Planification for Spatially Situated Agents in
Simulations

Damien Devigne Philippe Mathieu Jean-Christophe Routier
Laboratoire d' Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
59655 Villeneuve d' Ascq, France.
Email: devigne@lifl.fr, mathieuelifl.fr, routierelifl.fr

Abstract— Most often, agent-based situated simulations use

reactive agents. While the use of this paradigm offers a rather
natural way to build simple behaviours, it is not so easy to define
complex behaviours, and these are often built ad hoc and requires
precise adjustements. Moreover reactive model is not well fitted
to describe deliberate group behaviours since it is more intended
to emergence.
For these reasons and in order to obtain more explicative models,
we are working on proactive agent-based situated simulations. We
aim at proposing a generic cognitive agent model. Such agents
must build plan to achieve some goals and thus to propose
a behaviour. In this paper we show why and how classical
planification works must be adapted to the particular context
of spatially situated agents in simulations.

Index Terms—agent based simulations, cognitive agents, plan-
ification, situated agents

|. INTRODUCTION

Our work aims at producing agent-based simulations where
the agents, situated in a geographical environment, are pre-
senting rational behaviour. An application of such a work can
be simulation platforms like video games are.

According to J. Laird, they constitute a “Killer Application”
for human-level Al [1]. The characters involved in video
games have indeed to be perceived as autonomous entities with
increasing realistic behaviours. They have to be convincing,
thus their behaviour must comply with the rational expecta-
tions of their partner or opponent human players. They aso
need to adapt to new situations, acquire additional abilities
throughout the game, etc. In addition, team strategies are also
often useful. In order to develop such kind of interactions,
the agents have to make the human observer think that they
behave in an “intelligent”, “rational” way, as a human would
behave in order to achieve its own goals.

This domain combines difficulties that can be encountered
in classical Al (knowledge representation, planification), in
Distributed Al (coordination of agents having most of the
time different individual goals), and in Software Engineering
(reusability of conceptual and software tools).

Some propositions have been done concerning agents and
games [2],and most of them concern reactive agents [3]. But
reactive agents, while effective in several cases, offer limited
behaviours. Indeed their behaviours are “short term directed”
and not “goal oriented”. Their ability to perform some tasks
depends on the immediate surroundings and does not result of

wilful acts. Our proposition aims at offering cognitive, driven
by goals, proactive agents.

The generic approach we would like to promote assumes
that a single formalism can be used to design computer models
either for simulating natural phenomena or for producing
realistic behaviours in an artificial world in general and in
games in particular. Thus from one simulation to another the
cognitive behavioural engine stays the same even if the context
changes and the behavioural components, we call interactions,
can be (partially) reused. The main principle is to base the
simulations dynamics (and the knowledge representation too)
on interactions between agents. some agents can perform
interactions and other agents can suffer them.

One particular point is that we want to reach some genericity
in the interaction coding. The interactions code the rules of
the modelised universe and, most of them, can be reused from
one simulation to another. To reach this genericity we do not
explicitly mention the “move actions’ in the interaction. These
are consequence of a particular context and then cannot be
explicitly mentionned.

Since we want proactive (cognitive) agents, we provide
them a behaviour's engine. It is responsible of the determi-
nation of the action the agent must (try to) perform. The
chosen action is supposed to help to reach the agent objectives.
To make this choice, the engine builds plan. Planification
has been subject to numerous works, but we are here in a
particular case because agents evolve in situated continuous
environments. This situated aspect will have impact on the
planification works as we will see here.

In the next section we discuss about the influences of
the situated aspect on the planification and how it modifies
classical approach. Then we present the principles of the
situated planification agorithm used by our agents in our
simulations.

Il. PLANIFICATION IN SITUATED CONTEXTS

There exist numerous works on planification. However
while working in a situated context, this works need to be
adapted. The main reason is that to perform the actions that
are proposed by the plan, moves must be done by the agents
in their environment.

