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In this paper, we propose a new very simple mechanism supporting the emergence of cooperation in a population 

of memoryless  agents playing a prisoner's dilemma game. Each agent belongs to a community and interacts with the 

agents of its community and with the agents  belonging to linked communities. A simple rule governs the dynamics of the 

system : a community grows (resp decreases) if the average score of its members is superior (resp inferior) to the average 

score calculated on the whole population. Starting from a random initialisation, the system can evolve towards a majority 

of cooperators, towards the elimination of cooperators, or towards a situation with periodic evolutions of the populations 

of  cooperators  and  defectors.  The  initial  presence  of  clusters  of  C  strategies  accounts  for  the  convergence  towards 

cooperative final states. We consider various topologies :  Erdős and Rényi random graphs, square lattices and scale-free 

graphs. Clusters are not as likely to appear in all these topologies, so that there are significant differences between the 

average frequencies of  cooperators  associated with each topology.  We show that  random graphs favours cooperation 

whereas scale-free graphs tend to inhibit it. The relation between periodic evolutions and topological features is less clear. 

Nonetheless, we also state the importance of specific C-clusters for the survival of C strategies in periodic oscillations. 

One major lesson of this paper is that the evolution of cooperation is very sensitive to initial conditions in models with 

global variables.

1. Introduction

Exploration  of  the  conditions  upon  which 

cooperation  can  emerge  has  been  an  active  field  of 

investigations in the past years.  Various models have been 

studied. The pioneer work of Axelrod [1981, 1984] shows 

how  cooperation  emerges  with  individuals  engaged  in 

iterated  interactions.   In  such  interactions,  it  is  worth 

cooperating  to  encourage  reciprocated  cooperation  in 

further  encounters.  Emergence of  cooperation in  iterated 

interactions  has  been  well  documented  [Boyd  & 

Lorberbaum,  1987;  Nowak,  1990;  Nowak  &  Sigmund, 

1990;Delahaye  &  Mathieu,  1992].  Another  mechanism 

known  as  cliquishness  has  been  proposed  [Hruschka  & 

Henrich, 2006]. In this model a set of preferred agents is 

associated  with  each  agent.  An  agent  is  nice  (playing 

cooperation) and tolerant with the agents he prefers and is 

more likely to retaliate against other agents. Cooperation is 

then sustainable even with error-prone agents, but agents 

are  no  more  simple  strategies  playing  the  prisoner's 

dilemma.

Nowak and May [1993;1994a;1994b] developed a 

model in which memoryless cooperators can survive and 

invade  populations  of  defecting  strategies.  The  authors 

have specified a mimetic dynamic : an agent changes its 

strategy to the strategy of its most successful  neighbour. 

The  emergence  of  cooperation  comes  from  the  spatial 

distributions of strategies and especially from the existence 

of  clusters  of  C  strategies  [Szbaó  &  Tőke,  1997; 

Schweitzer  et  al.,  2002].  A  C  strategy  with  enough  C 

neighbours can be efficient and imitated by its neighbours. 

In  this  model,  clusters  of  C  strategies  are  the  basic 

structures  which  allow  for  cooperation  to  survive  and 

grow. 
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The importance  of  clusterized  structures  for  the 

emergence of  cooperation was also  underlined by Watts 

[1999] in the case of populations of homogeneous agents 

who  cooperate  if  a  given  number  of  their  neighbours 

cooperate.

We  present  here  another  new  and  simple 

mechanism for the emergence of cooperation. Our model 

differs from the Nowak and May model but the strategies 

we consider are the same as the ones they used.

We  consider  networks  of  communities. 

Communities  are  sets  of  strategies.  A  strategy  of  one 

particular community Co interacts with the strategies of Co 

and with the strategies belonging to communities linked to 

Co. For each strategy, we compute an average score upon 

the  set  of  its  interactions.  The  evolution  mechanism 

corresponds to the growth (resp. decrease) of communities 

which  strategies  have  a  high  (resp  low)  average  score. 

