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Abstract—The allocation of m resources between n agents
is an AI problem with a great practical interest for automated
trading. The general question is how to configure the behavior
of bargaining agents to induce a socially optimal allocation.
The literature contains many proposals for calculating a social
welfare but the Nash welfare seems to be the one which
has the most interesting properties for a fair agent society.
It guarantees that all resources are fairly distributed among
agents respecting their own preferences. This article shows first
that the computation of this welfare is a difficult problem,
contrary to common intuition. Many counter-examples describe
the pitfalls of this resolution. In a second step, we describe
our distributed multi-agent solution based on a specific agent’s
behavior and the results we get on difficult instances. We
finally claim that this anytime solution is the only one able to
effectively address this problem of obvious practical interest.

Keywords-Resource allocation; Nash welfare; multi-agent
system; negotiations

I. INTRODUCTION

Allocation problems can be encountered everywhere in

real life through countless applications. Their aims is the

determination of an allocation maximizing (or minimizing)

a given objective function. However, this seeming simplicity

hides very rich issues. The optimal resolution of allocation

problems is most of the time very complex, mainly due

to unscalability. A lot of studies have been performed on

distributed approaches [2], [3] and centralized ones [9]. In

these studies, different assumptions are made and various

welfare functions are studied.

In this article, we are interested in the Nash welfare [1],

which from our point of view has interesting properties. For

instance, no agent is neglected when maximizing the Nash

welfare (as soon as m > n), and it also avoids the draining

of resources by an agent with low preferences. Optimal Nash

allocations have then nice properties, which are not always

satisfied by allocations maximizing other welfare notions

(like the utilitarian or the egalitarian welfare, which are more

widely used up-to-now). Furthermore, the Nash welfare is

independent of utility scales and normalizes agents’ utilities.

In spite of its qualities, this notion is barely studied up

to now. We show in this article that there does not exist

incremental methods to identify Nash optimal allocations.

Consequently, an explicit enumeration of all possible alloca-

tions is required to achieve a best Nash allocation. However,

an allocation problem based on n agents and m resources

leads to nm distinct allocations. The explicit enumeration

is not scalable1 and then we have to design an alternative

method to find a global optimum for the Nash welfare.

This paper presents two main contributions. First, Section

II enumerates the difficulties and wrong ideas about alloca-

tion problems, either in distributed settings, or in centralized

ones. Then, Section III describes an efficient solution to

Nash allocation problems in a distributed way.

II. USUAL WRONG IDEAS ON NASH ALLOCATION

PROBLEMS

In order to show the different issues related to Nash

allocation problems, we have to introduce few notations

used in this paper. The first important point is to stress that

in all this article, we consider only the Nash welfare. The

allocation problem is defined on a population P of n agents

and on a set R of m resources. Each agent ai owns a bundle

denoted by Rai
containing its resources.

Moreover, we assume that each agent expresses prefer-

ences over the resource set, and we suppose that these

preferences are given using a normalized utility function.

This utility function is an additive function uai
: 2R → R:

Definition 1 (Utility function). When agent ai ∈ P owns a

set of resources Rai
⊆ R, its utility is evaluated as follows:

uai
(Rai

) =
∑

r∈Rai

uai
(r), ai ∈ P,Rai

⊆ R.

Let us note A the set of all possible allocations. A deal δ
changes an allocation A into a new allocation A′: δ(A) =
A′. T is the set of deal kinds allowed between agents (gifts,

swaps, . . . ).

A. The Nash welfare, an interesting notion

The Nash welfare is an interesting notion from the social

choice theory [1], [5]. This notion is barely used in practice

in spite of interesting properties. Let us first define this social

welfare:

1From the birth of the solar system (4.6 109 years) with a computer
determining 1 million allocations per second, we would have solve a Nash
problem with 10 agents and 23 resources.
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Definition 2 (Nash welfare). The Nash welfare of an alloca-

tion A ∈ A, denoted by swn(A), corresponds to the product

of the individual welfare of all agents of the population P:

swn(A) =
∏
ai∈P

uai
(Rai

), A ∈ A.