We will present and discuss here the problems implied
by the “spatialy situated” aspect of the simulations and the
(imperative) need to execute them rationally.

A. Monkey is not situated

In the majority of works on planning ([4], [5]) non situated
problems are considered and built. Even if some appearances
in the description of the subject can lead to think that the
solved problem is situated, most often the moves are not
planned and above all the plan is not realy executed and
therefore not confronted with any situated environment.

This is the case for the rather classica planification toy
problem: the monkey-banana problem. This problem gives
the feeling of a situated problem but the plan provided to
solve it does not mention moves. Relative positions are not
really considered and moves are not effectively performed,
see Figure 1.

Another example could be the dinner-date problem pre-
sented in [5] to illustrate the GRAPHPLAN algorithm. In this
problem one must prepare a surprise date and then the goal is
to take out the garbage, to fix dinner, and to wrap a present.
Here again, in the problem coding, and by way of consequence
in the solution proposed by the graphplan algorithm, no moves
are taken into consideration. Thus if one wants to visualy
simulate the resolution of this problem by a situated agent, the
provided plan can not be used as it is. Indeed, in a realistic
simulation, the trash or the present are located in some places
that must be reached before the agent interacts with the object.
The same occurs with the kitchen in which dinner is fixed.

This problem can not be easily tackled using GRAPHPLAN.
Asthe authorssay in [4], “one main limitation of GRAPHPLAN
is that it applies only to STRIPS-like domain” and knowledge
must “be determined statically”.

Even if some works introduce conditional action schemata
and adapt the planning graph expansion routine [6], [7], they
do not solve the problem. First they lead to an explosion of
the number of STRIPS actions and can produce as many as n?
new actions for only one action with n conditional effects,
each containing p antecedent conjuncts [6]. This number
is multiplied by the number of initial conditional actions.
Second, GRAPHPLAN descendants require that the world being
modeled is defined statically. However in simulations, one
must considered open, dynamic universe and elements of
the simulations can move and, for example, the locations of
elements can not be staticaly fixed.

B. Abstract plans and execution plans

Since the main goal of our work is the simulation, we
must always have in mind that any computed plan must be
effectively executed in a situated environment. This introduces
different levels in plans.

We will name abstract plan a plan where the positions
(relative or absolute) of the agents are not taken into account.
We will name concrete plan or execution plan the plan due
to the execution of an abstract plan in a particular situated
context. For a given abstract plan, several execution plans are
possible depending on the contexts.

Now, a problem arises when the agent wants to execute the
computed plan. The next action to be performed by an agent
is chosen according to the abstract plan (actually, the abstract
plan can offer several possible “commutative” actions). The

trouble comes when this action is an interaction between him
and an other agent. And it is often the case. The notions of
distance and neighbourhood interfere here, since knowledge
representation, and the desired realism, can require that the
two agents must be “sufficiently near” for the interaction to
be executed. Therefore the actor must first move in order to
come near the target agent.

Here a difference is introduced between the abstract plan
produced by a “standard” plan builder and the “real” plan due
to the execution in a situated environment.

Thus, assume that, to solve a problem, we obtain the
following abstract plant: “{ai,as, a3} then {a4,as}”, where
the positions of the implied agents have no influence.

Even in a situated context, the existence of such a plan has
a meaning. It corresponds to some generic and abstract level.
This corresponds to the plan you can tell to someoneto explain
him how to solve a problem. For example “to build shelves,
you need planks, nails, a saw and a hammer, then cut planks
at the right dimension and assemble them”. This plan remains
valid in several geographical contexts. But it is different with
its execution which is context dependant, for example if one
must fetch nails in a near room or buy them in a store.

Moreover the execution of this plan, despite of its validity,
can be impossible (at least temporarily) in a particular current
context, because the door of the near room is locked or
because one have not enough money to buy the nails. In
this case, the plan must be extended to solve the particular
contextual subproblems (“unlock door” and “fetch money” in
our examples).

