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Abstract

In multi-agent systems simulations, reproducing realistic

behaviors is a crucial issue. Their variety and consistency

are important factors, usually not specifically considered.

In this paper, we propose a behavioral differentiation model

designed (1) to generate various and consistent behaviors,

and (2) to control the determinism of this generation. Based

on a normative system and a nondeterministic generation

engine, it allows users adapting it easily to their various

needs. Finally, we show its application to the traffic simula-

tion software developed and used at Renault, SCANeR c© II.

1 Introduction

A crucial issue in multi-agent systems simulations ad-

dresses the realism of agents’ behaviors. Indeed, when

working on simulations reproducing real world situations,

unrealistic behaviors get users to question their results.

Many elements influence the realism; two major criteria are

the variety and the consistency of the behaviors. Without a

large variety of behaviors, a high level of realism is unlikely

to be observed. This variety is often obtained by providing

the agents with individual characteristics, like clothing for

agents in virtual crowds [8]. Behaviors have to be various,

but also consistent. It is an essential criterion for the validity

and the credibility of the simulations, which will be ques-

tioned if aberrant behaviors appear. Usually, no mechanism

is provided to generate a broad variety of behaviors, while

guarantying their consistency. The intrinsic properties of

normative systems provide an interesting means to describe

the behaviors of the agents [4], and offer the possibility to

use deviations to increase the behavioral variety. Managing

the determinism is the common point in the various iden-

tified needs of the users. The generation of the behaviors

uses thus nondeterministic principles, like applied in dis-

placement models [10]. It allows not only generating the

behaviors, but also controlling the simulation itself.

In this paper, we present first the proposed behavioral

differentiation model, before describing the data structure

and the generation engine. Finally, we show an application

to traffic simulation and discuss experimental results.

2 Description of the model

Many multi-agent systems take benefits from the charac-

teristics of normative systems [1, 11]: regulation possibil-

ities, coordination and cooperation improvements. . . How-

ever, in addition to these, they can be used as generic struc-

tures allowing describing all kind of elements, from the de-

cision model of the simulation [2] to the specific skills of

the agents [9]. This provides a high genericity to the system.

Moreover, the normativemodels intrinsically handle the no-

tion of violations, which can be exploited to generate vari-

ety. They are thus adapted structures to answer our specific

needs [6]. A generation engine is also needed to produce the

behaviors. It has to meet different requirements. First, be

generic and flexible: it should be easily adaptable to various

contexts, while usable by functional as well as technical ex-

perts. Second, keep under control the reproducibility of the

simulations and the consistency of the behaviors. The man-

agement of the determinism is central in all these points, so

the mechanism is based on the use of nondeterminism. It

is generalized to be available at any level of the simulation,

depending on the control users wish.

The data structure describes the behavior of the agents

as norms. The selection of the parameters characterizing

the behaviors within the norms limits guaranty their consis-

tency, and two different means lead to behavioral variety.

First, using the definition of the norms themselves: as the

definition domains can be as wide as wished, a large po-

tential of behaviors is available. Second, using the gener-

ation engine, during the instantiation of behaviors. In this

last case, violations may eventually be allowed to experi-

ment unexpected behaviors. However, the consistency cri-

teria can then obviously not be guarantied any more.

The data model associated to the generation engine can
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be used as an external tool providing input parameters to the

simulation. In this case, the simulation keeps using its in-

ternal decision model, and only requires the differentiation

model for specific cases (for example parameters creation,

like presented in section 5). Another possibility is to use

the generation engine to manage the whole simulation, if

the norms described in the data model represent a decision

model.

3 A data structure based on norms

3.1 Semantic

A classical terminology is used to present the norma-

tive model. However, some definitions have been slightly

adapted to our context, to allow an efficient description of

the data structure.

Definition 1: Institution We define an Institution as a tuple

〈P, DP , ΓP , Pi, Pe〉 where: P is a finite set of parameters ;
DP = {dp, ∀p ∈ P} is a set of definition domains, defined
for each element in P ; ΓP = {γp : dp → R, ∀p ∈ P} is a
set of distance functions, defined for each element in P ; Pi

is a set of institutional properties ; Pe is a set of environ-

mental properties.

The purpose of the institution is to manage the norms

in the environment. It is mainly used as a set of parameters

and definition domains, and provides a distance function for

each of the definition domains. A set of institutional and en-

vironmental values keeps track of the contextual elements.

Note that parameter is used here with a wide meaning: it

can be an action rule associated to its pre-conditions.

Definition 2: Norm We define a Norm as a tuple

〈I, Pn, DPn
, Pni

, Pne
〉 where: I is the institution the norm

refers to ; Pn ⊂ P is the subset of parameters associated to
the norm ; DPn

⊂ DP is the subset of definition domains

; Pni
is a set of institutional properties ; Pne

is a set of

environmental properties.

Norms are subsets of the institution parameters, asso-

ciated to subsets of the definition domains. They handle

specific sets of institutional and environmental properties,

which can specialize institution’s ones. Conflicting norms

are allowed; their preference ordering and their interpreta-

tion are left to the decision model of the agents. Several

norms can be defined for the same environment, and norms

can have non-empty intersections.

