
Bridging the gap between semantic and pragmatic
Philippe Mathieu, Jean-Christophe Routier and Yann Secq

LABORATOIRE D’INFORMATIQUE FONDAMENTALE DE LILLE, UMR CNRS 8022,
UNIVERSITÉ DES SCIENCES ET TECHNOLOGIES DE LILLE, FRANCE

Email: {Philippe.Mathieu, Jean-Christophe.Routier, Yann.Secq}@lifl.fr

Abstract— This paper is a pragmatic study of the use of
knowledge representation languages, and more precisely the OWL
language proposed by the W3C for the so-called Semantic Web,
within Agent Communication Languages. This study is focused on
the integration of OWL has a content language for the FIPA-ACL
language, and the benefits it could bring to multi-agent platforms
designers.

The first part of this paper introduces the RDF and OWL
languages, then a light introduction to Agent Communication
Languages is provided. The second part presents the minimal
generic agent model that we develop, and describe the possible
uses of the OWL language within this model and for multi-
agent systems. The last part identifies some conceptual and
technological challenges that multi-agent platform designers are
faced to when trying to integrate these technologies.

INTRODUCTION

There is a lot of hype around the Semantic Web nowadays :
on the one hand supporters are describing a radically new
experience in the way we and software agents use the Web,
while on the other hand skeptics are pointing difficulties and
challenges that have to be addressed before something useful
could appear (or even if something at all could appear for
the more skeptical). Knowledge representation theories and
languages are also gaining momentum, and the support the
W3C is providing to languages like Resource Description
Framework[5] (RDF), and more recently with the Ontology
Web Language [14] (OWL, formerly DAML+OIL) through its
Web-Ontology Working Group 1, is a major step towards a
widespread use of knowledge related technologies.

On another area, the growth of personal computing and the
availability of the Internet have raised new issues on the design
of large scale distributed systems. Several approaches have
been proposed to handle this new complexity, ranging from
parallel computing (with PVM or MPI) to distributed object
technologies (like Remote Method Invocations or CORBA) and
more recently grid computing[10]. Another approach that has
rapidly been growing during the last decade are multi-agent
system (MAS). A fair amount of publications can be found
on theorical aspects, and toolkits or multi-agent platforms are
numerous. They are now used in industrial context, and the
standardization process initiated by the FIPA organization2 is
gaining momentum.

This growth has led to several proposals of agent
methodologies[15], [4], [19], [8] to ease the analysis and

1Semantic Web@W3C : http://www.w3c.org/2001/sw/WebOnt/
2Foundation for Intelligent Physical Agent :http://www.fipa.org

design of such complex distributed systems. These method-
ologies often make reference to knowledge and linguistic
theories : ontologies are used to add a semantic layer to content
languages, the Speech Act Theory introduced by Austin[1]
adds illocutary acts and knowledge representation to model
agent beliefs. However, there is a gap between theoretical
works that emphasized their use and agent toolkits that gen-
erally rely on weaker languages to be usable. Moreover, the
multiplicity of agent models and frameworks makes it difficult
to capitalize experiences, that are often not easily usable on
another platform than the one used to design them.

This paper is an attempt to make a bridge between knowl-
edge representation technologies and multi-agent platforms
design in order to bring a pragmatic and usable agent platform.
The first part of this paper introduces the RDF and OWL

languages, then a light introduction to Agent Communication
Languages is provided. The second part presents our minimal
generic agent model that relies on an incremental creation of
agents by “teaching” them skills, and describes the possible
uses of the OWL language within this model and for multi-
agent systems. We think that the use of OWL could have an
important impact on the engineering of multi-agent systems
and more prospectively on their reliability. Finally, the last
part identifies some conceptual and technological challenges
that multi-agent platform designers are faced to when trying
to integrate these technologies.

I. SEMANTIC WEB AND AGENT COMMUNICATION

LANGUAGES

A. Knowledge representation and the Semantic Web

The knowledge representation field is gaining momentum
with the Semantic Web activity initiative that is supported by
the W3C. This initiative aims at bringing more semantic in
the World Wide Web, allowing smart searches by relying on
inference engines. More precisely, works that have been done
on languages like RDF, Resource Description Framework[5],
DAML+OIL[7] and recently with the Working Draft of OWL,
Ontology Web Language (formerly DAML+OIL), show a
strong trend towards a broadening of knowledge representation
use in everyday Internet technologies. Nevertheless, these
languages are still in there infancy, and are seldom available
in commercial products.