Actualy, the situated context and the need to execute
“rationnally” the abstract plan leads

« to integrate required moves into the plan,

« to extend the previously (abstract) computed plan to plan

moves if required.,

« to arrange the execution of the actions according to

rationality.

In the following paragraphs, we present these three points
and explain why adding the spatialy situated side is not
just building another plan where move actions are taken into
account.

C. Integrating moves.

When an abstract plan is executed, it is necessary to confront
it with the geography of the environment. As we mentioned
earlier, the actor agent must approach the target agents to
execute the (inter)actions. But to move is an action, and
therefore must be integrated into the execution plan. Thus,
for each action of the abstract plan comes one move action
and these move actions are then grafted on the initial plan.

In the plan {a1,a2,as} then {as,as}, if we name m;
the move to reach the target of the interaction a;, we ob-
tain a “new” plan were move actions have been interlaced:
“{{m1 then al} , {m2 then a2} ,{m3 then a3}} then

lwhere the a; are interactions, other than moves, with other agents. Groups
between braces can be executed in any order, then mentions a required
sequentiality between groups of actions

The monkey and the banana.

“There is a monkey at the door into a room. In the middle of the room a
banana is hanging from the ceiling. The monkey is hungry and wants to
get the banana, but he cannot stretch high enough from the floor. At the
window of the room there is a box that the monkey can use.

The monkey can perform the following actions: walk on the floor, climb
the box, push the box around (if he is already at it), and grasp the banana
if he is standing on the box and directly underneath the banana.Can the
monkey grasp the banana?”

We describe the situation by state(M,B,0,G) and we will assume that:

e M tells us where in the room the monkey is, possible values are
door, window or middle,

s B tells us where in the room the box is, possible values are door,
window or middle,

e O tells usif the monkey is on the box, possible values are onfloor
or onbox,

e G tells usif the monkey has the banana, possible values are has or
hasnot.

From the description, we see that the initial situation can be described as:
state(door, window, onfloor, hasnot). The final state is state(,-,-,has).
Looking at the problem description, we see that the monkey can perform
four basic actions: walk (walk around), push (push the box around), climb
(climb on the box) and grab (grab the banana). Note that walk and push will
be represented as two-place structures; that is: walk(P1,P2) will represent
the action of walking from position P1 to position P2.

The ability of the monkey to perform these actions (and then to change
the state) is describes by the perform predicate: perform(A,SL,S2) means
that performing the action A takes us from state S1 to state S2.

perform(grasp,

state (middle, middle, onbox, hasnot),

state (middle, middle, onbox, has)).
perform(climb,

state (MP, BP, onfloor, H),

state (MP, BP, onbox, H)).
perform(push (P1,P2),

state(P1, P1l, onfloor, H),

state (P2, P2, onfloor, H)).
perform(walk (P1,P2),

state(P1, BP, onfloor, H),

state (P2, BP, onfloor, H)).

A solution is: walk(door,window) then push(window,middle) then climb
then grasp

The chameleon and the fly.

“There is a red Chameleon. Afly is sleeping on the ceiling. The chameleon
is hungry and wants to cach the fly, but his tongue is not long enough from
the floor. There is a blue box on the floor.

The chameleon can perform the following actions: change his color, paint
the box (and he changes his color simultaneously, hey he is a chameleon
after all!), catch the fly if he is standing on the box and if the box is green.
Can the chameleon catch the fly?”

We describe the situation by state(C,B,0,G) and we will assume that:

e C tells us the color of the chameleon, possible values are red, blue
or green,

« B tellsusthe color of the box, possible values are red, blue or green,

e O tellsusif the chameleon is on the box, possible values are onfloor
or onbox,

e G tells usif the chameleon has the banana, possible values are has
or hasnot.

From the description, we see that the initial situation can be described as:
state(red, blue, onfloor, hasnot). The final state is state(,-,-,has).

