern action upon the environment (e.g. motion
and position), interactions with the other agents, and others that take part in action selection.
Thus in such a blend it is highly difficult to add or suppress any behavioral ability, and still more
to reuse the code in a similar simulation.

to go ;; forever button
ask turtles [go-turtles]
diffuse chemical (diffusion-rate / 100)
ask edge-patches

[set chemical 0] ;; prevent wrapping
ask patches [go-patches]
do-plotting
set clock (clock + 1)

end

to go-turtles ;; turtle procedure
if (who < clock) ;; delay
[ifelse carrying-food?

[set color orange + 1 return-to-nest]
[set color red look-for-food]

]
end

to go-patches ;; patch procedure
set chemical (chemical*(100-evaporation-rate)/100)
update-display ;; Refresh the Display

end

The example given above, drawn from the simulation Ants in Netlogo libraries, is a good
illustration of our argument. Despite the simplicity of Netlogo’s programming language, there is
a complete mixing between notions which are bound to this specific simulation (e.g. pheromones
represented by the chemical variable, which can diffuse in the environment), and a makeshift job
resulting from the absence of any model/view distinction (e.g. setting chemical to 0 on the sides,
just because Netlogo’s environment is always a torus!). It is clear that if the designer should modify
the behavior of ants, it would be puzzled about what procedures he should also rewrite, and would
not be able to ensure that no artifacts have been introduced. In general he would probably prefer
rewriting all the code.

In open platforms providing all recent advances of software engineering, the reusability applies
to agents seen as a whole, e.g. as classes, including the domain-dependent features imprinted in
their behavior. On the contrary, true genericity is obtained when the behavior is extracted from
the agent and put into abstract interactions.

4 Knowledge representation for large-scale simulations

Historically, individual-based simulation involves a few dozen to several hundred agents [9, 11].
Now, many application fields encounter increasing needs for much larger scales, regarding as well
the total number of agents (from 103 to 105) and the number of agent classes (several hundred).
For instance, in recent movies (such as the battles scenes in P. Jackson’s Lord of the Rings), about
104 agents have been used in place of extras, in very realistic fights. It is the same in video games,
where non-human players have to exhibit more and more rationality and diversity in order to make
the impression that they are in some sense taking initiatives instead of waiting for the human player
and cheating. Amongst other domains, we also can cite transport (e.g. through projects such as
Archisim from the French research institute INRETS [10]), and biology.

The latter field especially illustrates constraints that are specific to large-scale simulations:

• First, constraints regarding the number of agents : a single bacteria contains about 4,000 dif-
ferent molecular species, most of them having chemical interactions, and about 1010 molecules
in total. It is obviously unrealistic to represent each molecule with a single agent. Thus, most

biological models (e.g. the study of regulation networks) are based on equation systems, using
the concentrations of few molecular species. Though, this approach discards right away the
spatial specificities of those biological phenomena, and do not cope with situations involving
only few molecules (e.g. those used as signals [12]).

• A more realistic approach should also take into account the existence, among biological pro-
cesses, of very different scales [13]: they concern as well the numbers of agents (from billions
of structure proteins vs. dozen signaling enzymes), the space management (from the local
environment of cells to the conformation of the DNA), and time (from seconds to hours or
days).

In addition, since agent simulations have been first applied to domains such as ethology, econ-
omy, sociology, it appears that many concepts drawn from those fields have been widely used as a
general basis for simulation, without deeper questions. It is particularly the case with the notion of
behavior that is usually seen as a property of the entities. Nevertheless, the application of simula-
tion to large scales reduces the importance of the notion of individual entity, thus also of individual
behavior. In physics, biology, ecology of market dynamics, the behavior of each entity taking part
to the process is less important than the interactions that occur there. For instance, in statistical
physics, the gas laws result from the integration of all interactions (i.e. shocks) between gas parti-
cles; individual particles do not matter by themselves. In most of such domains, we are not working
at this extreme integration level, since agents have an history and thus are not interchangeable;
however their activity as mere individuals does not make sense.