RDF is meant to describe relation between resources and to
add meta-data to web resources in such a way that software
agents could handle them. As everything can be accessed



Fig. 1. Stack of XML technologies for Semantic Web

through an URI3, RDF is targeted to augment the Web by
describing the semantic of resources. The figure 1 is an
excerpt of Tim Berners-Lee talk cited above that illustrates
the various layers of the Semantic Web. The lowest layer
is RDF, above OWL can be found in the Ontology support
level. OWL provides a sharp semantic that allows first order
logic inferences. Particularly, works done on description logics
have produced a kind of algorithms[2] that enable complex
inferences to be done in reasonable delays. OWL is the
successor of DAML+OIL, which was initially composed by
DAML, Darpa Agent Markup Language, and OIL, Ontology
Inference Layer. Thus, the OWL language, despite the strong
hype that surrounds it and the tendency to associate it only
with World Wide Web applications, is particularly fitted to
multi-agent systems. In the following section, we will describe
the approach that the multi-agent field has taken to enable
interoperability between heterogeneous systems through the
use of Agent Communication Languages (ACL). And more
particularly, we will explain why OWL can be used as a content
language for these ACL.

B. Agent Communication Languages

Despite the lack of definition of what is an agent, an
interesting way has been taken in the multi-agent commu-
nity to provide MAS interoperability : Agent Communication
Languages. The idea behind ACL is to provide interoperabil-
ity through the exchange of messages that have a defined
semantic. This idea is coming from the linguistic domain,
and more precisely from the Speech Act Theory [1], which
argues that talking is acting. More precisely John Searle[18]
has identified four basic categories of speech acts : utterances,
propositional utterances, illocutionary utterances and perlocu-
tionary utterances. These categories are not independent and
should be seen as building blocks. The figure 2 illustrates these
categories. Several propositions have been done to implement
and standardize Agent Communication Languages. The first

3Directly or indirectly, see http://www.w3.org/2000/Talks/
0906-xmlweb-tbl/

Words

Perlocutionary utterances
The intention to affect behavior

Illocutionary utterances

The intention to interact

Propositional uterrances

Reference to other things

Utterances

Fig. 2. The four categories of speech act of Searle

attempt is the pioneer ACL : KQML[9]. A KQML message
consist in :

• the sender agent,
• the intended agent to whom it was addressed,
• the reply to the message that the sending agent needs to

receive,
• the performative name (25 are predefined),
• the language used to specify the content,
• the ontology that describes the meaning of the message

(i.e. what it is trying to achieve),
• the message content.

The same structure has been used by the FIPA organization,
when they defined the FIPA-ACL. Even if these languages
are interesting, they are of little use in open environments.
This is mainly induced by the fact that the semantic of
performatives is hardly warranted when working with hetero-
geneous platforms and also because of some poor choices for
content languages (SL0). We will see in the next section how
OWL could be used as a content language for KQML or its
“successor”, FIPA-ACL.

II. THE ROLE OF OWL WITHIN OUR AGENT MODEL

A. A minimal generic agent model

The basis of our model is on the one hand the interactive
creation of agents[16], and on the other hand a search on
the fundamental functionalities of agenthood. We are not
interested in the description of the individual behavior of
agents, but rather in the identification of functions that are
sufficient and necessary to an agent. Indeed, the management
of interactions, the knowledge management or the manage-
ment of organizations, are not related to the agent model,
but are intrinsic characteristics with the concept of agent. In
our model, an agent is a container which can host skills. A
skill is a coherent set of functionalities accessible through
a neutral interface. This concept of skill is to be brought



4 Applicative skills Database access, graphical user interface ...
3 Agent model related skills Inference engine, behavioral engine, ...
2 Agenthood skills Knowledge base, conversation management, organizations management
1 Minimal system skills Communication and skill management