Looking at the problem description, we see that the chameleon can perform
four basic actions: change-color (change his color), paint (paint the box
- and change his color), climb (climb on the box) and catch (catch the
banana). Note that change-color and paint will be represented as two-
place structures; that is: change-color(C1,C2) will represent the action of
changing from color C1 to position C2.

The ability of the chameleon to perform these actions (and then to change
the state) is describes by the perform predicate: perform(A,SL,S2) means
that performing the action A takes us from state Sl to state S2.

perform(catch,
state (green, green, onbox, hasnot),
state(green, green, onbox, has)).
perform(climb,
state (CC, BC, onfloor, H),
state (CC, BC, onbox, H)).
perform(paint (C1,C2),
state(Cl, Cl1l, onfloor, H),
state(C2, C2, onfloor, H)).
perform(change-color (C1l,C2),
state(Cl, BC, onfloor, H),
state(C2, BC, onfloor, H)).

A solution is: change-color(red, blue) then paint(blue, green), then climb,
then catch

Fig. 1. The monkey-banana problem is not situated (original solution and presentation (left) from http://www.compapp.dcu.ie/~alex/
LOGIC/monkey.html). The version presented in the left side seems to be a spatially situated problem. In the right side we present the same problem,
we simply replace words by others. However this second version does no more appear to be spacially situated (we keep the “climb” action for simplicity).
Actualy in the left version, situation have no importance since the moves are not really performed, or does not need to be taken into account since they are,
by hypothesis, successful. They are more “teleportation” than moves. Therefore they simply corresponds to change of state like changing color is.

{{m4 then a4}, {ms then a5}}" (see. Figures 2 and 3 where locked, the agent has to take the appropriate key before trying
plans are drawn in a classical tree-like representation). to (unlock and to) open the door. This action (taking the key)

Thus we see that, simply because the abstract plan must must then appear in the plan, but it generates its own move
be executed in a particular topological context that implies towards the key too ! And so on...

moves, this one must be adapt. But this raises a new problem: Thus for a given valid abstract plan, we have a lot of

moves are actions and they must be planned too. different possible execution plans depending on the context
of this execution, as it is illustrated in figure 4.

D. Planning moves The resolution of the plans for each move must then be

Indeed, the second perturbation introduced by movesin the ~ added to the one of the main abstract plan. Moreover a plan
p|an is when to be successful |y done, a move raqui resits own execution failure must be due to ImpOSS| ble moves, the val |d|ty
planning. of the initial abstract plan is not in cause in this case.

For example, this is the case when a move towards a target
leads the agent to open a door, he must then plan this door
opening. This action does not appear in the abstract initial plan
since this door does not exist in every context, and could even The third effect of the situated side influences the order
already have been opened, but it is necessary for the execution in which actions will be executed. Even if the abstract plan
of the plan in this particular context. Moreover if this door is imposes no specific order in the execution of the actions that

E. Arranging actions

abstract plan act on O

Situated plan

move to O, then act on O

situated plan with door

move to door, open door, move to O, then act on O

situated plan with locked door

move to key, take key, move to door, unlock and open door, move to O, then act on O

Fig. 4. Different executions plans of the same abstract plan. Execution plans depend on the context.

123} a» as ay as

Fig. 2. An abstract plan.

Ve e

hy ny ms

a My g, m3 g; 1 ds

Fig. 3. One execution plan associated to the former abstract plan, the required
moves m; have been added.

compose it (because no action is precondition of another one),
the execution plan can change that.

Indeed, the moves are going to be one of the more visible
points while considering the rationality of behaviours and by
way of consequence the realism of the simulation. If it is
not redlistic to always have optimal moves, it is no more
admissible to have openly unnecessary extra moves. At least
alocal optimum of the covered distance is expected.

Let us consider an abstract plan with three actions {a1,
as, az}. No specific order is required at this abstract level
and the sequences (a1, a2, az) and (aq, as, az) are considered
equivalent. But in some given situated context, they become
(ml,al,mg,ag,mg,ag) and (ml,al,mg,ag,mg,ag) respec-
tively. And, as an example, we see in the context of Figures 5
that the second execution of the same abstract plan appears
to be less rational than the first one, because of the extra
covered distance. And the more the positions 1 and 2 and the
position 3 are distant the less the second execution appears to
be reasonable.