Section 2 describes the model and Section 3 studies  the 

kind  of  evolutions  it  induces  on  regular  lattices  of 

dimension 2.

As  for  the  dynamics  specified  by  Nowak  and 

May,  our  dynamic  induces  very  different  patterns  of 

evolution  when  we  consider  various  kinds  of  networks. 

Veinstein  and Arenzon [2001]   considered the model  of 

Nowak and May as  a  particular  case  of  a  more general 

model where cells can be in three states : C, D or empty. 

The fact that some sites might be empty is equivalent to the 

addition  of  randomness  in  the  structure.  The  authors 

showed that cooperation is enhanced with the addition of 

empty sites. Abramson and Kuperman [2001] explored the 

model  of  Nowak  and  May  on  small-world  structures 

generated  according  to  the  Watts  and  Strogatz  rewiring 

procedure [Watts & Strogatz, 1998]. They found that for 

certain  values  of  connectivity  and   rewiring  probability, 

there  are  significant  increases  in  the  frequency  of 

defectors.  We address  the  question of  the impact  of  the 

topology in our model in Sec. 4.

The  evolutionary  mechanism we  have  specified 

mainly induces convergence towards two stationary states, 

one  in  which  cooperation is  majoritarian  and another  in 

which  cooperation  disappears.  However,  some 

initialisations  don't  converge.  For  these  initialisations, 

evolutions  of  C  and  D  populations  are  periodic.  The 

frequency of initialisations leading to periodic evolutions 

depends  on  the  network  topology.  In  Sec.  5,  we  study 

periodic phenomena with respect to topological features. 

 

2. The Model

Communities

The agents we consider are memoryless strategies 

playing the prisoner's dilemma game. Two kinds of agents 

are  possible  :  cooperators  (C)  and  defectors  (D).  The 

following  matrix  gives  the  result  for  each  possible 

interaction : 

C D

C (3,3) (5,0)

D (0,5) (1,1)

We define a community as a set of strategies. In 

the  rest  of  the  paper,  we  will  only  consider  sets  of  C 

strategies and sets of D strategies, we refer to them as C-

communities and D-communities, typej
  ∈ {C,D} refers to 

the  kind  of  strategies  on  community  j.  The  number  of 

strategies  in  community  j  at  the  t-th  generation  is et
j. 

Communities  are  linked  and  form  a  graph.  We  only 

consider non directed graph here. N denotes the number of 

communities  in  the  graph.  V(j)  refers  to  the  set  of 

communities linked to j.

A strategy from the j-th community plays  a PD 

game against the strategies of its community. Its "internal 

score" is : 

scoreI j
t =e j

t −1∗score type j , type j (1)

The strategy plays also against the strategies which belong 

to the communities in V(j), its "external score" is :  

scoreE j
t = ∑

k∈V  j 
ek

t ∗score type j , type k (2)

We define the number of contacts for a strategy of the j-th 

community as  the number of  strategies  it  interacts  with. 

Therefore  the  number  of  contacts  for  a  strategy  of 

community j is :
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nbContacts j
t =e j−1 ∑

k ∈V  j
ek (3)

The  average  score  obtained  by  a  strategy  of  the  j-th 

community  is :

scoreN j
t =

scoreI j
t scoreE j

t

nbContacts j
(4)

At  each  generation,  an  average  score  can  be  associated 

with a community. The evolution is then given by :   

   
e j

t =
scoreN j

t−1∗e j
t−1

∑
i=1

N

scoreN i
t−1∗e i

t−1

∗∑
i=1

N

e i
t−1

 (5)

The  ej
t   are  real  values,  they are  rounded to  the  closest 

integer values in order for the populations of communities 

to be integer values. We see in Sec. 3 that this choice of 

rounding method has a certain impact on the properties of 

the cooperative stationary states.

