
The Emptiness Problem of OneBinary Recursive Horn Clauseis UndecidablePhilippe Devienne, Patrick Leb�egue, Jean-Christophe RoutierLaboratoire d'Informatique Fondamentale de Lille { UA CNRS 369Universit�e des Sciences et Technologies de Lille59655 Villeneuve d'Ascq Cedex, FRANCEfdevienne,lebegue,routierg@lifl.frAbstractThe simplest recursive program in Horn clause languages is of the form :8><>: p(fact) :p(left) p(right) : p(goal) :This corresponds to append{like programs.The two most relevant problems concerning this class are the haltingand the emptiness (existence of at least one solution) problems. The haltingproblem has been proved undecidable in the general case in [7]. Here weestablish the undecidability of the emptiness problem in the general case.The (non{)linearity (each variable occurs at most once) of the terms fact,left, right and goal is crucial. We prove that as soon as three of them arelinear, the emptiness problem becomes decidable. For the halting problem,the linearity of goal or left is su�cient.Moreover, the undecidability of the emptiness problem implies the un-satis�ability of the class of quanti�cational formulas with one 2-clause andtwo unit clauses which was opened for twenty years.1 IntroductionQuanti�cational formulas have been subject to a lot of works. A class ofquanti�cational formulas is said to be decidable if and only if there exists ane�ective procedure that determines, for each formula in the class, whetheror not it is satis�able.Considering the quanti�cational formulas with a small number of sub-formulas, the satis�ability of the class8t1; t2; t3; t4[P (t1) ^ (Q(t2) _ R(t3)) ^ S(t4)]where P , Q, R and S are any positive or negative predicates, is open [9]. Aparticular subclass (the only interesting one) is the following one :8t1; t2; t3; t4[P (t1) ^ (P (t2) _ :P (t3))^ :P (t4)]



for which the problem of the consistency corresponds to the problem ot theexistence of solution for the Prolog program :8><>: P (t1) :P (t2) P (t3): P (t4):That is the class of the simplest recursive Prolog programs built fromone fact, one goal and one binary recursive Horn clause. A representativemember of this class is the most famous example in Prolog community :Example 1.8><>: append([ ]; L; L) :append([H jL]; LL; [H jLLL]) append(L; LL; LLL) : append(?; ?; ?) : utConcerning this class, the two most relevant problems are the haltingproblem and the emptiness problem, that is the problem of the existenceof at least one solution. Di�erent behaviours are possible : �nite or in�nitecomputation ; null, �nite or in�nite number of solutions. The computationalpower of this class is also interesting.M. Schmidt{Schauss [17] has shown that the two problems are decidablewhen goal and fact are ground1. M. Dauchet, P. Devienne and P. Leb�egue[4] [6] studied the linear2 case and proved it decidable as well. W. Bibel,S. H�olldobler and J. W�urtz [2] have considered the emptiness problem andhave proved it decidable for some particular cases (see also [16, 18]).In [7], we have proved the halting problem to be undecidable in thegeneral case. In this paper, using a similar proof technique based on thecodi�cation of the unpredictable iterations of J.H. Conway within numbertheory [3] which code Minsky machines [14], we will show that the empti-ness problem is undecidable in the general case (another proof, establishedindependently at the same time, of this result can be found in [10]). Let usnote, that although the basic technique (our (original) codi�cation of Con-way functions) is the same as in our former paper, it is used di�erently. Westudy as well some particular subclasses depending on the (non{)linearity ofthe terms.In next section, we introduce binary Horn clauses and their resolution.In Section 3, we present the Minsky machines formalism and the Conwayunpredictable iterations. It is shown how they can be simulated by binaryclauses in Section 4. We present the main result in Section 5 and somesubcases depending on the linearity of the terms in Section 6. The lastsection summarizes the results. Some proofs are presented in Annex.1A term t is said to be ground when it does not contain any variable occurence [13].2A term t is said to be linear when each variable occurs at most once.