Definition 3: Behavior A Behavior is defined as a tuple

〈N, Pb, VPb
, Pbi

, Pbe
〉 where : N is a reference to the in-

stantiated norm ; Pb is a subset of the set of parameters

defined in the instantiated norm ; VPb
is the set of values

associated to the parameters ; Pbi
is a set of institutional

properties ; Pbe
is a set of environmental properties.

A behavior describes the instantiation of a norm. Each

element of the behavior is described by a parameter taken

from the corresponding norm, and a value associated to this

parameter. This value can be taken in or outside the defini-

tion domain associated to this parameter in the norm.

3.2 Quantification of the violations

In the proposed model, we take advantage of the behav-

ioral variety offered by the possibility to violate the norms:

a behavior having at least one of the values of its parame-

ters outside the definition domain specified in the norm is

in violation. Their creation happens during the instantiation

process of the behaviors: values may be taken in or outside

the definition domain, according to the generation engine

used. These violations can be quantified using two criteria:

first, using the number of parameters’ values which are out-

side the limits; second, using the distance functions defined

in the Institution. This quantification can be exploited to ex-

clude too deviant behaviors, as we are able to measure the

deviations. It can also be used to create unexpected behav-

iors and study their influence on the simulations.

For instance, consider the behavior of the drivers regard-

ing the safety distance on roads. This behavior is part of an

institutional environment (the Highway Code), using norms

(the 2 seconds rule). The norm can be described different

ways: for example, either the parameter safetyT ime has a
definition domain {2 s}, or safetyT ime corresponds to a
normal distribution of mean µ = 1.5 s and standard devia-
tion σ = 0, 25 (more realistic). Suppose a driver adopts a
safety time ts = 1.2 s. With the first norm’s definition, he is
in violation (1.2 6= 2). If we define the distance function as
γ = |2 s − ts| / 2 s, the deviation is 40 %. With the second
definition, no violation is observed.

4 The generation engine

4.1 Description

The instantiation from norm to behavior required by the

data structure is achieved using a generic generation engine,

based on nondeterminism: it assigns objects to the agents,

while managing the determinism’s level of this attribution.

Each agent is associated to a finite set O of available ob-
jects. All objects in O are balanced with a probabilistic
factor po, and a deterministic process d is associated to the
agent to select the next object. Let p be a random parame-
ter, p ∈ ]0, 1]. At each time step t, Ot ⊂ O is the set of
objects which can be selected. Using the probability 1/p,
the agent uses randomly one of the objects in Ot, else it

uses the deterministic process d to choose it. p itself is ran-
domly chosen with a probability q. If q = 0, the probability
to choose randomly an object is null, and the resulting be-

havior of the agent is purely deterministic. If q = 1, the
object is randomly chosen at each step, and the behavior is

646497



purely non-deterministic. In all other cases, the behavior is

semi-deterministic. The engine runs in three steps. First, the

parameter q is chosen by the user or loaded from the con-
figuration. It can be modified on runtime, or remain fixed

during the whole simulation. Second, p is computed at each
time step, and used to select the next object o. Finally, the
agent applies o according to its own probability po.

This generic generator can be applied at different levels

in the simulation (at the level of the agents to select their

skills, at the level of the simulation to select global param-

eters. . . ), and allows following the provided deterministic

process, or easily introducing and controlling nondetermin-

ism.

4.2 Working with the data structure

This generation engine can be used to instantiate the be-

haviors of the data structure. The nondeterminism possibil-

ities naturally introduce the desired behavioral differentia-

tion. To do so, the generation engine is used at the norm

level: O = Pn. Ot = Pb ⊂ Pn is the set of available

parameters for the processed Behavior. The model is used

to instantiate the value vpb
of the parameter from the corre-

sponding definition domain dpn
of the norm. The definition

of each parameter pn ∈ Pn includes the probabilistic factor

pfpn
. The factor q is managed by the behavior, as it can

differ for each agent. The probabilistic factor p is gener-
ated as p = f (q). Finally, vpb

= gpn
(dpn

, p, pfpn
). Any

data model able to be described by the formalism presented

in section 3 can be instantiated with the generation engine.

For instance:

Soccer player agents: consider only the behavior

“shoot” where soccer player agents have to choose if they

shoot right or left in the goal: we have a norm shoot,
using only one parameter direction of definition domain
{left, right}. Suppose the deterministic process being
the {right, left} sequence repeated. If q = 0, the agent
will always shoot right, left, and repeat the sequence.

If q = 1, it will always shoot randomly right or left.
(http://www2.lifl.fr/SMAC/projects/cocoa/football.html ).

Market agents: agents emit trading desires to the mar-

ket, which are interpreted according to market model trad-

ing rules. These desires are defined by a composition of

three characteristics: a direction, a price and a quantity. The

direction is the minimal requirement to get a valid desire

(emitting a desire to a market without saying if one wants

to buy or sell makes no sense). We have built four norms

of agents: zero-intelligent traders, chartists, fundamental-

ists and speculators. Their characteristics can be generated

with the model, using the method presented in section 5.