Maximizing the Nash welfare can be considered as a

compromise between maximizing the average richness and

minimizing inequalities in the population. A question can

then be raised: why such an interesting notion is seldom

used in practice?

B. Two classes of allocation problem
The first preconceived ideas is independent of the welfare

notion considered, and is related to the kind of optimum

required. All allocation problems do not have the same

purpose, and are not based on similar assumptions. On one

side, the aim is to identify an optimal allocation. In such

cases, resources are considered separately from agents, and

centralized techniques can be used efficiently. The winner
determination problem in combinatorial auction belongs to

this class of problems [9]. On the other side, the aim is to

determine a path of deals leading from an initial allocation

to an optimum. To find such a path, distributed algorithms

based on deals between agents are often used [2], [3], [6].

Indeed, centralized algorithms are unadapted, mainly due to

scalability issues, as very higher number of possible resource

allocations exists. However, optima from both cases may be

different: a path of deals δ ∈ T from an initial allocation to

a global optimum may not exists.

Example 1. Let us design an example based on a population

P = {a1, a2} and R = {r1, r2, r3}. Agents’ preferences are

described in the next table, which contains the utility value

associated with each resource by each agent.

uai
(rj)

R
r1 r2 r3

P a1 5 5 1

a2 1 1 5

Let us now assume that the initial allocation is the

following: A =
[
{r1}{r2, r3}

]
where agent a1 owns r1

while agent a2 owns other resources r2 and r3. The welfare

value associated with it is swn(A) = 30. It is quite easy

to determine the optimal allocation A′ =
[
{r1, r2}{r3}

]
,

which is associated with swn(A
′) = 50.

However, no path of swap deals (the exchange of one

resource against one other resource) can reach the optimum

Nash allocation, while a path of gift deals (the gift of one

resource without counterpart) leading to an optimum exists.

Indeed, the exclusive use of swaps prevents changes in the

number of resources per agent.

Both kinds of optima should be distinguished since they

correspond to optimal solutions provided by different ap-

proaches. If the welfare values of both optima are similar, it

means that a social optimum can be achieved in a distributed

way, depending on the negotiation settings.

Definition 3 (Global optimum). A resource allocation A ∈
A is a global optimum if no other resource allocation A′ ∈ A
associated with a greater social value exists.

�A′ ∈ A swn(A
′) > swn(A) A,A′ ∈ A, A �= A′.

Definition 4 (T -optimum). A resource allocation A ∈ A is

a T -optimum if no path of deals, belonging to the set of

allowed deals T , leads to a resource allocation associated

with a greater social welfare value.

∀A′ ∈ A, �δ swn(A
′) > swn(A) δ ∈ T , A ∈ A.

A T -optimum cannot be greater than a global optimum,

whereas the inverse is usually true. In Example 1, allocations

A is a swap-optimum whereas it is not a global optimum.

The determination of a T -optimum cannot be handled using

centralized algorithms, due to scalability issues.

C. Limits of linear programming

However, even if we are “only” interested in an globally

optimal allocation, centralized techniques is inefficient for

the Nash welfare. The centralized solving of Nash allocation

problems can be formulated by means of a mathematical

model using variables xar describing the ownership of a

resource r ∈ R by an agent a ∈ P:

xar =

{
1 if agent a owns resource r

0 otherwise
r ∈ R, a ∈ P.

Then, the Nash allocation problem can be formulated as

follows:

sw�
n =

⎧⎪⎪⎨
⎪⎪⎩
max

∏
a∈P

∑
r∈R ua(r)xar

s.t:
∑
a∈P

xar = 1 r ∈ R

xar ∈ {0, 1} r ∈ R, a ∈ P.
From the expression of the Nash welfare function, we

can see that this welfare function has no nice mathematical

property. Indeed, this function is not concave, not convex,

and not linear. Solving quadratic problems (i.e. limited to 2

agents) is a complex task and classic optimization techniques

are not efficient as soon as n > 2 agent are considered. In

order to transform the optimization of a product into the

optimization of a sum, the use of the logarithm function

represents an intuitive solution.

log(a ∗ b) = log(a) + log(b).