With  Eq.  (5)  the  global  number  of  strategies 

remains  constant  during  evolution.  We  could  assume 

growing  populations  but  the  main  results  would  remain 

unchanged.

The  mechanism  is  equivalent  to  a  very  simple 

criterion. Let us define global average score as : 

Qt−1=
∑
i=0

N

scoreN i
t−1∗e i

t−1

∑
i=0

N

ei
t−1

 (6)

using (6), we have :

 

e j
t

e j
t−1=

scoreN j

Qt−1 (7)

So  the  evolutionary mechanism is  equivalent  to 

the  following  criterion  :  a  community  grows  (resp. 

decreases) when its average score is superior (resp inferior) 

to the average score computed on the whole graph. As the 

global  population  remains  constant  with  Eq.  (5),  the 

dynamic  is  equivalent  to  a  redistribution  of  strategies 

towards the most efficient communities. This model is very 

simple,  the success of a strategy is directly linked to its 

strength  compared  to  the  average  strength  of  other 

strategies which is a kind of global variable.

In  the rest of the paper, we generate a topology 

and then affect a community to each node. We note p the 

probability to initialize a node with a C-community, (1-p) 

being the probability to initialize it with a D-Community. 

We study both the impact of the kind of graph generated 

and the impact of p.

A  simple  example  might  illustrate  the 

evolutionary mechanism. We consider a C-community of 

size e0 and a D-community of size e1. The two communities 

are linked.

Let q0 denote the average score of a strategy C and 

q1  denote the average score of a strategy D. N is a total 

number of strategies, for all generation t :  

N=e1
t e0

t (8)

With these notations we have :  

e1
t =

q1∗e1
t−1

q1∗e1
t−1q0∗e0

t−1∗N (9)

so that :

e1
t

e1
t−1=

q1∗e1
t−1q1∗e0

t−1

q1∗e1
t−1q0∗e0

t−1 (10)

The fact that the game is a PD game induces  q1 > q0  for all 

values e1 and e0, therefore : 

e1
t

e1
t−11 (11)

So,  the  system  converges  towards  a  situation  where  C 

strategies disappear. The C-community empties during the 

evolution. 

The result we obtain for two related communities 

corresponds  to  a  general  result  on  complete  graphs. 

Complete graphs are equivalent to non spatially distributed 

populations.  In  non  spatially  distributed  populations, 

strategies C are eliminated, whether the dynamic is which 

specified by Nowak and May or the one presented here. 

This result is a direct consequence of the fact that D is a 

strictly dominant strategy in the PD game. The limitation 

of  the  contacts  between  communities  enables  for 

memoryless  cooperative  strategies  to  survive  in  some 

configurations.  We first analyse the case of square lattices 

of dimension 2.
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3. Emergence of Cooperation with a Regular Topology

The first results are obtained with square lattices 

of  dimension 10 (N=100) and periodic boundaries. Each 

community interacts with its eight nearest neighbours. The 

size of each community is set to 100. With a square lattice 

topology,  the  system  can  be  interpreted  as  a  cellular 

automaton with 2*100*N states per cell. 

Three  final  states  are  possible  here.  First,  the 

system converges towards a stationary state with a large 

majority of cooperators, this is the success of cooperation. 

Second, the system converges towards the total elimination 

of  C strategies,  only  D-communities,  which  all  have  an 

average score of 1, remain. This is the dramatic evolution 

to a generalized state of conflict. The last kind of evolution 

we observe is periodic : the system doesn't converge and C 

and  D  strategies  survive  in  comparable  proportions  in 

cyclic variations.

Fig. 3.1 :  the probabilities  associated with each kind of output starting 

from a  random initialisation.  The  result  are  given  with  respect  to  the 

evolution of p, the frequency of C-communities.

There  are  non-zero  probabilities  for  periodic 

evolution only for p between 0.4 and 0.7. However, even 

in  this  interval,  the  probabilities  for  periodic  evolutions 

remain very low. We deal with these cases in Sec. 5. The 

main  result  on  the  graph  is  that  the  probability  of 

convergence towards cooperative states  increases with p. 