Fig. 3. The four layer of our abstract agent model

closer to the concept of software component in object ori-
ented technologies. Thus, an agent consists in a set of skills
which carries out various parts of its behavior. We identified
four layers which are characterized by the various levels of
abstraction of functionalities that are proposed (figure 3).
The first level corresponds to system skills, i.e. the minimal
functionalities allowing to bootstrap an agent: the communica-
tion (emission/reception of messages) and the management of
skills (dynamic acquisition/withdrawal of skills). The second
level identifies agent skills: the knowledge base, media of
interaction between skills and the place of knowledge rep-
resentation, the management of interaction protocols and the
management of organizations). The third level is related to
skills that define the agent model skills (reactive, BDI...), while
the last level represents purely applicative skills. Rather than
skills carrying out these various levels, it is the functionalities
that they represent which are fundamental: the management
of the communications, just like the knowledge base can be
implemented in different ways, but it is necessary to have these
functions within the agent. Thus, the first and the second level
characterize our generic minimal agent model. This model is
generic with respect to the agent models that can be used,
and minimal in the sense that it is not possible to remove one
of the functionalities without losing a fundamental aspect of
agenthood[16].

A skill is made of two parts: its interface and its imple-
mentation. The interface specifies the incoming and outgoing
messages, while the implementation carries out the processing
of these messages. This separation uncouples the specification
from its realization, and thus makes it possible to have several
implementations for a given interface. The interface of a skill
is defined by a set of message patterns which it accepts and
produces. These messages must be discriminated, it is thus
necessary to type them :

interface := ((min)+, (mout)*)*
where mx = message pattern

The typing of message patterns can take several forms : a
strong typing, which has the advantage of totally specifying
the interfaces, while a weak typing offers more flexibility
with regards to the interface evolution. Thus, if the content of
messages are expressed in KIF or OWL, a strong typing will
consist in an entire message checking, while a weak typing
will only check it partially.

¿From an implementation point of view, our notion of skill
is similar to the idea of Web Services : a neutral interface
that can be implemented in several languages and component
models. The component models that could be used are ranging
from EJB, to CORBA components, or even OSGI bundles for
constrained environments.

B. Integrating knowledge representation technologies at the
core of agent platforms

In our first framework, MAGIQUE[17], agents exchange se-
mantically weak messages. These messages can be viewed as a
kind of remote method invocation. Skill interfaces are basically
Java interfaces, and their implementations are Java objects or
components. So, we wanted to add some XML-based language
to describe our skill interfaces to get rid off the Java language
dependency. We studied existing approaches, and we found
that WSDL4 was the closer technological solution. But this
language is finally just an XML-encoding of our previous
approach, and we wanted more expressiveness. So, we took
a closer look to RDF, and rapidly to DAML+OIL. The latter
unifies works from different communities : it has a formal se-
mantic and efficient reasoning (thanks to Description Logics),
it provides rich modeling primitives (frame-like concepts), and
a standard syntactical exchange format (RDF triples).

Our first use of OWL is thus to define skill interfaces (we
were also attentive with DAML-S[6], but this initiative does
not seem to grow). This enables us to add meta-information
to ease the management of skills interfaces or implementa-
tions : version number, libraries dependencies, deployment
information ... Indeed, the use of DAML+OIL, or its succesor
OWL, represents a shift from object processing to document
processing, and inference facilities can be seen as powerful
information accessors.

The second use that we consider is related to the agent
knowledge base. As agents exchange semantically strong mes-
sages, being able to use the same tool to represent knowledge
could ease agent developer task. Implementing agents requires
message matching, knowledge base querying and updating
and message creation to reply. If the same language is used
through all these stages, some translations can be avoided.
Moreover, OWL has all the features needed to describe rich
knowledge structures (it was designed for this aim), but can
also eases the transition from object technologies thanks to
the inclusion of datatypes. The other aspect, we consider is to
use the knowledge base as a media for local (intra-agent) skill
interactions. For that purpose, we propose to use information
in the knowledge base as a kind of semantic linda-space[11].