However, this transformation does not solve the problem at

all! Indeed, the logarithm is not a linear function and it is

not easier to optimize a sum of non-linear functions. Opti-

mization software like CPLEX or MATLAB are inefficient.

Hence, this transformation change an complex function into

another complex function, which is not more convenient.
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Since the optimization way is not efficient in this case,

we can look for an incremental approach, based on the

enlargement from an optimal solution of a sub-part of a

whole problem.

D. Impossible incremental methods

The design of an incremental method may represent an

interesting approach. The idea is to use the optimal solution

of a restricted part of the initial problem as a basis to

determine an optimal solution of the complete problem. A

sub-problem can be obtained considering either a subset of

resources, or a subset of agents, or both. In this section, a

sub-problem considers a subset of the resources R′ ⊂ R
and aims to determine an optimal Nash allocation on R′.
New elements {ρ ⊆ R \ R′} are added to the restricted

problem, and we try to adapt the optimal solution of the

restricted problem to determine an optimal solution of the

new problem. A method could be to allocate first one

resource to all agents using the Hungarian algorithm, and

then to allocate the remaining resource.

Proposition 1 (No incremental method). It is not possible to
determine a global optimum of the complete problem based
on a globally optimal solution of a restricted part of the
problem.

Proof: In order to illustrate this proposition, let us

consider a counter-example based on P = {a1, a2} and

R = {r1, r2, r3}. Agents’ preferences are described as

follows:

uai(rj)
R

r1 r2 r3

P a1 4 3 4

a2 2 4 7

Let us consider the sub-problem of optimally allocating

R′ = {r1, r2} to agents of P . In this case, only four

allocations are possible. The one maximizing the Nash

welfare is: A = [{r1}{r2}] associated with the value

swn(A) = 4× 4 = 16.

Let us now determine the global optimum for the complete

problem. Eight allocations are now possible, and the global

optimum is: A′ = [{r1r2}{r3}] associated with the Nash

value swn(A
′) = 7× 7 = 49.

In order to obtain the global optimum A′, it is mandatory

to release the resources previously allocated in A. Hence,

it is not possible to determine a global optimum using an

incremental technique, constructing solutions little by little.

We can also consider another kind of sub-problem defined

with n1 < n agents and m resources. However, it is obvious

that even if we distribute optimally all m resources between

2 agents, it is mandatory to redistribute all of them if a

new agent joins the population (otherwise the new agent

would get a utility of 0). Hence the optimal solution to a

sub-problem does not help to solve the whole problem. This

proposition explains why neither branch& bound algorithms

nor constraint programming are efficient. It has important

consequences on the design of solving algorithms.

Note that the proposition is still valid where the egalitarian

welfare is considered, but not when the utilitarian or the

elitist welfare notions are considered.

E. How reliable are heuristics?

Since the determination of the Nash optimum is difficult,

either by centralized techniques or incremental methods, the

design of heuristics may represent a solution to estimate the

Nash value of the global optimum.

We used various techniques to design a lot of heuristics.

For instance, we tested the sequential allocation to the agents

of the most valuable available resources, according to their

preferences, the allocation of the resources to one of the

agent which evaluate it the most, some of them are based

on the Hungarian method, . . .

We implement many of them and compare their results

in a tournament but these results are not detailed here due

to space restrictions. The heuristic that achieves best results

most of the time is composed by two steps. The first one

is to allocate each resource to the agent which values it the

most. The second step is to check that all agents have at

least one resource, otherwise it looks for an agent that can

give one of its resources, maximizing locally the product of

both agent utility.

Since these algorithms are heuristics, by definition, they

only estimate the value of the globally optimal solution. It

is legitimate to question the quality of the solution provided

by these heuristics. A relative comparison between values

provided by each heuristic is not sufficient to guarantee the

quality of the best one. It is possible that the best heuristic

only provides a value far from the global optimum. Since the

only way to certify the optimality of a solution is the explicit

enumeration, only very small instances can be solved. In

other cases, with a large population and a large set of

resources, it is not possible to guarantee the reliability of

the provided results, i.e. that the used heuristics provides a

global optimum.