This comes from the fact that, in our model, emergence of 

cooperation  is  related  to  particular  patterns  which 

emergence is favoured by strong p values. We refer to such 

patterns as protected communities.  

We  define  a  protected  community  as  a  C-

Community which neighbours are also C-communities. For 

such communities, average score remains constant at 3.

The average  score of  other  communities  can be 

greater  than  3  :  it  is  the  case  for  D-communities 

surrounded  by  C-communities  for  example.  As  the 

population of C-communities close to D-communities tend 

to decrease, there is a decrease of the average score of D-

communities  during  evolution.   The  scores  of  these  D 

communities will eventually become inferior to 3 and their 

population  will  be  redistributed  towards  protected 

communities if these communities have not been emptied 

during evolution. 

Our simulations showed that the initial  presence 

of protected communities induces a convergence towards a 

majority of cooperators, with a large part of the population 

concentrated  on  protected  communities  at  the  end  of 

evolution.  From  each  experimental  run  from  an  initial 

configuration with at  least  one protected community,  we 

noticed  this  convergence  .  In  such  cases,  there  remain 

some D-communities : there are linked to C-neighbours of 

protected  communities.  This  survival  of  D  strategies  is 

artificial as it depends on the way we obtain integer values 

from the  real  values  computed  with  Eq.  (5).  If  we  had 

chosen to obtain integers by  truncation of the real values 

rather  than by rounding to  the closest  integer  value,  the 

initial  presence  of  protected  communities  would  have 

induced  final  states  where  the  only  non-empty 

communities  are  protected  communities,  the  whole 

population  begin  equally  distributed  among  these 

communities.

The  following  development  states  that  it  is  not 

possible  for  protected  communities  to  empty  during 

evolution. We have not yet found a mathematical proof to 

sustain  that  protected  communities  can't  be emptied,  the 

development we propose relies on an approximation, it is 

an heuristic argument.

One  can  approximate  the  global  average  score. 

The basic idea is to compare this score to 3, the average 

score for strategies of an protected community.

We use APD to refer to the average population of 

a D-community and APC to refer to the average population 

of a C-community.  ASC(k) (resp ASD(k)) is the average 

score  for  a  strategy  of  a  C-community  (resp.  D-
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community) surrounded with k C communities. We have 

the following approximation :

 

ASDk =5k∗APC8−k  APDAPD−1
APD−1k∗APD8−k ∗APD  (12)

ASC k = 3∗ APC∗kAPC−1
APC−1k∗APC8−k ∗APD (13)

If we take SNC(p) (resp SND(p)) as the average score for a 

C-community (resp D-community),  we can state, with X 

denoting  the  number  of  C  neighbours  for  a  randomly 

chosen strategy :

SNC  p=∑
k=0

8

p X=k ∗SNC k  (14)

SND  p=∑
k=0

8

p X=k ∗SND k  (15)

Therefore,  we  can  compute  an  approximation  for  the 

global average score. By computing approximations of the 

global average score for all possible values of NMC, NMD 

and  p,  we concluded that  global  average  score  remains 

inferior to 3.

In the  case  of  square  lattices,  the population  of 

protected communities can't decrease. The existence of D-

communities with average scores superior to 3 is balanced 

by  the  existence  of  C-communities  with  average  scores 

inferior to 3. As protected communities can't disappear, we 

are  sure  that  these  communities  will  grow  after  some 

generations.  Therefore,  the  existence  of  protected 

communities in a regular lattice is a sufficient condition to 

ensure  convergence  towards  a  stationary  state  with  a 

majority of  cooperators.  The  sufficient  condition for the 

convergence towards a majority of cooperators becomes a 

sufficient  condition  for  convergence  towards  a  all-C 

population if we change the way we obtain integer values 

from Eq. (5). 