2 Preliminaries2.1 Binary Horn ClauseLet F be a set of function symbols (which contains at least one constant andone symbol whose arity is greater than 1) and V ar be an in�nite countableset of variables, we denote M(F;Var) the set of terms built from F and Var.De�nition 1 The binary (recursive) Horn clauses have the following form :p(t1; :::; tn)  p(tt1; :::; ttn) :where ti and tti are any terms of M(F;Var).A binary clause is said to be right{linear (resp. left{linear) if all variableoccurs at most once in the body part (resp. the head part).For example, \append([X j L]; LL; [X j LLL])  append(L;LL;LLL)." is aright{linear binary clause.2.2 Variable IndexationIt is well known that during the resolution, before applying any clause, theformal variables of the clause have been renamed to fresh variables which donot appear anywhere else. The simplest way to do it is to put an additionalindice on all formal variables, which corresponds, for instance, to the numberof the inference.ith inference : append([Xi j Li]; LLi; [Xi j LLLi])  append(Li; LLi; LLLi) .The sequence of inferences using the clause, \left right", can be drawnin the form of a series of dominoes :� � � left1  right1 left2  right2 � � � leftn�1 rightn�1 leftn  rightn � � �Like in the domino series, the ith domino can be followed by an (i+1)th one,if terms lefti+1 and righti can be uni�able and this constraint is compatiblewith those of the other iterations. Hence, applying n times this binary clauseis equivalent to solve the following system :f lefti+1 = righti j i 2 [1; n� 1]g :For example applying n times \append" clause is equivalent to solve thesystem : fappend([Xi+1 j Li+1]; LLi+1; [Xi+1 j LLLi+1]) =append(Li; LLi; LLLi) j i 2 [1; n� 1]g,



that is in a solved form :8 i 2 [1; n� 1]8><>: Li = [Xi+1 j Li+1]LLi = LLi+1LLLi = [Xi+1 j LLLi+1] :If good intuition is possible about simple binary clauses such as the aboveone, the non{linearity of the terms, the existence of some variables on oneside of the clause, and the permutation of variables during inference generallymake intuitive comprehension of behaviour impossible.3 Theoretical Tools3.1 Minsky Machines3.1.1 PresentationThe Minsky machines [14, 3] are state{register machines, the registers (in�nite number) may hold non{negative integers and two types of transitionsare allowed :� \in the state Qi, add 1 to register a and proceed to state Qj".� \in the state Qi, if j a j> 0 (where j a j denotes the content of theregister a) then substract 1 to register a and proceed to state Qj , elsesimply proceed to Qk".These machines have the same computational power as Turing machines(two registers are su�cient [14]). Indeed, for any partial recursive functionf , there is a Minsky machine which started with register contents n; 0; 0; � � �ends with register contents f(n); 0; 0; � � �.Let us recall some usual de�nitions and properties :� The domain of a Minsky machineM is : fn 2 IN j M(n) is �niteg.� A Minsky machineM is said to be total i� its domain is IN.� It is undecidable to determine whether, given a Minsky machine, thismachine is total or not.3.1.2 A particular class of Minsky machinesIn the proofs of Section 5, we use a particular class of Minsky machinesde�ned by the two following de�nitions.De�nition 2 A Minsky machineM is said to be null if :� 0 2 Dom(M)