Thus, even without trying to reach optimality, we see that
moves have an influence over the order of execution of the
actions because some rationality is expected.

F. Execution of the plan

A last singularity introduced by the situated side is not
due to the plan building but to its execution. Indeed, once
an execution plan is established, the agent must decide among
all the executable actions (according to the plan), the next one

.

Fig. 5. Action a; must be executed at position ¢ with no particular order. Two
executions of the same abstract plan are presented. Actions are performed in
different orders and in the second, unnecessary moves are done, this will be
evaluated to non rational.

to be executed. We will see in section I11-D that in this case
too, move actions require particular considerations...

I11. PLANNING

To take this particul arities into account we propose a specific
planning algorithm based on backward chaining. To fulfil its
goal, the (active) agent searches among all the interactions he
can perform, those that can help to achieve it, and then choose
one. If the conditions of this action are satisfied (according to
the agent memory), the (inter)action can be fired and the plan
is applied. Otherwise, the non satisfied conditions become new
goals that need to be planned, and so on.

One think to keep in mind is that we want to execute the
agent behaviours and we want the obtained simulation to be
“rationa”. However rationality is of course subjective and is
evaluated by ajury (the simulation observer(s)) that is external
to the simulation. We will consider a behaviour as rationa if
a human, which would have had the same information than
the agent, could have reasonably taken the same decision to
perform an action to solve the (same) objective.

A. Interactions and Agents

We cannot enter here in deep details concerning the inter-
action and the agent models we use in our simulations. Only
the notions required to the understanding of the following are
presented.

The geography of the environment is a discrete map made
of atomic places. Each agent is situated on a single place.
Neighbourhood between places is defined by links, these links
are labelled with a condition that must be satisfied by the agent
who wants to use it (most of the conditions are simply true).

1) Interactions. Interactions are the backbone of the mod-
glisation in our simulations. They are at the basis of the
knowledge representation in the simulation since they define
the actions that can be undertaken in the simulation and
therefore they represent the laws of the modelised universe.
Some agents (the actors) can perform interactions and others
(possibily the same) can suffer them (the targets).

An interaction is described by three parts:

e aguard, it checks general conditions for the interaction
applicability, typically it defines that to be fired an
interaction requires that the distance between the target
and the actor must be less than some given value.

« a condition, it tests the current context of execution of
the interaction, it consists mainly in tests on values of
target or actor properties.

« an action, it describes the consequence of the action, it
can be a change in the state of the actor and/or of the
target (ie. a change of the value of a property), and/or the
activation of an environment action (like the creation of
an agent).

The guard is separated from the condition since it corresponds
to the knowledge due to the spatially situated aspect of the
simulations. In a non situated problem, one will have only the
condition and action part.

By example, to open an object (door, chest, window, etc.)
makes it changing from closed state to opened one. The nature
of the target is of no importance here, this knowledge can then
be represented in a “universal” way by the interaction:

guard = “distance(actor, target) = 0"
open: ¢ condition = “target.opened = false”
action = “target.opened = true”

The guard express that in a situated context, the actor must be
near the target to open it.

We cannot detail it here but we establish something like
inheritance on interactions in order to promote genricity. It is
possible to particularize an interaction for some targets, thus
the goal of the actor can stay the same even if he must change
his plan?.

2) Agents. We distinguish two kinds of agents. animated
an inanimated agents (not to be confused with mobile/non-
mobile agents). Both are defined by properties and can suffer
interactions but the former can also perform interactions and
have a behavioural engine.

2For example, for a lockable door, the open interaction receives one
extra condition target.isLocked = false that must be solved (then
possibly planned) even if the actor’s goal remains “open the door”.