5 Towards an interaction-based modelling

5.1 Sketching a methodology: IODA

In order to address a simulation problem, it is necessary to identify on the one hand the entities
which, depending on the model of the application field, are supposed to interact one with another
to produce the target phenomenon, and on the other hand those interactions themselves. In an
agent-based simulation model, the identification focuses on the entities, which are then given be-
haviors designed to produce the intended interactions. Thus, the abstract functions associated with
interactions are lost and encapsulated in the specificity of the agents.

On the contrary, we suggest to lead the analysis by eliciting the agents and the interactions at
the same time, in order to keep an abstract view of the functions provided by the agents.

The methodology we are working on, IODA (Interaction-Oriented Design of Agent simulations),
proposes a three-step design for an interaction-based simulation:

1. Identify the interactions (abstract functions, elementary processes). This leads to a matrix of
potential sources and targets (cf. tab. 1, and tab. 4 for a detailed example), in which generic
interactions clearly appear. This matrix can eventually evolve during a simulation, depending
on the way the agents are affected by the interactions.

2. Identify the properties of the agents (structure and basic perception/action capabilities), and
assign to them the interactions they can perform or undergo. At that stage the relative
priority of each interaction and the distance constraints must be specified. The result is a
synthesis table (cf. tab. 2, and tab. 5 for a detailed example).

3. Finally, determine the dynamics of the system, i.e. how the characteristics of the agents
are likely to evolve through the interactions, including their ability to perform or undergo
interactions. This can lead to draw a diagram describing transitions between states of the
system (cf. tab. 3 for an example), each state corresponding with different interaction matrixes
(for instance in the AOE simulation, switching from a “peace” state with patrol activities and
a classical resource management, to a “war” state with military targets and an emergency
management).

As a guideline through those three steps, we use arrays that have to be filled before starting the
code. They essentially answer the following questions: on the one hand, what are the interactions,

with what sources and what targets? on the other hand, what are the agents, how can they interact?
and last, how to assign dynamically interactions to agents?

X
X

X
X

X
X

X
X

X
Sources

Targets
Ag1 Ag2 ... Agn

Ag1

...

Agn

Table 1: This first table provides the matrix of the realizable interactions in the studied simulation.
An interaction I which is at the crossroad of the i line and the j column can be performed by the
Agi agent and undergone by Agj .

agent carac can perform priority dist can undergo

.

Table 2: This second table gives for each type of agents of the studied simulation, its structural
characteristics and the list of the interactions being able to be performed (with, if necessary, their
priority and their guard of distance), and to be undergone.

State Agent can perform can undergo

Peace Soldier ¬Fight ¬Fight

Peace EnnemySoldier ¬Fight ¬Fight

Peace EnnemySoldier ¬Destroy

Peace Forum ¬Destroy

War Forum ¬CreatePeasant

Table 3: The last table lists the possible modifications of assignment of the interactions to the
agents, compared to the initial matrix of interactions, according to the dynamics desired for this
simulation. In this example, applied to the “Age of Empires” (AOE) simulation, in the “Peace”
state the soldiers cannot fight: we remove then from the list of what it can carry out the Fight
interaction (which stays on the contrary in the “War” state). In the same way, to save resources,
the Forum stop producing Peasants during a war period.

5.2 Extension of the model : moves

The approach that we described in this paper has been mainly implemented and tested on a platform
dedicated to large scale simulations, SimuLE.

This tool is currently used for applications in cellular biology, in particular to evaluate the
various assumptions related to the genetic transcription. These simulation require thousands of
agents of different families with many interactions between each one.

Several demonstrations of this platform are available on the site of the team. SimuLE is able
to make interact until 50 000 individuals simultaneously in real time on the screen with very many
interactions.