Going further, having OWL as a core component of agent
platforms could yield to more prospective aspects like ad-
vanced integrated development environment that could lever-
age the semantic layer, or even facilitate the use of agents plat-
forms for model-based experimentations. Indeed, the semantic
description of skills could be used in development environment

4Web Service Description Language : http://www.w3.org/TR/
wsdl12/



as enhanced technical documentation, a kind of semantic
“Skilldoc” (in analogy to the Javadoc, an automated project
documentation framework). Model-based programming aims
at developing sophisticated regulatory and immune systems
that accurately and robustly control their internal functions5.
To accomplish this, these systems exploit a vast nervous
system of sensors, to model themselves and their environment,
that enables them to reconfigure themselves. A tight coupling
between the higher level coordination function provided by
symbolic reasoning, and the lower level processes of adaptive
estimation and control is thus necessary. Working with agents
that are built on semantically strong descriptions, and relying
on inference engine, could ease the design of such systems :
one of the agent skill could monitor others and react if one
fails.

III. CONCEPTUAL AND TECHNOLOGICAL CHALLENGES

Nevertheless, even if the integration of knowledge rep-
resentation would be really useful for multi-agent software
engineers, this task is really challenging. The first challenge
is the novelty of these technologies and the lack of tools to
ease their integration within existent systems. While RDF is
now widely supported, DAML+OIL support is just beginning.
Several editors are available : a mode for EMACS, which do
not provide more than syntax highlighting, OILED[3], which is
defined by their creators as an ontology “notepad”, PROTÉGÉ

[12], an ontology and knowledge-base editor that should
integrate a DAML+OIL plugin soon, and some commercial
tools. The main problems are the lack of coherence checking
or querying facilities in these editors (even if OILED can
rely on the FACT reasoner), and the lack of embeddable
components of such tools. An exception should be noted,
the Java Theorem Prover6 is a nice API that is portable and
easily embeddable. It is likely that the situation will be better
when OWL will become a W3C Recommendation. Another
possibility is the OWL-LITE language, which is a subset of
OWL : it would be easier to create tools that support it, and
this availability of tools could ease the widespread use of OWL.

To leverage the use of these technologies, the FIPA or-
ganization could provide OWL ontologies within some of
its specifications. Technological choices are fundamental for
industry adoption. For example, the use of SL as a content
language and IIOP as a transport layer have been wrong
choices : relying on an XML-based language like DAML+OIL

and HTTP for transport would have ease the development of
libraries, tools and applications around FIPA specifications.
A nice initiative towards this aim is the Java Agent Services7

project, held under the Java Community Process, which im-
plements the FIPA Abstract Architecture8 and provides a nice
object-oriented API that could leverage works done on agents

5Model-based computing at Xerox : http://www2.parc.com/spl/
projects/mbc/

6JTP site : http://www.ksl.stanford.edu/software/JTP/
7JAS homepage : http://www.java-agent.org
8FIPA Abstract Architecture specification : http://www.fipa.org/

specs/fipa00001/SC00001L.pdf

infrastructures. Sadly, since this project has gone under Public
Review, it seems to be stalled.

A last challenge, more cultural, is that knowledge repre-
sentation technologies and particularly ontology design and
development is not an easy task. And because of the novelty
of DAML+OIL and OWL, resources like “how-to” or tutorials
are quite scarce. This last point is very important, and the
knowledge representation community can play an important
pedagogic role to “evangelize” the multi-agent community, and
more precisely platform designers.

CONCLUSION

This paper is an attempt to make a bridge between knowl-
edge representation technologies and multi-agent platforms
design in order to bring a pragmatic and usable agent plat-
form. We believe that knowledge representation technologies
should be core components of multi-agent platforms. After
introducing our agent model that relies on the notion of skill,
we have identified some aspects that could benefit from the
use of OWL : skill interfaces definition, knowledge bases
implementation, ACL content language.

However, there are several showstoppers that have to be
addressed before knowledge representation technologies could
be seamlessly integrated as core components of agent plat-
forms. Some of these problems are related to the novelty
of the language, and should disappear with the development
of tools, but some others are deeper because they induce
the learning of a new way to think. Indeed, creating and
managing ontologies is not an easy task, and is not the same as
decomposing a problem in objects. Moreover, the introduction
of knowledge representation within object oriented systems
means that a clear distinction should be established between
data/knowledge (represented with OWL) and tasks/processes
(defined in an object oriented language).

