The Emptiness Problem of One
Binary Recursive Horn Clause

is Undecidable

Philippe Devienne, Patrick Lebégue, Jean-Christophe Routier
Laboratoire d’Informatique Fondamentale de Lille - UA CNRS 369
Université des Sciences et Technologies de Lille

59655 Villeneuve d’Ascq Cedex, FRANCE

{devienne,lebegue,routier}@lifl.fr
Abstract

The simplest recursive program in Horn clause languages is of the form :

p(fact)
p(left) < p(right) .
+— plgoal) .

This corresponds to append-like programs.

The two most relevant problems concerning this class are the halting
and the emptiness (existence of at least one solution) problems. The halting
problem has been proved undecidable in the general case in [7]. Here we
establish the undecidability of the emptiness problem in the general case.

The (non-)linearity (each variable occurs at most once) of the terms fact,
left, right and goal is crucial. We prove that as soon as three of them are
linear, the emptiness problem becomes decidable. For the halting problem,
the linearity of goal or left is sufficient.

Moreover, the undecidability of the emptiness problem implies the un-
satisfiability of the class of quantificational formulas with one 2-clause and
two unit clauses which was opened for twenty years.

1 Introduction

Quantificational formulas have been subject to a lot of works. A class of
quantificational formulas is said to be decidable if and only if there exists an
effective procedure that determines, for each formula in the class, whether
or not it is satisfiable.

Considering the quantificational formulas with a small number of sub-
formulas, the satisfiability of the class

Viy, by b, ta[P(t1) A (Q(t2) V R(t3)) A S(t4)]

where P,), R and S are any positive or negative predicates, is open [9]. A
particular subclass (the only interesting one) is the following one :

Vi, ta, ts, ta[P(t1) A (P(t2) V= P(t3)) A = P(t4)]

for which the problem of the consistency corresponds to the problem ot the
existence of solution for the Prolog program :

P(tl) — .
P(tg) — P(tg)

That is the class of the simplest recursive Prolog programs built from
one fact, one goal and one binary recursive Horn clause. A representative
member of this class is the most famous example in Prolog community :
Erample 1.

append([], L, L) «
append([H|L], LL,[H|LLL]) + append(L,LL,LLL) .
— append(?,7,7) .

O

Concerning this class, the two most relevant problems are the halting
problem and the emptiness problem, that is the problem of the existence
of at least one solution. Different behaviours are possible : finite or infinite
computation ; null, finite or infinite number of solutions. The computational
power of this class is also interesting.

M. Schmidt-Schauss [17] has shown that the two problems are decidable
when goal and fact are ground®. M. Dauchet, P. Devienne and P. Lebeégue
[4] [6] studied the linear? case and proved it decidable as well. W. Bibel,
S. Hélldobler and J. Wiirtz [2] have considered the emptiness problem and
have proved it decidable for some particular cases (see also [16, 18]).

In [7], we have proved the halting problem to be undecidable in the
general case. In this paper, using a similar proof technique based on the
codification of the unpredictable iterations of J.H. Conway within number
theory [3] which code Minsky machines [14], we will show that the empti-
ness problem is undecidable in the general case (another proof, established
independently at the same time, of this result can be found in [10]). Let us
note, that although the basic technique (our (original) codification of Con-
way functions) is the same as in our former paper, it is used differently. We
study as well some particular subclasses depending on the (non-)linearity of
the terms.

In next section, we introduce binary Horn clauses and their resolution.
In Section 3, we present the Minsky machines formalism and the Conway
unpredictable iterations. It is shown how they can be simulated by binary
clauses in Section 4. We present the main result in Section 5 and some
subcases depending on the linearity of the terms in Section 6. The last
section summarizes the results. Some proofs are presented in Annex.

YA term tis said to be ground when it does not contain any variable occurence [13].
2A term ¢ is said to be linear when each variable occurs at most once.

2 Preliminaries

2.1 Binary Horn Clause

Let F' be a set of function symbols (which contains at least one constant and
one symbol whose arity is greater than 1) and Var be an infinite countable
set of variables, we denote M (F, Var) the set of terms built from F and Var.

Definition 1 The binary (recursive) Horn clauses have the following form :
p(th ") — p(tth, ..t .

where t and tt* are any terms of M (I, Var).
A binary clause is said to be right-linear (resp. left-linear) if all variable
occurs at most once in the body part (resp. the head part).

For example, “append([X | L], LL,[X | LLL]) + append(L,LL,LLL).” is a
right-linear binary clause.

2.2 Variable Indexation

It is well known that during the resolution, before applying any clause, the
formal variables of the clause have been renamed to fresh variables which do
not appear anywhere else. The simplest way to do it is to put an additional
indice on all formal variables, which corresponds, for instance, to the number
of the inference.

it" inference : append([X; | L;], LLs, [Xs | LLL;]) < append(L;, LL;, LLL;) .