The animated agents are cognitive and proactive agents. The
structure structure of their “mind” is presented at Figure 6.
Agents have a memory that can be seen like a “degraded
environment”. This one represents the knowledge base for
al the information gathered by the agent concerning the
environment: the topology of the environment, the other agents
(their position and state). This information is used by the
planification engine to determine the action that the agent
must try to execute in the environment to fulfill his goal.
A perception module is used to pick up information in the
environment and to update the memory. Updates are performed
by a separate module that has an influence on the planification
engine in order to adapt the currently computed plan to the
new perceived situation. This last module is a kind of “short
term memory”.

inferactions
S
==z 2

Planification
engine

Updates
module

I

Perception (vision)

0 o sleion >

ZO'—'—|cnrn><m‘

(@)

= SV
= .

Fig. 6. Different elements of agent mind.

Animated agents have goals. The satisfaction of these goals
leads the agent to behave according to a computed plan.
There exist two kind of goals. First, the interaction-goals, they
correspond to an (inter)action that the agent wants to execute.
The target of this interaction can be less or more precisely
given: from a named agent to any agent that can suffered the
interaction, as shown in the next table:

goal type of target

eat (apple_12) a given named apple

eat (an apple) | any apple

cat (*) any eatable (ie. “who can-suffer eat”) agent

Second, the condition-goals, they correspond to a condition
that the agent want to bring to true. For example:

actor.energy > 100 :
“having his energy being greater than 100"

B. Planning tree

In arather classical way, the plan produced by the backward
chaining can be viewed as a tree. The nodes are made
of the different goals and subgoals encountered during the
resolution. Some are interaction-goals, others are condition-
goals. Thus this tree is an AND-OR tree. AND-nodes corre-
spond to condition-nodes (for condition-goals) and or-goals
to interaction-nodes (for interaction-goals).

a) Condition-nodes and interaction-nodes. A condition-
node has sons only if its condition is not satisfied. These sons
are interaction-nodes built from the interactions whose action
part offers a way to satisfy the condition (or to approach this
satisfaction, for example by increasing the energy for the above
given condition-goal example). The tree leaves are the satisfied
condition-nodes (ie. whose conditions are satisfied).

The interaction-node’s sons are built from the conditions
that can be found in the condition and guard parts of the
interaction: from these, condition-nodes are built. These sons
are always built. An interaction-goa is said to be satisfied
when al its sons are satisfied, the associated interaction is
then declared runable.

These classical and general cases being presented, we can
now stay on the particular cases introduced by the situated side
and more precisely the moves as discussed in paragraph I1.

b) Move-nodes and exploration-nodes: For the agent, To
move or to explore the environment corresponds to execution
of interactions. The associated nodes must then be present in
the planning tree as particular cases of interaction-nodes.

The exploration case can be reduced to the move case. To
explore the agent must indeed make move towards a chosen
location. The existence of the exploration-nodes are justified
by the need to chose the targeted position before making the
move. The agent must then apply his own exploration strategy
to make his choice. Thus, in the following, we will only
concentrate on the move case.

One problem is: what are the condition-nodes sons of
a move-node? This problem amounts to ask what are the
conditions that must be satisfied to make a move possible.
To make a move a path is computed, a path is a sequence of
atomic steps from atomic places to atomic places. With these
places come the conditions on the links. A move is possible if
these conditions are satisfied. With these conditions we create
condition-nodes that become the sons of the considered move-
node.

C. A backward chaining

The planning tree is built using a rather classical backward
chaining agorithm.The different above mentioned kinds of
nodes receive specific expansion algorithm. Every calculus is
based on the memory (ie. the beliefs base) of the agent. It
is in particular the case for the conditions checking or the
computation of a move path. The computed plan is therefore
valid according to the agent memory, but can be wrong once
it faces up to the reality of the environment.

If the same (sub)goal occurs more than one time during the
planning, the corresponding node is not expanded twice, it is
shared by its fathers. The tree is then an oriented graph.