� all the registers are null at the �nal computation{state, that means thatthe associated partial function, f , veri�es : 8 n 2 Dom(f); f(n) = 0De�nition 3 A Minsky machine M is said to be linear if there exists � anatural integer such that for all input n 2 Dom(M), if n > 0 thenM(n) iscomputed in less than �� n steps.It is easy to see that such Minsky machines exist. Given an integer �greater than 0, the set of �{linear and null Minsky machines is in�nite.Theorem 3.1 There is no algorithm that, when given a linear and nullMinsky machine M, always decides in a �nite number of steps whether ornotM is total.Proof. in Annex utDe�nition 4 A recursive set �r is said to be linear if there exists a linearand null Minsky machine of which domain is �rCorollary 3.2 Knowing that a linear recursive set is equal to IN is undecid-able.Proof. By application of Theorem 3.1. ut3.2 Conway Unpredictable IterationsHere we present some work by J.H. Con-way [3] which has studied a generalization ofthe Collatz conjecture. The exact origin ofthis conjecture { also called \Syracuse con-jecture" or \3x + 1 problem" [11] { is notclearly known. It had circulated by word ofmouth among the mathematical communityfor many years. This problem is credited toLothar Collatz at the University of Hamburg.This conjecture asserts that the opposite pro-gram, given any integer n, always terminates. While n > 1 DoIf n is evenThen n n2Else n 3n+ 1EndIfEndWhile3.2.1 PresentationJ.H. Conway considers the class of periodically piecewise linear functionsg : IN! IN having the structure :8 0 � k � d� 1; if n (mod d) � k ; g(n) = akn :where a0; � � � ; ad�1 are rational numbers such that g(n) 2 IN. These areexactly the functions g : IN ! IN such that g(n)n is periodic. Conway studiesthe behaviour of the iterates g(k)(n) and he states the following theorem :



Theorem 3.3 (Conway). If f is any partial recursive function, there is afunction g such that :1. g(n)n is periodic (mod d) for some d and takes rational values.2. 8 n 2 IN; n 2 Dom(f) i� 9(k; j) 2 IN� � IN; g(k)(2n) = 2j.3. g(k)(2n) = 2f(n) for the minimal k � 1 such that g(k)(2n) is a power of2.Remark. By construction, the number of iterations used from g(2n) to 2f(n)is equal to the number of transitions used byM from n to f(n).3.2.2 Conway Equivalence RelationsWe study the null Conway functions and de�ne some equivalence relationsbased on these particular functions.De�nition 5 Let g be a Conway function, the domain of g is :Dom(g) = fn 2 IN j 9(k; p) 2 IN� � IN; g(k)(2n) = 2pgA Conway function g is said to be total if its domain is IN.Let us consider the class of linear and null Minsky machines and theirassociated Conway functions, called also linear and null Conway functions.Proposition 3.4 Let g be a null Conway function then3 :9k 2 IN; 20 2 g(�k)(2n) ) 9k0 2 IN; g(k0)(2n) = 20 :Proof. in Annex utBecause of the features of the null Conway functions, negative iterationsof function g can be taken into account. In other words, the Conway tran-sitions n! g(n) will be extended to equivalence relations n � g(n). Indeedaccording to the de�nition of these functions, the only power of 2 you canreach by iterating g from any 2n is 20 (and you reached it i� n 2 Dom(f)).Conversely, by iterating g(�1) from 20 the only powers of 2 you reach (andyou reach all of them), are the 2n such that n 2 Dom(f). So we can considerthat, ignoring loops on 20, there is only one path form 2n to 20 (if any) us-ing positive iterations of g and therefore only one path (the same in reversesense) from 20 to 2n using negative iterates.De�nition 6 A Conway equivalence relation is de�ned from a null Conwayfunction and its basic equivalence relations : 8 n 2 IN; n �g g(n)Corollary 3.5 For every recursively enumerable set, � containing f0g, the-re exists a Conway equivalence relation �g such that : � = fn 2 IN j 2n �g 1gProof. It is obvious that for every recursively enumerable set, � containingf0g, there exists a null Minsky machineM which domain is �. Then if g isthe null Conway function associated withM, �g satis�es the assertion. ut3We denote 8 k 2 IN; g(�k)(n) = fm 2 IN j gk(m) = ng.