SimuLE have also an original device of subscription to statistical indicators for each simulation
and is able to provide one returned as well 2d as 3d of the simulated model. For optimization
and speed reasons, the distance is in the current version specific to each agent (perception size
of the potential targets) and nonrelated to the interaction-agent connection like it was described
previously. One of the next improvements of this realization will obviously consist in regulating
this point.

Targets →

Sources ↓ Forum Limit Mine Soldier Ennemy Peasant (none)

Forum GiveRole Fight GiveRole

CreateSoldier

CreatePeasant
Doing Nothing

Limit Router

Mine

Soldier Fight

Become Chief
MoveCheif

Move

Ennemy Soldier Destroy Fight Fight

Become Chief
MoveCheif

Move

Peasant
TellExhaustedMine

PutResource

Exhausted

Mine
TakeResource

Move

Table 4: Matrix of realizable interactions in the “Age of Empires” (AOE) simulation tested with the
SimuLE platform. The agents handled in this simulation are : the forum (which create peasants and
soldiers, and where one can deposit resources), the mines which contains resources, the peasants
which works in mines, the soldiers defending the peasants and the forum of the enemy soldiers, and
limits between which soldiers patrol. This matrix indicates which interactions are suitable for be
performed and undergone by each class of agents. In case of multi-targets interactions, cardinalities
can be added to the interaction name.

We consider several extensions to increase the conceptual and software distinction between the
agents and the representation of their activity. In particular, agents moves, and more generally
the physical laws of the environment, to which the agents are subjected, are not to be strictly
speaking “interactions”, insofar as these laws are applied permanently on all the agents, and come
to be added to the interactions which the agents have the ones with the others. The agent behavior
results to the fact that it is subjected to physical laws exerted by the environment and that it
interacts with other agents. Just as we have separated in the software the interactions from the
agents, we project to distinguish the physical laws (moves constraints for example) from the agents
and/or the interactions in which they are described at this time. Thus, we will have libraries of
generic displacements reusable, to which the simulated entities could be subjected independently
of their behavioral activities.

Figure 2: A screenshot of SimuLE, with several sights of the running simulation and a statistical
analysis.

6 Conclusion

In this paper we have presented a formal model for the interaction between located agents for
simulation purpose. This model leaves the report that during the analysis phase of a problem,
there is no reason to bind the various possible interactions with the agents which will be put in

agents characteristics can perform priority distance can undergone
AgentAOE direction
Movement LifePoints

camp
role

ForumPosition
Enemy Soldier chief BecomeChief 4 Fight

attackPoints Fight 3 d ≤ 5

Destroy 2 d ≤ 2

ChiefMove 1
Move 0

Soldier cheif BecomeChief 3 Fight
attackPoints Fight 2 d ≤ 4 GiveSoldierRole

chiefMove 1 Router
move 0

Peasant resources MineExhausted 2 GivePeasantRole
maxResources TellExhaustedMine 2 Fight
resourceTypes PutResource 1
exaustedMine TakeResource 1
provenance move 0

Forum mines Fight 4 d ≤ 6 Destroy
exhaustedMines GiveSoldierRole 3 PutResource

limts GivePeasantRole 3 TellExhaustedMine
timerCreation CreaterSoldier 2 Destroy

pointsVie CreatePeasant 1
resources DoNothing 0

Mine resources TakeResource
resourceTypes ExhaustedMine

Limit direction Router 0
Obstacle

Table 5: List giving for each type of agents of the “Age of Empires” (AOE) simulation, its charac-
teristics and the list of the interactions being able to be performed (with, if necessary, their priority
and their guard of distance), and to be undergone.

presence, as opposed to what offer the current other platforms. This separation of the concepts
allows in particular an increased reutilisability of the interactions created and makes it possible
without any doubt to conceive in similar contexts several reusable libraries of interactions.

In order to validate this claim, we should evaluate time costs for modifying a simulation, com-
pared to an agent-based encoding a behaviors. This kind of measurement is though hard to perform,
as it is difficult to compare object-oriented programming to imperative programming.