D. Action selection

We said that the interactions whose conditions and guards
are sdatisfied are runable. The agent must then chose among
all the runable actions the next one to be fired. This choice
depends on a strategy which can be different from one agent
to another.

Once the action has been chosen, the agent tries to perform
it in the environment. At this moment it is necessary to check
if the conditions (and guards) that the agent, according to
his memory, believes they are satisfied, are actually so in the
environment. If not, the agent must update his beliefs.

We said in section Il that the introduction of the situated
side in the planning has an influence on the order of the actions
during plan execution. This influence appears during the above
mentioned action selection phase: one must take into account
the location of the places where the implied actions must be
performed (see Figure 5).

But this is not the unique particular case. Others are more
complicated.

Move actions must be assigned with a special status, at
least when they correspond to moves due to the resolution of
a distance guard. They can indeed not be treated in the same
way that the other actions.

To explain that, let us consider the case of an interaction
I having 3 conditions ¢y, ¢ and ¢3 and a distance guard d.
The interaction-node associated to I has the 4 corresponding
condition-subnodes. The expansion of the condition-node ded-
icated to d leads to move actions whose aim is to bring the
agent to the place where the interaction I must be performed.
The expansion of nodes ¢; leads to interaction-subnodes in
order to satisfy the conditions.

As soon as the interaction-subnodes of the ¢;’s are satisfied,
their interaction can be fired by the agents, even if others
c;’s interactions are not satisfied. That means that the satisfied
interaction can be considered by the action selection phase.
But, this is not the case for the move interaction-subnodes of
d. Even if this move interaction-subnodes is satisfied (this is
the case for example, when the agent knows a path with no
condition towards the aimed place), it has no sense to consider
this move action during the action selection while not all the
¢;'s are satisfied. This could indeed leads to the situation where
the agent goes to the required place, but once he has reached
it, he is unable to perform the action for which the move was
made! Moreover the agent knew before he moves that this
situation will occur! Thusto perform the move was not rational
and therefore must not have been done. Consequently move
actions must not be considered in the action selection phase
while al other conditions implied in the same interactions are
not satisfied (the ¢; in our example). We could consider that
in the subnodes of interaction-nodes (AND node), there exists
two parts: the condition-nodes AND THEN the guard nodes.
This illustrates a particular case implied by moves and the
situated aspect.

After such a discussion, one could ask if it would not be
sufficient not to make move planning (ie. no distance guard
condition-node expansion) as long as all the other conditions
are not satisfied. The answer is no. Indeed, consider the case

where, to make a move possible, some extra planning is
required, something like “having that key in my drawer to
unlock the door of the office | must reach”. The actions (that
are not moves) that correspond to this planning (something like
“open the drawer and take that key” in our example) must be
done as soon as possible insofar as they can be foreseen, even
if al the other conditions of the interactions the agent wants
to perform in the mentioned office are not yet satisfied.

As we can see, move-actions subtrees must be treated in
a special way and this case does not occur in non situated
context or when the rationality of the executed behaviour
(plan) is not considered.

E. A partial replanning

The agent evolves in a dynamic and non monotonic envi-
ronment. He can then be brought to adapt a computed plan
according to new perceived information. These information
can be of several types, here are the main ones:

« anew information: the agent learns that a so far unknown
information exists. It is the case when he sees anew place
or meets an agent for the first time, gets a new goal,
discovers a condition on a path of the graph, etc.

« a modification of an existing information: it concerns
mainly modifications about the state of known agents, a
property value change or a position change. The position
change information covers three situations:

known—known: we thought agent at a position
and we see him at another

known—unknown: we thought agent at a viewed
position and he is not there

unknown—known: we did not know where the
agent were and we see it

« an action has been performed: this information is used
to take into account the modifications implied by an
interaction performed by the agent.

It is the new information management module that is in

charge of forwarding these information to the planning engine.