4 Recursively Enumerable Set and Binary HornClauseLet us show that the SLD resolution of a goal w.r.t. one binary Horn clausecan codify any recursively enumerable subset of IN containing f0g.Theorem 4.1 Let ] be a special symbol. For every recursively enumerableset � containing f0g, there exist a right{linear binary Horn clause and agoal such that any natural integer n, belongs to � i� from a certain numberof SLD resolution steps, the �rst argument of the initial goal must be a listof which the (2n)th element is marked by ].Remark. The following program is an illustration in the case where � is IN :�1 ( p([X jL]; [Y;XjLL]) p(L; LL) : p([]jL]; []jL]) :This program put a ] in all the (2n)th positions of []jL]. Let us note thatthe propagation of the mark is here \1{linear", that is, the (2n)th elementwill be marked after at most 2n SLD{resolution steps.Lemma 4.2 For every natural integers a; a0; b; b0, there exist a variable X,a right{linear binary clause p(t) p(tt) and a goal  p() such that :(f = t1g [ ftti = ti+1 j 8 i > 0g)"fXg � fXai+b = Xa0i+b0 j i > 0g :Proof. The following program :8>><>>: p([ az }| {Z; ; � � � ; jL]; [X jLL]) p(L; LL): p([ ; � � � ;| {z }b jL]; L):The size of the �rst variable of the Horn clause decreases in a while theone of the second decreases in one, so we have :@@@.......................... .......................... .......................... .......................... ..........................@@@@@. @@@.......................... .......................... .......................... .......................... ..........................@@@@@.. . . . . . . . . . . . .. . . . . . . . . . . . .Z0 Z1 X0X1 Xa�1Xa+1XaIf there was no b in the goal, the equality of the two arguments would havegenerate : Zi = Xai, the b shifts this equation then we have : Zi = Xai+b.By composition of two programs like this one, we obtain :



8>>><>>>: p([ az }| {Z; ; � � � ; jL1]; [X jL2]; [ a0z }| {Z; ; � � � ; jL3]; [X jL4]) p(L1; L2; L3; L4): p([ ; � � � ;| {z }b jL]; L; [ ; � � � ;| {z }b0 jLL]; LL):It involves the equalities :Xai+b = Zi and Xa0i+b0 = Zi : utRemark. If we want to code the relation Xai+b = Xa0i+b0 with b < a andb0 < a0, it is possible to write :8>>>>><>>>>>: p([ az }| {; � � � ; Z| {z }b ; ; � � � jL1]; [X jL2]; [ a0z }| {; � � � ; Z| {z }b0 ; ; � � � jL3]; [X jL4]) p(L1; L2; L3; L4): p(L; L; LL; LL):Lemma 4.3 For every Conway function g, there exist a variable X, a right{linear binary clause p(t) p(tt), and a goal  p() such that :(f = t1g [ ftti = ti+1 j 8 i > 0g)"fXg � fXn = Xg(n) j 8 n > 0g :(S "fXg is the projection onto the variables Xi of the equations expressed inS.)Proof. in Annex utProof of the theorem. According to the previous lemmas, let X be thevariable which codes the Conway equivalence relation of � (as told in Corol-lary 3.5), then the list L is linearly built as [X1; X2; � � � ; Xn; � � �] with all theXi linked by the relations Xi = Xg(i). Consequently, according to Corol-lary 3.5 : � = fn 2 IN j X2n �g X1gMoreover at startup, if variable X1 is marked by ], then this mark will bepropagated to all X2n where n belongs to �. utThe next example is an illustration of Lemma 4.2. It shows that binaryHorn clauses can produce relations like Xai+b = Yci+d and thus easily expressvery complex problem like, here, the Collatz problem.Example 2. Back to the Collatz conjecture, the Collatz's program can betranslated into equivalence relations on V ar � IN :8 k 2 IN If k is even Then Xk = X k2 Else Xk = X3k+1 :