Table 1. Institution.

p1 = maximal speed dp1
= [0, +∞]

p2 = safety time dp2
= [0, +∞]

p3 = overtaking risk dp3
= [−1, 3]

p4 = speed limit risk dp4
= [0, +∞]

p5 = observe signs dp5
= {true, false}

p6 = observe priority dp6
= {true, false}

5 Application to traffic simulation

5.1 Implementation

One of the applications of this work is to reproduce re-

alistic behaviors in traffic simulation, to improve the im-

mersion of human drivers in driving simulators. The model

has been applied to the driving simulation software devel-

oped and used at Renault, SCANeR c© II. In SCANeR c© II, the

autonomous vehicles use a classical perception-decision-

action architecture as reasoning basis [7]. This decision

model takes into account different pseudo-psychological

parameters: the “maximal speed” (maximal acceptable

speed for the driver), the “safety time” (related to the secu-

rity distance), the “overtaking risk” (risk a driver will accept

to overtake), the “speed limit risk” (to bypass speed limits),

and finally “observe priority” and “observe signs” (boolean

rules for the respect of signalization and priorities).

We chose in this work to apply the proposed differentia-

tion model directly on the available pseudo-psychological

parameters. They influence the resulting behaviors, and

are adapted inputs to the traffic model. The description of

the set of available parameters constitute the institution (ta-

ble 1). Pi and Pe are empty sets, and ΓP holds functions

computing the distance to the mean of the intervals.

The experiment was done on a database representing a

highway, on a 11 km long section. The vehicles were gen-

erated using a traffic demand of 3800 veh/h, and their data

recorded using detectors at kilometer points 2.2, 6 and 10.8.
After the initial creation by the differentiation model, the

traffic model of the application handles all the vehicles.

They were instantiated using three different sets of norms.

In the first one, no norms, all the vehicles are created with

the same parameters (the behavioral differentiation model

is deactivated). In the second one, normal driver only, one

norm is used, defining only one parameter, the maximal

speed. The generation engine computes its value from a

normal distribution of mean µ = 125 and standard devia-
tion σ = 10, truncated at 100 and 140 km/h. In the third
one, all norms, three norms are used: cautious, normal and

aggressive drivers. Each norm defines all the parameters,

which definition domains are truncated normal distributions

reflecting real world values.
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Figure 1. Speed of vehicles at km point 6

5.2 Experimental results and discussion

The figure 1 represents the distribution of the vehicles’

speeds at the second detector. Without using any norm, the

recorded speeds are either below 90 km/h (46%), or around

130 km/h (40%). In this case, the parameters of the vehi-

cles are too similar to allow them adapting easily to small

changes in traffic flows: the left lane remains slow, the right

one fast, and vehicles can not pull in or over. Using one

norm, the resulting distribution is more balanced, but the

average speed remains relatively low (100.4 km/h). The

last case, using three norms, presents a similar aspect, with

a wider distribution of the speeds and a slightly increased

average speed (103.7 km/h). While guarantying the consis-

tency of the behaviors with the use of norms, an increased

variety of behaviors is observed in the simulation.

Different elements have to be discussed. First, the norms

and values were chosen according to usual classifications

established by driving psychologists. However, the values

have been fixed empirically, and calibration with real data

is currently under work to improve this point. Second, var-

ious improvements on traffic dynamicity (overtakings num-

ber. . . ) do not appear in statistical results, and new indica-

tors have to be introduced to reflect them. Finally, we did

not exploited in these simulations the possibility to gener-

ate violating behaviors. They will be introduced in further

experiments, to simulate for instance drunk drivers.

6 Related works and conclusion

Some works have used norms in the context of traffic

simulation, to enhance traffic control strategies [2] or to im-

prove the behavior of simulated vehicles in intersections [3].

However, they focus on the regulation possibilities offered

by the norms, and not on their description capabilities. As

for nondeterministic models, they are applied in various do-

mains, from displacement models [10] to decision models

in partially observable environments [5]. Nevertheless, no

possibility to control the determinism of the mechanism is

provided.

In this paper, we have presented a behavioral differen-

tiation model for multi-agents simulations. It is composed

of a data structure based on norms, and a generation en-

gine based on nondeterminism. Violating behaviors can be

created, and their deviations quantified. The engine allows

controlling the determinism of the simulation at various lev-

els, and is used to instantiate the behaviors. It provides vari-

ous and consistent behaviors to the agents, two key elements

for the realism of simulations. The variety is achieved by

creating multiple and/or large definition domains for the

norms, or with violations. The consistency is guarantied

by the norms limits and enforced by the possibility to quan-

tify the potential deviations. The approach has been applied

to traffic simulation, using the driving simulation software

SCANeR c© II. The experimental results showed the inter-

est of the model: we were able to increase the variety of

drivers’ behaviors, while guarantying the consistency of the

parameters used.
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