However, a new information concerns only a portion (even

none) of the planning tree. Therefore, it is neither reasonable,
nor efficient, to rebuild a new plan for every new information.
Indeed, even if it is established that, in theory, no efficiency
gain can be guaranteed while using plan reuse rather than
new plan generation ([8]), in practice improvements can be
expected. Indeed, our context of dynamical simulations corre-
sponds to the case where the agent perceives very frequently
dlight changes in his knowledge base. In particular, thisis due
to the fact that the agent engine use uncertain information:
the planification is based on the information that are in
the memory, but, since simulations occur in open dynamic
environments, this information are non monotonic, and the
built plans are correct with respect to the memory of the agent,
but can be wrong once confronted with the real environment, at
the execution step. Therefore only partial and local adaptations
can be expected in most of cases. Our experiments confirm
that.

We do not have enough space here to detail this partial

replanning. In broad lines, our approach is to top-down prop-
agate new information, from root to leavesin the planning tree.

The information determines which of the nodes are concerned
by it and only the concerned nodes are updated (collapsed,
re-expanded, addition or remova of subnodes, etc.). Thus
information that affect the graph topology or agent positions
can have an impact on move-nodes but not on others. In a
similar way, a new met agent can affect a condition-nodes if
this agent can be the target of an interaction that helps to solve
the condition. In this case a new interaction-subnode must be
added.

IV. CONCLUSION

In most of cases agent-based situated simulations use re-
active agents. We propose to use proactive/cogntive agents.
This implies to provide our agents with a planification engine.
However since simulations occurs in a situated context, a
particular approach of the planification is required. Indeed,
plans must be executed to perform the simulation. In a situated
world, this implies that the actor must moves to reach the
location where an action must be fired. This need to integrate
moves leads to adapt the computed abstract plan. We have
discussed the problems implied by this move's integration.
We propose a planification algorithm for agent in a situated
context. A computed plan is partialy rebuilt when agent
detects new information.

We have implemented this algorithm and our cognitive agent
model in asituated simulation framework. This resultsin about
150 java classes for implementing the environment, agent and
interaction models and another 250 classes for a graphical
platform that provides GUI tools for creating interactions,
agent classes and instances, environment map and executing
simulations. This framework has helped us to lead experiments
to illustrate and to validate our propositions.

We are currently working on adapting our models to build
simulations with teams of agents. With reactive systems col-
laborations between agents comes from emergence. With our
proactive approach we want to settle deliberate cooperation
between agents that are members of a team.

REFERENCES

[1] J. E. Laird and M. van Lent, “Human-level Al's Killer Application:
Interactive Computer Games,” 2000.

[2] A. Nareyek, “Intelligent agents for computer games,’” in Computers
and Games, Second International Conference, CG 2000. LNCS
2063., 2000, pp. 414-422. [Online]. Available: citeseer.nj.nec.com/
nareyek00intelligent.html

[3] ——, “Specification and development of reactive systems,” in 1998 AIPS
Workshop. Menlo Park Californiaz AAAI Press, 1998, pp. 7-14.

[4] A.Blum and M. Furst, “Fast planning through planning graph anaysis,’
in Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 95), 1995, pp. 1636-1642. [Online]. Available:
citeseer.nj.nec.com/blum95fast.html

[5] D. S. Weld, “Recent advances in Al planning,” Al Magazine, vol. 20,
no. 2, pp. 93-123, 1999. [Online]. Available: citeseer.nj.nec.com/article/
weld99recent.html

[6] B. Gazen and C. Knoblock, “Combining the expressivity of ucpop with
the efficiency of graphplan,” in Proceedings of the Fourth European
Conference on Planning. Springer-Verla, 1997.

[7] C. Anderson, D. Smith, and D. Weld, “Conditional effects in graphplan,”
in Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems. AAAI Press, 1998, pp. 44-53.

[8] B. Nebel and J. Koehler, “Plan modification versus plan generation: A
complexity-theoretic perspective,” in Proceedings of of the 13th Inter-
national Joint Conference on Artificial Intelligence (1JCAI), 1993, pp.
1436-1441.