Let f be the function such that 8 i > 0; f(2i) = i and f(2i�1) = 6i�2.Since there does not exist some k 2 IN such that fk(1) = n (8 n > 4), wemay assert that we may extend the previous relation to the following systemof equations : ( Xi = X2iX2i�1 = X3(2i�1)+1The following binary clause and goal generate such equations :8><>: p( L1z }| {[X j U ]; L2z }| {[Y;X j V ]; L3z }| {[ ; ; ; Y; ; j W ]) p(U; V;W ): p(Z; Z; Z):Through the inferences the solved systems of equations increases as :L2 = [Y1; X1; Y2; X2; Y3; X3; � � � ; Yn; XnjVn]L1 = [X1; X2; X3; X4; X5; X6; � � � ; Xn�1; XnjUn]L3 = [ ; ; ; Y1; ; ; � � � ; ; Yn; ; jWn]Then, from the goal  p(Z; Z; Z), we force the equalities :1. L1 = L2 ) X2i�1 = Yi and X2i = Xi2. L1 = L3 ) X6i�2 = Yi.that is Xi = X2i and X2i�1 = X6i�2With a goal of the form : p([a; ; � � � ; ; �a| {z }n j L]; [a; ; � � � ; ; �a| {z }n j L]; [a; ; � � � ; ; �a| {z }n j L]) :we force X1 = a and Xn = �a. Therefore, the resolution is �nite i� a uni�ca-tion fails because of Xn 6= X1, that is, if the 3x+1 program is �nite from theinput n. In other words, the 3x + 1 conjecture is equivalent to prove that,given any goal p(L; L; L) where L is a list of the form [a; ; � � � ; ; �a j ], theresolution is �nite. utWe use the previous theorem and the undecidability of the belonging ofan element to a recursive enumerable set to prove :Theorem 4.4 There is no algorithm that, when given a right{linear binaryHorn clause and given a goal, always decides in a �nite number of stepswhether or not the resolution (with or without occur{check) stops.



Proof. It is a direct consequence of Theorem 4.1. By initializing L in thegoal as [];X2; � � � ; X2n�1; [ j LL] where mark [ is put on the (2n)th elementof L, then the resolution stops i� equation (] = [) occurs, that is, i� n is anelement of �. Since there is no algorithm that, when given an integer n anda recursively enumerable set �, always decides in a �nite number of stepswhether or not n belongs to �, the result is proved. It is easy to check thatthe occur{check does not play any role in the proof. utThis result was �rst established in [7] with a slightly di�erent proof.5 Emptiness ProblemRemark. Another proof, established independently at the same time, ofthis problem can be found in [10], it is based on a codi�cation of the Postcorrespondence problem into an append{like program.Let us suppose that the Conway equivalence relation is \linear", then thepropagation of mark ] is linear too. Then it is possible to write a programfor which a solution at the (2n)th step is equivalent to say that n does notbelong to the linear recursive set. Therefore, we cannot decide whether ornot such Horn clauses have no solution because of Corollary 3.2.Theorem 5.1 There is no algorithm such that, when given a program ofthe following form : 8><>: p(fact) :p(left) p(right) : p(goal) :where fact, right are linear terms, always decides in a �nite number ofsteps, whether or not this program has at least one solution.Lemma 5.2 For every linear recursive set �r (containing f0g), there exista right{linear binary clause and a goal such that any natural integer, n,belongs to �r i� after at most 2n SLD resolution steps, the �rst argument ofthe initial goal must be a list of which (2n)th element is marked by ].Proof. Let �r be a linear recursive set, by de�nition, there exists a linearand null Conway function of which domain is �r. It is easy to check thatthe associated Conway equivalence relation is at worst �{linearly computedby the binary Horn clause C2 and the goal obtained by the Lemma 4.3codi�cation. In other words, mark ] is linearly propagated in the �rst list{argument of the goal. It is now easy to de�ne a \1{linear" pair (binary Hornclause C1, goal) from this \�{linear" pair (C2, goal), each resolution step ofC1 corresponding to � steps of C2. utProof of the theorem. Let us write a right{linear binary Horn clause and agoal for which resolution constructs a characteristic list of powers of 2 :�2 ( p([X jL]; [Y;XjLL]; [[; ZjLLL]) p(L; LL; LLL) : p([]; ]jL]; []; ]jL]; L) :