4. Other Topologies

We  have  seen  a  sufficient  condition  for  the 

emergence of cooperation on a square lattice. We address 

now the  question of  the  dynamic  we  specified  on  more 

realistic  topologies.  We  consider  the  evolution  of 

cooperation in the case of scale-free graphs generated with 

the method described by Barabási and Albert [1999;2002] 

and in the case of  Erdös-Rényi random graphs [Erdős & 

Rényi, 1959]. The parameter p still denotes the probability 

for a community to be a C-community. 

The  method  described  by  Barabási  and  Albert 

consists in adding node by node to a random graph with an 

average degree d. Each added node is connected to d pre-

existing nodes of the graph. The probability for choosing a 

particular  pre-existing node increases  with  the degree  of 

this node. The final result is a graph with an heterogeneous 

degree  distribution  and  some  high  connected  nodes  we 

refer to as hubs.  

We generate graphs with the same cardinality and 

the same average degree as the square lattice considered in 

Sec. 3 : cardinality is set to 100 and average degree to 8. 

We initialize graphs the same way we did in Sec. 3.

Fig. 4.1 Evolution of the average frequency of cooperators. Each curve 

corresponds to a different topology. The cardinality of each graph is 100 

and its average degree is 8.

Figure  4.1  shows  the  evolution  of  the  average 

frequencies of cooperators with respect  to p in the three 

graphs we introduced. Cooperation is favoured by random 

graphs and not by  scale-free graphs here. 

We  can  explain  these  differences  by  the 

probability  for  generating  protected  communities 

associated with each topology. Let us consider the case of 

Erdös-Rényi graphs.  Let  q  denote  the  probability  for  a 

randomly  chosen  community  to  be  an  protected 

community. 
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We have : 

q p= p∗∑
k=0

N

pk∗p isolated community /d=8 (16)

where pk refers to the probability for a randomly chosen 

community to be of degree k, p (protected  community / 

d=8)  referring  to  the  probability  for  a  community to  be 

protected, its degree being 8.

The degree  distribution  of  a  random graph is  a 

Poissonian distribution (a demonstration for this classical 

result can be found in [Barabási and Albert, 1999]) so that 

we can compute the values of the q(p) coefficients. q(p) 

represents the probability to have an protected community, 

so  1*q(p) is  the average  frequency of cooperators  if  we 

consider  that  an  initial  protected  community  induces 

convergence  towards  a  state  with  no  defectors.  We 

compared  the  q(p)  values  to  the  empirical  average 

frequencies of cooperators that appear in Fig. 4.1.

Theoretical values fit empirical ones. In the case 

of scale-free graphs, we ran a similar experience. From a 

great  number  of  initial  configurations,  we  evaluated  the 

frequencies f of initializations with protected communities. 

We compared these with the empirical values of average 

frequencies  of  cooperators.  We found a  good fit  in  this 

case too.  We can therefore conclude that the differences in 

the  average  frequencies  of  cooperators  associated  with 

each  graph  come  from  the  differences  between  the 

probability of generating protected communities for each 

graph. Here again, a mathematical demonstration may exist 

but  has  not  yet  been  found.  In  scale-free  graph  with 

heterogeneous  degree  distributions,  the  existence  of  D-

hubs prevents the emergence of protected communities for 

a large number of C-communities. In Erdös-Rényi random 

graphs, the stronger probabilities of convergence towards a 

large majority of cooperators come from the existence of 

some  communities  with  degrees  inferior  to  the  average 

degree and the fact that D-communities can only have a 

limited  interaction  range  as  their  degree  can't  differ  too 

much from the average degree.

To confirm our conclusions, we have tested how 

sensitive they were to the average degree of the graphs. We 

have considered the average frequencies of cooperators for 

the same topologies with average degree of 4 and 12. The 

main results remained the same.