In the previous section, we focus on allocation prob-

lems, where resources are not allocated initially to agents’

bundle. Since these centralized techniques are not scalable,

alternative methods based on agent negotiations have been

developed to solve such issues.

F. Individual rationality and efficiency

In agent-based methods using deals, agents are often

assumed autonomous. The initial allocation evolves step

by step, by means of local deals between agents. Instead

of having a central entity which decides how to allocate

all resources between agents, the decision is distributed to

the agent level. Each agent has to determine locally which
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deals are profitable. This decision-making is based on an

acceptability criterion.

In literature (e.g. [8]), the most widely used criterion is the

individual rationality: this criterion focuses on the private

satisfaction of an agent. It is mainly used in the case of

selfish agents.

Definition 5 (Rational agent). A rational agent only accepts

a deal that increases its own utility value. If the agent ai ∈ P
is rational, an acceptable deal must satisfy the following

condition:

uai
(R′

ai
) > uai

(Rai
), ai ∈ P,Rai

,R′
ai
⊆ R.

This acceptability criterion is based on personal informa-

tion, so it is quite easy to compute locally the welfare value.

However, considering its individual welfare is quite ineffi-

cient to achieve socially optimal allocation in a population.

Indeed, only very few rational deals can be performed, and

the population stays in a poor situation.

Example 2. In order to illustrate this property, let us design

a small example. It is based on P = {a1, a2} and R =
{r1, r2}. Agents’ preferences are described as follows:

uai
(rj)

R
r1 r2

P a1 1 4

a2 10 5

Let us assume that the initial allocation is A =[
{r1}{r2}

]
, and then the initial Nash welfare is swn(A) =

5. From this allocation, no rational deal can be performed.

No gift is rational since the agent that gives a resource will

decrease its individual welfare. Similarly, the lone resource

swap would decrease the individual welfare of agent a1 from

5 to 4.

However, there exist an allocation associated with a much

larger welfare value. Indeed, A′ =
[
{r2}{r1}

]
is associated

with: swn(A
′) = 40. This global optimum cannot be

achieved using only rational deal.

This example shows how easily resources can be trapped

in an agent’s bundle, and thus prevent the achievement of

globally optimal allocations. As shown in [7], according to

the negotiation, the efficiency of rational negotiations never

exceeds 20% of the global optimum.

Note that this result on the inefficiency of the use of

individual rationality in practice is valid independently of

the social welfare notion considered.

G. Restriction on deals

A deal is characterized by the number of agents involved

and by the number of resources each of them can offer. The

two main classes of deals are bilateral ones and multilateral
ones.

First, bilateral deals involves only two agents at a time: the

initiator and a partner. Different types of bilateral deals have

been classified in [8]. It is the most widely used deal class

in literature, due mainly to scalability reasons. Multilateral

deals may involve many agents simultaneously [4]. Deals

of this class are barely used in practice because their

identification is an issue which cannot be solved efficiently

in a distributed way. The number of possible deals increases

exponentially with the number of agents involved. Thus, in

practice, restrictions on the number of participants are used

to decrease the exponential complexity. However, imposing

restrictions on deals may prevent the achievement of optimal

allocations.

Proposition 2. Within a population P of n agents, a
deal involving simultaneously n agents may be required to
achieve a globally optimal allocation.

Corollary 1. Restricting the number of agents that can be
involved simultaneously in a deal may prevent the achieve-
ment of globally optimal allocations.

Proof: In order to prove this property, let us design

a small counter example. It is based on P = {a1, a2, a3}
and R = {r1, r2, r3}. Agents’ preferences are described as

follows:

uai(rj)
R

r1 r2 r3

P
a1 2 1 5

a2 5 2 1

a3 1 5 2

Let us assume that the initial resource allocation is: A =[
{r1}{r2}{r3}

]
, which is associated with swn(A) = 8. No

sequence of acceptable deals can lead to a better allocation.