In comparison to example �1, a third argument has been added in order toinstanciate the non{powers of 2 with [. This program is such that after nresolution steps the �rst argument L is :L = [X1; X2; � � � ; Xn; :::]where 8 k < n; Xk = ] if k is a power of 2 and Xk = [ otherwise.Let us code now a class of programs for which the existence of solutionsis undecidable. Let �r be any linear recursive set, and its characteristic pair(right{linear Horn clause, goal) (Cf. Lemma 5.2), let us denote it as follows :�3 ( p(t1; t2; � � � ; tk) p(tt1; tt2; � � � ; ttk) : p(g1; g2; � � � ; gk) :Now follows our particular class of programs :�4 8>>><>>>: p(Y1; Y2; � � � ; Yk; [; Z; []jL]; LL;LLL) :p(t1; t2: � � � ; tk;W; [U jV ]; [X jL]; [Y;XjLL]; [[; ZjLLL]) p(tt1; tt2; � � � ; ttk ; U; V;L;LL; LLL) : p(g1; g2; � � � ; gk; X; g1; []; ]jL]; []; ]jL]; L) :The n �rst arguments codify �r, the two following arguments allow toextract, at the nth iteration, the nth argument of the characteristic list of�r and the three last arguments codify the characteristic list of powers of 2.Because of the fact, there is a solution at the nth step i� :� n is a power of 2 (the three last arguments)� the nth element of the characteristic list of �r is not marked by ],because it must be uni�able with [ (the (n+ 2) �rst arguments)In other words, since we know that the marking (by ]) is \1{linear", thereis a solution at the (2n)th step i� n does not belong to �r. Therefore, �4has no solution i� �r is equal to IN. According to Corollary 3.2, that isundecidable. utBecause of the symmetry of the problem, we can strengthen the previoustheorem in an obvious way :Corollary 5.3 There is no algorithm such that, when given a program ofthe following form : 8><>: p(fact) :p(left) p(right) : p(goal) :where goal and left are linear always decides in a �nite number of steps,whether or not this program has at least one solution.Proof. Because of the symmetry of the problem. utAs a consequence, we can establish that :



Theorem 5.4 The class of quanti�cational formulas with four subformulasis undecidable with respect to the consistency. There is no algorithm which,given a quanti�cational formula with four subformulas, decides in a �nitenumber of steps, whether or not the formula is consistent.This result solves the last open problem in mathematical logic concern-ing the satis�ability of quanti�cational formulas with a small number ofsubformulas. The 5-formulas case was solved in [9].6 Linear Horn Clause and Other SubcasesWe have proved that when the Horn clause is right{ or left{linear, the prob-lems were undecidable. Now it is natural to study the behaviour of this smallprogram depending on the linearity of the terms goal, left, right and fact.We prove that the halting problem becomes decidable as soon goal or left arelinear. The emptiness problem remains undecidable in the linear Horn clausecase. The proof in the �rst case is based on the weighted graphs [4, 5, 12, 6].In the second case, we use the same method as for Theorem 5.1, we simplytransform any append{like program in an equivalent one by linearizing theHorn clause. We are not going to give the detailed proofs here, they willappear soon in a extended report and can be actually communicated to allinterested people.So we state :Theorem 6.1 There exists an algorithm that, when given a left{linear bi-nary Horn clause and given a goal, always decides in a �nite number of stepswhether or not the resolution (with or without occur{check) stops.Theorem 6.2 For the class of programs :8><>: p(fact) :p(left) p(right) : p(goal) :where1. left, right are linear and fact and goal are any terms, the emptinessproblem is undecidable.2. left, right and fact (resp. goal) are linear and goal (resp. fact) is any,the emptiness problem is decidable.3. fact or goal is ground, the emptiness problem is decidable.Sketch of Proof.