5. Periodic Configurations

Apart  from the two main cases of convergence, 

some initial states induce periodic oscillations. We give an 

example of such evolutions in Figs. 5.1 and 5.2. A more 

detailed evolution for a system with periodic oscillations is 

given in [Dorat & Delahaye, 2006]

Fig. 5.1 : The  remaining non-empty nodes. The period for the system is 

of 132 generations. This example has been obtained on a regular lattice 

with p=0.6. 

Fig. 5.2 : The evolution of the total populations of C and D strategies over 

a period of the system. 

These cases are rare : in Sec. 4, we were able to compute 

good  approximations  of  the  average  frequencies  of 

cooperators without taking into account the survival of C-

strategies in periodic oscillations.  In fact, for Erdös-Rényi 

random graphs and Barabási and Albert scale-free graphs, 

the probabilities of periodic evolutions is very low. Table 

5.1 gives the probability that a random initialisation gives 

periodic oscillations. 
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Regular  

lattice

Random 

Graph

Scale-free

p=0.4 0.002 0 0

p=0.5 0.005 0.00025 0.00014

p=0.6 0.012 0.002 0

p=0.7 0.008 0 0
Tab. 5.1 : probabilities for periodic evolutions with respect to the 

topologies

We  try  to  understand  the  differences  between 

topologies  observed in  Tab.  5.1  by giving some general 

features on periodic evolutions. In these evolutions, only 

some  communities  remain  non-empty,  the  whole 

population  is  concentrated  on  these  communities.  The 

remaining C-communities are clusterized whereas the D-

communities are not. In fact, a case of periodic evolution is 

a case of a C-cluster which is surrounded by a boundary of 

D-communities.  The  differences  on  the  probabilities  of 

cyclic  evolutions  associated  with  each  topology  are 

partially  due  to  the  differences  in  the  probabilities  of 

emergence of C-clusters in each topology.

In  Tab.  5.2  we  give  some  average  information 

about  periodic  cases.  The  average  values  are  computed 

upon the sets of  periodic evolutions we have generated. 

These  sets  of  periodic  evolutions  come  from  massive 

simulations  on  graphs  of  cardinality  100,  we  ran  105 

experiments for each kind of graph.

Regular 

lattice

Random 

graph

Scale-Free

Average number of non-empty 

C-communities

5.874 9.833 45.5

Average number of non-empty 

D-communities

5.922 12.833 8

Average  number  of  C-

neighbours for  a C-community

3.134 2.58 11.54

Average  number  of  D-

neighbours for  a C-community

1.17 1.39 1.0879

Average  number  of  D-

neighbours for  a D-community

0.62 0.36 0.375

Average  number  of  C-

neighbours for  a D-community

1.16 1.065 6.1875

Tab. 5.2 : some general features about periodic cases, each value is 

computed as an average among the set of periodic cases.

The  data  of  Tab.  5.2  confirm  the  existence  of 

clusters of C-communities in cases of periodic evolution. 

For all topologies, a C-community is generally linked to 

only one D-community :  Secs. 3 and 4 insure us that each 

community  is  linked  with  at  least  one  D-neighbour, 

otherwise we would have an protected community and an 

evolution towards a cooperative stationary state. Table 5.2 

also show that in the case of random graphs and regular 

lattices,  each  D-community  inhibits  in  general  one  C-

community.  For  scale-free  graphs,  there  are  very few D 

communities  among  the  non-empty  communities  with 

regard  to the number  of  C-communities,  each of  the D-

communities inhibits a large number of C communities.  

A  systematic  analysis  on  the  periodic  cases 

revealed the existence of a particular sub-structure among 

the  non-empty  communities  for  each  case  of  periodic 

evolution. This configuration is given in Fig. 5.3.

Fig. 5.3 : A pattern of four communities that is always found in a case of 

periodic evolution. C1 and C2 are C communities, D1 and D2 are D 

communities.