Indeed, gifts are not rational, and all swaps leads to the

decrease of the individual welfare of an agent. Hence, this

allocation can be the one provided at the end of a negotiation

process. However, this allocation is not optimal since it

exists A′ =
[
{r3}{r1}{r2}

]
such that swn(A

′) = 125.

The only way to achieve the optimum corresponds to

three simultaneous gifts. Indeed, if the three agents give

their resource to one partner, and receive another resource

from the other partner simultaneously, they all improve their

individual utility. Thus, imposing restrictions on the number

of agents that can be involved in a deal may prevent the

achievement of optimal allocation.

This property is also satisfied when other welfare func-

tions are considered, or when other acceptability criteria are

considered.

H. Deal decomposition

In order to identify an acceptable deal in a scalable way,

the maximum number of resources that agents can offer is

usually restricted. For instance, a restriction to one resource

means that agents can only performed gifts or swaps (one

resource against nothing or one resource against another

one). However, a question can be legitimately raised: is these
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limitations impact the efficiency of the negotiation? In other

words, does the bound on the maximum number of resources

offered may limit the efficiency of the solving process?

Proposition 3 (Nash deal decomposition). Deals cannot
always be split into a sequence of acceptable deals of lesser
cardinality.

Proof: Let us prove this proposition using the smallest

counter-example. Let us consider a population of two agents

P = {a1, a2} and a set of two resources R = {r1, r2}.
Agents’ preferences are described as follows:

uai
(rj)

R
r1 r2

P a1 1 7

a2 7 1

Let us assume that the initial allocation is A =[
{r1}{r2}

]
, associated with swn(A) = 1. A swap is accept-

able for both agents because they improve their individual

welfare. It leads to an allocation A′ =
[
{r2}{r1}

]
, which is

associated with swn(A
′) = 49.

However, this acceptable deal δ cannot be split into a

sequence of acceptable deals. The only way to decompose

this deals is a sequence of two gifts. But rational gifts cannot

be acceptable since all utility values are positive. Thus, a

rational deal cannot be always decompose into a sequence

of acceptable deals of lesser cardinality.

The first consequence of this proposition is quite obvious:

large acceptable deals cannot be decompose into a sequence

of acceptable deals of lesser cardinality, and then into a

sequence of gifts. The other consequence of this proposition

is to claim that the largest deals are mandatory to guarantee

the achievement of best allocations. It may be required for

an agent to offer its complete resource bundle against the

whole bundle of its partner.

These results have been proved in this section in the

context of rational agents, but counter-examples can also

be designed when other acceptability criteria are used.

I. Nash negotiations and social graphs

All former studies never consider a facet of negotiations

that occurs in most applications. One can consider that they

make an unrealistic assumption. Indeed, in most agent-based

negotiation studies (e.g. [2], [3]), agents communication

abilities are not restricted. An agent can usually negotiate

with all other agents in the population whereas it is not

the case most of the time. For instance, in a peer-to-peer

network, a peer does not know all other peers in the network.

In a social network on the Internet, a person does not

know all other members of the social network. In such

applications, an agent is not even aware of the whole system,

and must based its decision on local information only.

Since none of former studies consider restrictions on

communication abilities, it is one more time legitimate to

investigate the importance of such a parameter. Indeed,

negotiation processes, which lead to optimal solutions ac-

cording to complete communication possibilities (i.e., based

on complete social graphs), may only lead to solutions far

from the optimum, when communications are restricted.

Proposition 4 (Social graph impact). Independently of the
objective function considered, a restricted social graph may
prevent the achievement of optimal resource allocations.

Proof: Let us prove this proposition using a counter-

example, based on a population P = {a1, a2, a3} and a set

of resources R = {r1, r2, r3}. The agents’ preferences are

described as follows:

uai(rj)
R

r1 r2 r3

P
a1 3 1 9

a2 1 4 1

a3 10 2 3

The social graph describing the agent communication

abilities is represented next:

a1 a2 a3

According to the topology of this social graph, agent a2
can communicate with agent a1 and a3, while they can

only communicate with a2 but not between them. The initial

resource allocation is A =
[
{r1}{r2}{r3}

]
associated with

swn(A) = 36.