1. Let us consider the following program :8>>>>>>><>>>>>>>: p( ; ; ; L; L) :p([X jLX ]; [ az }| {U; ; � � � ; jLU ]; [ cz }| {V; ; � � � ; jLV ]; LLU; LLV ) p(LX;LU; LV; [U jLLU ]; [V jLLV ]) : p(L; [ ; � � � ;| {z }b jL]; [ ; � � � ;| {z }d jL]; [ ]; [ ]) :it produces the equality : Xai+b = Xci+dAnd no other di�erent relation on X is de�ned.It is easy to extend it to create several di�erent equalities on X , andtherefore to the codi�cation of Conway equivalence relations.Now it is quite clear that a proof similar to the one of Theorem 5.1can be made to prove the result in the linear clause case.2. using similar proof's method to the one of Theorem 6.1.3. based on weighted graphs formalism. ut7 SummarizeThe below tabulars summarize the known results concerning the halting andemptiness problems depending on the form of the characteristic elementsgoal, fact, left and right for append{like programsgoal left right Halting Problemground any any decidable [17]linear any any decidable [6]any linear any decidable[here]any any linear undecidable [7]goal left right fact Emptiness Problemground any any ground decidable [17]linear any any linear decidable [6]ground any any anyany any any ground decidable [here]linear linear linear anyany linear linear linear decidable [here]any any linear linearlinear linear any any undecidable [10][here]any linear linear any undecidable[here]



Linearity seems to mark the border between decidability and undecid-ability. Concerning halting problem, as soon as goal or left are linear, itbecomes decidable. For the emptiness problem, three linear terms insurethe decidability.The technique based on our original codi�cation of the Conway functionsprovides an homogeneous frameproof concerning the study of the binaryrecursive Horn clauses. Indeed, it allows to solve the halting and emptinessproblems and a lot of other properties (boudedness,...). Recently, using thiscodi�cation (and some other results), we have proved that the append{likeprograms have the same computational power as Turing machines [8]. Thisresult can be seen as the B�ohm{Jacopini [1] theorem to Logic Programming.Endly, our problem seems to be closed to implication of clause. Consid-ering the program :8><>: p(fact) :p(left) p(right1); p(right2) : p(goal) :where fact and goal are ground. The existence of solutions for this pro-gram is equivalent to the implication of clause A ) B. Where A is left  right1; right2 and B is fact goal. The problem has been shown undecid-able for the case where B is any in [15]. We hope our technique can solvethis particular case.Acknowledgements : We would like to thank Prof. Jean{Paul Delahaye,the basic idea of proof of Theorem 3.1 is due to him.References[1] B�ohm C., Jacopini G. \Flow diagrams, Turing machines and languageswith only two formation rules." Communications of the Association forComputing Machinery, Vol.9, pp. 366{371. 1966.[2] Bibel W., H�olldobler S., W�urtz J. \Cycle Uni�cation." CADE pp. 94{108. June 1992.[3] Conway J.H. \Unpredictable Iterations." Proc. 1972 Number TheoryConference. University of Colorado, pp 49{52. 1972.[4] Dauchet M., Devienne P., Leb�egue P. \Weighted Graphs : a Toolfor Logic Programming." 11th Colloquium on Trees in Algebra andProgramming (CAAP86). 1986.[5] Devienne P. \Les Graphes orient�es pond�er�es : un outil pour l'�etude dela terminaison et de la complexit�e dans les syst�emes de r�e�ecritures eten programmation logique." Ph. D. Thesis. Lille. 1987.