Here, C1 and C2 are C communities whereas D1 

and  D2  are  D  communities.  In  this  configuration,  the 

growth of C1 induces a growth of D1. This growth for the 

population of D1 corresponds to an increase in the number 

of contacts for D2 and a decrease in the population of D2. 

This  evolution  correspond to  an  increase  of  the average 

score  for  C2  as  C1  growths  and  D2  decreases.  After  a 

certain  time,  C2  begins  to  growth  and  C1  begins  to 

decrease.  The  situation  is  then  similar  to  the  initial 

situation  we  assumed.  This  configuration  is  the  one 

inducing  periodic  evolutions  among  the  remaining  non 

empty communities. 

We tested the robustness of the periodic dynamic 

in  our  model.  For  each  initial  configuration  inducing  a 

periodic  evolution,  we  launched  the  evolution  for  500 
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generations.  We then extracted the set of population sizes 

for  non-empty  communities  for  a  randomly  chosen 

generation between 100 and 500. For each of these integer 

values,  we  modified  it  by  adding  a  value  randomly 

generated  with  a  N(0,G)  law.  We  didn't  allow  for 

communities  to  be  emptied  by  this  mechanism :  a  new 

population size inferior to 0 was set to 1. We tested the 

evolution  of  the  system  with  the  newly  obtained  set  of 

population sizes. For each value of G, we could compute 

the frequency of new cases exhibiting periodic evolutions. 

Results are given by Fig. 5.4 (the global population for all 

topologies is 104) :

 

Fig. 5.4 Evolution  of the frequency of periodic cases among the modified 

cases generated with perturbation G.

We noticed that the cyclic phenomenon is robust 

as  periodic  evolution  is  maintained  even  with  major 

perturbations. Furthermore, the sets of populations values 

for the new cyclic situations were different from the sets of 

population  values  of  the  cycle  induced  by  the  initial 

configuration.

6. Conclusion and Discussion

We have introduced a new simple mechanism for 

the emergence of cooperation with basic strategies. In our 

model  the  global  features  we  observe  come  from 

interactions between a global and a local level. The state of 

every node of the graph influences the state of every other 

node  in  the  graph  as  the  population  for  one  particular 

community  is  defined  using  a  global  average  score 

computed on all the strategies of the network. 

The system exhibits three possible evolutions. We 

have found a criterion to determine the final state from the 

initialization.  If  there  is  an  protected  community  in  the 

initial  configuration,  the system will  converge towards a 

large  majority  of  cooperators.  protected  communities 

correspond to clusterized structures of C-communities : as 

in  the  model  of  Nowak  and  May,  clusters  of  C-

communities are essential to the emergence of cooperation. 

In our model, the existence of protected communities has a 

more radical effect than it has in the model of Nowak and 

May as it nearly induces the disappearance of D strategies. 

The  average  frequency  of  cooperators  associated  with  a 

topology is  therefore directly linked with the probability 

that  an  protected  community  emerges  in  this  topology. 

Graphs  with  hubs  which  are  D-communities  make  it 

difficult  for  the emergence of  cooperation as  these  hubs 

inhibit a large number of C-communities. 

In the case of initial states without any protected 

communities,  the  network  converges  towards  a  all-D 

population or undertakes periodic evolutions.  Clusterized 

topologies are more likely to induce periodic evolutions as 

the periodic evolution depends on the existence of a cluster 

of  C  strategies  which  is  surrounded  by  D-communities. 

The cyclic phenomenon we observe in the model is robust.

The  convergence  towards  cooperation 

corresponds  here  to  the  existence  of  protected 

communities.  As  in   other  models,  emergence  of 

cooperation  corresponds  to  the  the  fact  that  cooperative 

strategies interact between them. 

Our model can be seen as a metaphor for a global 

economy as  the  evolution  of  a  strategy  depends  on  the 

average strength among all other strategies which can be 

seen  as  a  global  variable.  The  evolution  towards 

cooperation  can  then  be  seen  as  the  success  of 

communities that benefit from some local protection.
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