Only two resource swaps are possible. Agents a1 and

agent a2 can exchange r1 and r2, or agents a2 and agent a3
can exchange respectively r2 and r3. Both cases lead to a

decrease of the utility of at least one participant. Thus, no

acceptable exchange is possible.

However, this allocation A is not an optimal allocation.

Indeed, the swap of r1 and r3 by agents a1 and a3 would

lead to a better allocation A′ =
[
{r3}{r2}{r1}

]
, associated

with swn(A
′) = 360. Hence, due to the topology of the

social graph, restricting the agent communication abilities,

the negotiation process cannot achieve an optimal solution.

Considering the social graph also has an indirect influence

on the negotiation processes. While it may not be important

to consider the order in which agents negotiate when the

social graph is complete, this order becomes essential when

communications between agents are restricted. Indeed, with-

out restriction, resources can always be traded with all other

agents.

Proposition 5 (Negotiation order). Independently of the
objective function which is considered, the order in which
agents negotiate with each other may prevent the achieve-
ment of optimal resource allocations.

Proof: The proposition can be proved using a counter-
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example. Let us consider a population P = {a1, a2, a3} and

a set of resources R = {r1, r2, r3}. The agents’ preferences

are described as follows:

uai
(rj)

R
r1 r2 r3

P
a1 2 10 4

a2 5 3 9

a3 2 7 1

The social graph describing the agent communication

abilities is represented next:

a1 a2 a3

According to the topology of this social graph, agent a2
can communicate with agent a1 and a3, while they can

only communicate with a2 but not between them. The initial

resource allocation is A =
[
{r1}{r2}{r3}

]
associated with

swn(A) = 6.

Let us now assume that agent a2 initiates a negotiation.

According to the topology, two partners are possible. De-

pending the initiator choice, the negotiation process may

end with a sub-optimal allocation. Indeed, if agent a2
negotiates first with agent a1, the allocation achieved is

A′ =
[
{r2}{r1}{r3}

]
and is associated with swn(A

′) = 50.

However, if a3 is chosen, the allocation achieved is A′′ =[
{r1}{r3}{r2}

]
associated with swn(A

′′) = 126.

Hence, the order of negotiation becomes an important

parameter to consider when the communication abilities are

restricted.

In this section, we show that it is important to consider

restricted communication abilities, as it occurs in many

applications. Such restrictions represent more plausible as-

sumptions but have important consequence on the negotia-

tion efficiency. The topological characteristics may prevent

the achievement of optimal solutions. Moreover, the order in

which agents negotiate may also lead negotiation processes

to sub-optimal allocations. In spite of their respective impact,

these tow parameters have not been considered up to now.

The context of former studies can be considered as ideal

while ours is more realistic.

III. OUR DISTRIBUTED APPROACH

The previous section was dedicated to underline the pre-

conceived ideas on Nash allocation problems: on centralized

approaches, on the design of heuristics and on distributed

negotiations. This section focuses on the negotiation settings

we propose to solve efficiently Nash allocation problems.

A. Bilateral transactions

Since bilateral deals are the most scalable in practice,

we choose to restrict agents to bilateral deals. They can

be modeled generically using the number of resources each

agent can offer.

Definition 6 (Bilateral deals). A bilateral deal between two

agents ai, aj ∈ P , denoted by δ
aj
ai , is initiated by agent ai

who involves a partner aj . It is a pair δ
aj
ai 〈u, v〉 = (ρδai

, ρδaj
),

where the initiator ai offers a set ρδai
of u resources (ρδai

⊆
Rai

) and the partner aj offers a set ρδaj
of v resources (ρδaj

⊆
Raj

).

B. The sociability criterion

As described before, the acceptability criterion is manda-

tory to design a finite negotiation process. It is the basis for

an agent to distinguish profitable deals from others. The most

widely used criterion, namely the individual rationality is

not efficient and leads to solutions far from the optimum. We

propose a new criterion, which is more flexible and should

lead to socially more interesting allocations.