[6] Devienne P. \Weighted graphs { tool for studying the halting problemand time complexity in term rewriting systems and logic program-ming." Journal of Theoretical Computer Science, no75, pp. 157{215.1990.[7] Devienne P., Leb�egue P., Routier J.C. \Halting Problem of One BinaryHorn Clause is Undecidable." Proceedings of STACS'93, LNCS no665,pp. 48{57, Springer{Verlag. W�urzburg. 1993.[8] Devienne P., Leb�egue P., Routier J.C., W�urtz J. \ The B�ohm{JacopiniTheorem for Horn Clause Languages." Technical Report IT 252. LIFL.Lille. Juin 1993.[9] Goldfarb W., Lewis H.R. \The decision problem for formulas with asmall number of atomic subformulas" J. Symbolic Logic 38(3), pp.471{480, 1973.[10] Hanschke P., W�urtz J. \Satis�ability of the Smallest Binary Program."Information Processing Letters, vol. 45, no5. pp. 237{241. April 1993.[11] Lagarias J.C. \The 3x + 1 problem and its generalizations." Amer.Math Monthly 92, pp. 3{23. 1985.[12] Leb�egue P. \Contribution �a l'Etude de la Programmation Logique parles Graphes Orient�es Pond�er�es" Ph. D. Thesis. Lille. 1988.[13] Lloyd J.W. \Foundations of Logic Programming." Second, ExtendedEdition Springer{Verlag. 1987. Springer Verlag[14] Minsky M. \Computation : Finite and In�nite Machines." Prentice{Hall. 1967.[15] Marcinkowski J., Leszek Pacholski \Undecidability of the Horn{ClauseImplication Problem" Proc. of the 33rd FOCS. 1992.[16] Salzer G. \Solvable Classes of Cycle Uni�cation Problems." IMYCS,Smolenice (CSFR). 1992.[17] Schmidt{Schauss M. \Implication of clauses is undecidable." Journalof Theoretical Computer Science, no59, pp. 287{296. 1988.[18] W�urtz J. \Unifying Cycles." Proceedings of the European Conferenceon Arti�cial Intelligence. pp. 60{64. August 1992.8 AnnexProof of Theorem 3.1 From every Minsky machine M? with zero as input,M a null Minsky machine can be de�ned as follows.Let � be a natural integer, and n be the input ofM,



1. Compute �� n and put it in a new register r.2. if j r j= 0 then goto 5 else substract one from r and continue3. Proceed one computation{step ofM?(0)4. IfM?(0) have reached one of its �nal computation{statethen go into \an in�nite loop" else goto 25. end : put zero in all the registers and halt.Any natural integer n belongs to the domain ofM i� the \in�nite loop" isnot reached, that is,M?(0) is computed in more than �� n steps. Thus byconstruction this null Minsky machine is total i�M?(0) does not stop.Let us compute the complexity of M for any n 2 Dom(M) . Step1. may be done in (� � n) transitions, M reach step 5. after (2� � n)transitions. Once in this step, the sum of all the contents of the k registersofM? is, by construction, at most (� � n). Consequently it takes at worst(��n+ k) transitions to put 0 in all the registers ofM? then ofM. Hencethe complexity ofM is (4�� n+ k).Thus by construction, the null Minsky machineM is linear and is totali�M?(0) does not stop, that is undecidable. utProof of Proposition 3.4 Since 0 belongs to the domain, there exists k > 0such that g(k)(20) = 20. Thus, if there exists k0 > 0 such that 20 2 g(�k0)(2n)then by de�nition :g(k0)(20) = 2n and 8 � > 0; g(�k0+k0+��k)(20) = 20:Hence for all � > 0 we have :g(�k0+��k)(g(k0)(20)) = g(�k0+��k)(2n) = 20Since there exists �0 > 0 such that �k0+�0�k > 0, we have the result. utProof of Lemma 4.3 Let g be a periodically piecewise linear function de�nedby d; a0; � � � ; ad�1. For all n = �d+k (0 � k � d), we have g(n) = g(�d+k) =akn = (akd)� + kak, with (akd; kak) 2 IN2. Then the (Xn = Xg(n))n2IN canbe decomposed into a �nite number of equivalence relations in the form(Xai+b = Xa0i+b0)i>0 . All the right{linear binary clauses and goals whichcharacterized these relations (see Lemma 4.2) can be merged in one right{linear binary clause and one goal by merging their arguments. ut