Nevertheless, we believe that the OWL language could play
an important role in the agent software engineering field. We
are working on an implementation of an agent platform relying
on our agent model, using OWL for skill interface definition
and OSGI[13] components for their implementation.

REFERENCES

[1] J. L. Austin. How To Do Things With Words. Harvard University Press,
second edition edition, 1975.

[2] F. Baader and U. Sattler. Tableau algorithms for description logics.
In R. Dyckhoff, editor, Proceedings of the International Conference on
Automated Reasoning with Tableaux and Related Methods (Tableaux
2000), volume 1847, pages 1–18, St Andrews, Scotland, UK, 2000.
Springer-Verlag.

[3] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd:
A reason-able ontology editor for the semantic Web. Lecture Notes in
Computer Science, 2174:396–??, 2001.

[4] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur.
DESIRE: Modelling multi-agent systems in a compositional formal
framework. Int Journal of Cooperative Information Systems, 6(1):67–94,
1997.

[5] Stefan Decker, Sergey Melnik, Frank van Harmelen, Dieter Fensel,
Michel C. A. Klein, Jeen Broekstra, Michael Erdmann, and Ian Hor-
rocks. The semantic web: The roles of XML and RDF. IEEE Internet
Computing, 4(5):63–74, 2000.

[6] A. Ankolekar et al. Daml-s: Web service description for the semantic
web, proc. 1st international semantic web conf. (iswc 02), 2002.



[7] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. Patel-
Schneider. Oil: An ontology infrastructure for the semantic web, 2001.

[8] J. Ferber and O. Gutknecht. Operational semantics of a role-based agent
architecture. In Proceedings of ATAL’99, jan 1999.

[9] T. Finin, R. Fritzson, D. McKay, and R. McEntire. Kqml as an agent
communication language. In Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM’94),
pages 456–463, Gaithersburg, Maryland, 1994. ACM Press.

[10] Ian Foster and Carl Kesselman. Globus: A metacomputing infrastructure
toolkit. The International Journal of Supercomputer Applications and
High Performance Computing, 11(2):115–128, Summer 1997.

[11] D. Gelernter. Multiple tuple spaces in linda. In E. Odijk, M. Rem, and
J.-C. Syre, editors, PARLE ’89: Parallel Architectures and Languages
Europe, volume 366 of Lecture Notes in Computer Science, pages 20–
27, 1989.

[12] W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu, and M. Musen.
Knowledge modeling at the millennium – the design and evolution of
protege, 2000.

[13] R.S Hall H. Cervantes. Beanome : A component model for the osgi
framework. In Workshop on Software Infrastructures for Component-
Based Applications on Consumer Devices, September 2002.

[14] Ian Horrocks, Dieter Fensel, Jeen Broekstra, Stefan Decker, Michael
Erdmann, Carole Goble, Frank van Harmelen, Michel Klein, Steffen
Staab, Rudi Studer, and Enrico Motta. OIL: The Ontology Inference
Layer. Technical Report IR-479, Vrije Universiteit Amsterdam, Faculty
of Sciences, September 2000. See http://www.ontoknowledge.org/oil/.

[15] E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A methodology for
developing agent based systems. In Chengqi Zhang and Dickson Lukose,
editors, First Australian Workshop on Distributed Artificial Intelligence,
Canberra, Australia, 1995.

[16] P. Mathieu, J.C. Routier, and Y. Secq. Dynamic skill learning: A
support to agent evolution. In Proceedings of the AISB’01 Symposium
on Adaptive Agents and Multi-Agent Systems, pages 25–32, 2001.

[17] JC. Routier and P. Mathieu. A multi-agent approach to co-operative
work. In Proceedings of the CADUI’02 Conference, to appear in April
2002.

[18] J Searle. Speech Acts: An Essay in the Philosophy of Language. Harvard
University Press, second edition edition, 1969.

[19] M. Wooldridge, NR. Jennings, and D. Kinny. The GAIA methodology
for agent-oriented analysis and design. Journal of Autonomous Agents
and Multi-Agent Systems, 2000.