Definition 7 (Social deal). A social deal δ, which changes

the initial resource allocation A to a new one A′, is a deal

leading to an improvement of the social welfare.

swn(A
′) > swn(A), A,A′ ∈ A.

The social criterion is centered on the social welfare value,

which is a global notion. Its value can only be determined

thanks to the welfare of all agents. Agents should then know

the resource bundle and the preferences of all agents in

the population, in order to determine the value associated

with the objective function. Such conditions cannot be

satisfied since agents have only local information. The social

value of the objective cannot then be locally computed.

But, the computation of the exact value of the welfare

function is not essential, to know its evolution is sufficient to

determine whether or not a deal penalize the society. Such

computations can be restricted to the local environment of

agents. If participants ai, aj ∈ P to a transaction consider

the remaining population as a constant, the evolution of the

social value can be determined on a local criterion.

⇐⇒ swn(A) < swn(A
′)

⇐⇒
∏

ak∈P
uak

(Rak
) <

∏
ak∈P

uak
(R′

ak
)

⇐⇒ uai(Rai)uaj (Raj ) < uai(R′
ai
)uaj (R′

aj
)

C. The social graph

At the opposite of former studies, which always as-

sume complete communication possibilities, solving meth-

ods based on multi-agent systems can handle the notions of

neighborhood and social graph.

Definition 8 (Neighborhood). The neighborhood of agent

ai ∈ P , denoted by Nai
, is a subset of the population P

with whom it is able to communicate.

Nai ⊆
(
P \ {ai}

)
, ai ∈ P.
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A graph of relationships, which we call a social graph, is

a union of all agents’ neighborhood. The social graph is a

graph of relationships describing the communication abilities

between the agents of a population. In such a graph, nodes

represent agents, and an edge between two nodes means that

the corresponding agents are able to communicate.

Different classes of graphs can be considered: complete
graphs (full) where an agent can always communicate with

all other agents, structured graphs (grid) where all agents

have the same number of neighbors, and Random graphs
(Erdős-Rényi , small world) where the topology is irregular.

D. The agent behavior

When an offer is proposed to an agent, it can choose

between four alternatives. Indeed, it can accept the deal if

it satisfy its acceptability criterion. Otherwise, the agent can

either simply reject the deal, or change partner, or change its

offer. Mixing these alternatives allow us do design behavior

with different characteristics like rooted or frivolous, flexible

or stubborn, . . . The behavior leading negotiation processes

to best results is a flexible and frivolous one, as described

in the next algorithm:

Algorithm 1: Frivolous and flexible agent behavior

Input: Initiator ai

Lai(ρ)← generate(T ,Rai ) ;

Sort Lai(ρ) according to uai ;

Shuffle Nai
;

// secondary priority on offers
forall ρ ∈ Lai

(ρ) do
// primary priority on agents
forall aj ∈ Nai do

forall ρ′ ∈ Laj (ρ) do
// deal creation
δ ← (ρ, ρ′) ;

if ACCEPTABILITY TEST then
Perform δ ;

End the negotiation ;
end

end
end

end

E. Efficient negotiation settings

The first parameter to evaluate is the deal cardinality.

Bilateral deals δ
aj
ai 〈u, v〉 between two agents ai, aj ∈ P

are characterized by the number of resources offered by

ai, aj , respectively u and v. Experiments are based on 50

agents and 250 resources (average on 100 simulations).

Several negotiation policies are used and described using the

cardinality parameters. The negotiation policy denoted by

“up to 〈2, 2〉” means that agents can offer up to two resources

during the same deal. We choose different topologies: two

structured graphs and two random graphs. Figures 1 and

2 shows the evolution of the Nash welfare value during a

negotiation process according to the deals cardinality.
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Figure 1: Negotiation efficiency vs. computation time ac-

cording to the cardinality
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Figure 2: Negotiation efficiency vs. number of performed

deal according to the cardinality

Figure 1 shows that the deals cardinality mainly affects

the elapsed time. Negotiation processes based on gifts (i.e.