We have shown that a rigorous design needs various stages starting with the identification and
the creation of the possible interactions thus that of the agents which will be implied, continuing
with the assignment of these interactions to the agents with the taking into account of the distance
and then the priority between them.

The agent model that we recommend supports on two fundamental properties named can-
undergo and can-perform which contain each one a list of interactions characterizing the behavior
of the agent. We finally described precisely how to design the reactive engine which is able to
take into account this model. This formal model has been implemented in the SimuLE platform of
the SMAC/LIFL team [14] which in particular allows to make interact more 50 000 agents in real
time in an environment 2d or 3d. Our IODA methodology has been used and refined during the
development of the experiments undertaken on this platform. Currently, SimuLE is in particular
used to test various assumptions in several problems of cellular biology, field requiring a large scale
platform to be simulated. As well as we have dissociated the agents of their behavior, we plan to
distinguish the physical laws from the agents and the interactions, in order to build generic and
reusable libraries of moves. These laws are indeed the expression of environmental constraints and
apply independently of the nature of the agents or their behavior. We will thus have in the long
term triple ontology of agents, interactions and environmental laws which will make it possible to
conceive more effectively simulations in changing contexts.

Acknowledgements

This research work is granted by the French “contrat de plan État-Région” and the EU FEDER.

References

[1] R. Burkhart. “The Swarm Multi-Agent Simulation System”. Object-Oriented Programming Sys-
tems: Langages and Applications (OOPSLA), Workshop on The Object Engine, 1994.

[2] O. Gutknecht, J. Ferber, F. Michel, “Integrating tools and infrastructures for generic multi-
agent systems”. In: Proceedings of the fifth international conference on Autonomous agents
(AA’01), ACM Press p. 441–448, 2001.

[3] U. Wilensky. NetLogo. Center for Connected Learning and Computer-Based Modeling, North-
western University, Evanston, IL, 1999. http://ccl.northwestern.edu/netlogo/.

[4] Y. Demazeau, “From Interactions to Collective Behaviour in Agent-Based Systems”. In Pro-
ceedings of the 1st European Conference on Cognitive Science, Saint-Malo, 1995.

[5] K. Schelfthout, T. Coninx, A. Helleboogh, T. Holvoet, E. Steegmans and D. Weyns, “Agent
Implementation Patterns”. In Proceedings of the Workshop on Agent-Oriented Methodologies
at OOPSLA’02, 2002.

[6] A. Gouaich and F. Michel, “MIC*: a Deployent Environment for Autonomous Agents”. In Envi-
ronments for Multi-Agent Systems, First International Workshop (E4MAS’04), 2004. Springer
LNAI 3374.

[7] P. Mathieu, S. Picault et J.-C. Routier. “Simulation de comportements pour agents rationnels
situés”. Actes de la conférence Modèles Formels pour l’Interaction (MFI’03), p. 277–282, 2003.

[8] J. Ferber et O. Gutknecht, “A meta-model for analysis and design of organizations in multi-
agent systems”. Proceedings of the Third International Conference on Multi-Agent Systems
(ICMAS’98), p. 128–137, 1998.

[9] M. Resnick, Turtles, termites and traffic jams. Explorations in massively parallel microworlds,
MIT Press, 1997.

[10] S. El Hadouaj, S. Espié, A. Drogoul, “A multi-agent road traffic simulation model: validation of
the insertion case”. Summer Computer Simulation Conference (SCSC 2004), 26-28 July 2004.

[11] J.M. Epstein et R. Axtell, Growing Artificial Societies. Social Science from the Bottom Up,
MIT Press, 1996.

[12] R.C. Paton, M. Fisher et K. Matsuno. “Intracellular signalling proteins as ’smart’ agents in
parallel distributed processes”. Biosystems, 1999.

[13] S. Leibler, L.H. Hartwell, J.J. Hopfield et A.W. Murray. “From molecular to modular cell
biology”, Nature vol. 402, déc. 1999.

[14] The SimuLE project homepage.
http://www.lifl.fr/SMAC/projects/simule/.