〈1, 0〉 deals) are less time-consuming and agents perform

less deals. The larger the allowed deals are, the more time

consuming become negotiation processes. However, accord-

ing to Figure 2 that focuses on the number of performed

deals, larger bilateral deals do not improve the quality of

achieved solutions. Negotiations relying only on swaps (i.e.

〈1, 1〉 deals) require less deals but also achieve socially

weaker allocations. All other negotiation processes end after

sequences of deals of close length. Large bilateral deals do

not seem to significantly improve the Nash welfare value

achieved at the end of the negotiation processes. The use

of deals of large cardinality does not justify the important

additional costs, and thus the size of the offers should be

restricted.
The next facet that should be evaluated is the negotiation

efficiency. It can be evaluated using a comparison with the

38



Table I: Nash negotiation efficiency (%) according to the class of social graphs

Social graph Rational criterion Social criterion
kind 〈1, 1〉 up to 〈2, 2〉 〈1, 0〉 〈1, 1〉 up to 〈1, 1〉 up to 〈2, 2〉
Full 99.9 100.1 101.6 100.1 101.7 101.7
Grid 97.0 97.5 99.6 98.2 99.7 99.7

Erdős-Rényi 99.6 99.8 101.4 99.9 101.6 101.6
Small world 97.2 98.0 100.2 98.9 100.4 100.4

estimation given by centralized techniques. Table I shows the

efficiency of negotiation processes based on several kinds of

social graphs [6].

Table I shows that some welfare values achieved are

greater than 100%. Since heuristics can only give an esti-

mation of Nash welfare values, an efficiency greater than

100% means that negotiation processes lead to socially

more interesting allocations than the ones provided by the

heuristics.

Rational negotiations achieve socially weaker allocations

than social negotiations. Two negotiation policies, which are

based respectively on T = {〈u, v〉|u ≤ 1, v ≤ 1} and on

T = {〈u, v〉|u ≤ 2, v ≤ 2}, lead to similar results. Allowing

gifts and swaps during a negotiation process seems sufficient

to achieve socially efficient allocations. Larger deals do not

significantly improve the Nash welfare values achieved while

the negotiation cost increases a lot.

Negotiations based on swap deals achieve the socially

weakest allocations. Since the initial resource distribution

cannot be modified, negotiations end quickly on local op-

tima. The standard deviation related to negotiations based

on 〈1, 1〉 deals is also higher than for other deals.

Negotiation processes based on grids leads to the so-

cially weakest allocations. The mean connectivity of the

social graphs is an important feature deeply affecting the

negotiation efficiency. Relationships among agents are too

restricted to allow a suitable resource traffic, and then pre-

vent the achievement of optimal allocations. The comparison

between results achieved on Erdős-Rényi graphs and the

ones achieved on small-worlds indicates that a large number

of agents, leaves of the graph (who have only one neighbor),

penalizes a lot the negotiation process.

Negotiations among social agents achieve more efficient

allocations compared to rational negotiations usually studied

in the literature. Negotiations based on T = {〈1, 0〉, 〈1, 1〉}
can be considered as the best alternative to achieve socially

interesting allocations. Deals of weaker cardinality are not

sufficient whereas larger deals do not improve significantly

the Nash welfare value while their use increases the nego-

tiation cost. However, the exclusive use of bilateral deals

cannot guarantee the achievement of a global optimum, but

leads to socially close allocations instead.

IV. CONCLUSION

The Nash welfare, a notion with very interesting prop-

erties, is barely used in practice due to computational

limitations most of the time. A lot of related issues can be

solved at the opposite of intuition. We present in the first

part of this paper the usual wrong ideas on Nash allocation

problems. We show the inefficiency of techniques based on

linear programming, of incremental techniques and the lack

of reliability of heuristics. The second part of this paper

describes the distributed method we propose to efficiently

solve Nash allocation problems, using deals between agents.

We characterize the negotiation settings to use in order

to identify a path of deals reaching optimal allocations.

Any kind of contact network can be considered, and the

distributed decision making is based on local information.

Such assumptions correspond to a more realistic context than

in former studies. We provide the behavior, the acceptability

criterion and the kind of deals that should be used to reach

T -optimal allocations.
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