The sequence of inferences using the clause, “left « right”, can be drawn
in the form of a series of dominoes :

lefty « righty || lefty < rights | -+ |left,_1 < right, _q|left,, < right,

Like in the domino series, the i domino can be followed by an (i+1)* one,
if terms left;1 and right; can be unifiable and this constraint is compatible
with those of the other iterations. Hence, applying n times this binary clause
is equivalent to solve the following system :

{ left;11 = right; | 1 € [1,71 — 1]} .

For example applying n times “append” clause is equivalent to solve the
system :

tappend([Xiq1 | Liv1], LLita, [Xig1 | LLLi11]) =
append(L;, LL;, LLL;) | i € [1,n — 1]},

that is in a solved form :

L; =[Xi41 | Li+1]
Vi€ [1,71— 1] LL;=LL;{
LLL; = [Xiy1 | LLLipd]

If good intuition is possible about simple binary clauses such as the above
one, the non—linearity of the terms, the existence of some variables on one
side of the clause, and the permutation of variables during inference generally
make intuitive comprehension of behaviour impossible.

3 Theoretical Tools

3.1 Minsky Machines
3.1.1 Presentation

The Minsky machines [14, 3] are state-register machines, the registers (in
finite number) may hold non-negative integers and two types of transitions
are allowed :

e “in the state ();, add 1 to register @ and proceed to state);”.

e “in the state @Q;, if | @ |> 0 (where | a | denotes the content of the
register a) then substract 1 to register a and proceed to state ();, else
simply proceed to Q”.

These machines have the same computational power as Turing machines
(two registers are sufficient [14]). Indeed, for any partial recursive function
[, there is a Minsky machine which started with register contents n,0,0, - - -
ends with register contents f(n),0,0,---.

Let us recall some usual definitions and properties :

e The domain of a Minsky machine M is : {n € N | M(n) is finite}.
o A Minsky machine M is said to be total iff its domain is N.

e It is undecidable to determine whether, given a Minsky machine, this
machine is total or not.

3.1.2 A particular class of Minsky machines

In the proofs of Section 5, we use a particular class of Minsky machines
defined by the two following definitions.

Definition 2 A Minsky machine M is said to be null if :

e 0 € Dom(M)

o all the registers are null at the final computation—state, that means that
the associated partial function, f, verifies : ¥ n € Dom(f), f(n) =0

Definition 3 A Minsky machine M is said to be linear if there exists a a
natural integer such that for all input n € Dom(M), if n > 0 then M(n) is
computed in less than o« X n steps.

It is easy to see that such Minsky machines exist. Given an integer «
greater than 0, the set of a—linear and null Minsky machines is infinite.

Theorem 3.1 There is no algorithm that, when given a linear and null
Minsky machine M, always decides in a finite number of steps whether or
not M is total.

Proof. in Annex O

Definition 4 A recursive set ¥, is said to be linear if there exists a linear
and null Minsky machine of which domain is 3,

Corollary 3.2 Knowing that a linear recursive set is equal to N is undecid-

able.

Proof. By application of Theorem 3.1. O

3.2 Conway Unpredictable Iterations

Here we present some work by J.H. Con-
way [3] which has studied a generalization of
the Collatz conjecture. The exact origin of
this conjecture — also called “Syracuse con-
jecture” or “3z + 1 problem” [11] — is not

While n > 1 Do

If n is even

clearly known. It had circulated by word of Then n ¢ 5

: . Else n < 3n+1
mouth among the mathematical community Endlf
for many years. This problem is credited to M

Lothar Collatz at the University of Hamburg.
This conjecture asserts that the opposite pro-
gram, given any integer n, always terminates.

3.2.1 Presentation
J.H. Conway considers the class of periodically piecewise linear functions
g : N — N having the structure :

VO<k<d-1,ifn (modd)=k, g(n)=axn .

where ag, - --,aq—1 are rational numbers such that g(n) € N. These are
exactly the functions ¢ : N — N such that ﬂnﬂ is periodic. Conway studies
the behaviour of the iterates ¢(*)(n) and he states the following theorem :

Theorem 3.3 (Conway). If f is any partial recursive function, there is a
function g such that :

1. ﬂnﬂ is periodic (mod d) for some d and takes rational values.
2. ¥n € N,n€ Dom(f) iff I(k,j) € N* x N, g (27) = 27,

3. g 27y = 270 for the minimal k > 1 such that g™ (2") is a power of
2.

Remark. By construction, the number of iterations used from ¢(2") to 2/ ()
is equal to the number of transitions used by M from n to f(n).

3.2.2 Conway Equivalence Relations

We study the null Conway functions and define some equivalence relations
based on these particular functions.

Definition 5 lLet g be a Conway function, the domain of g is :
Dom(g) = {n€N | 3(k,p) € N"x N, gP(2") = 29
A Conway function g is said to be total if its domain is N.

Let us consider the class of linear and null Minsky machines and their
associated Conway functions, called also linear and null Conway functions.

Proposition 3.4 Let g be a null Conway function then® :
W eN, 2egMEY) =3I eN, g*@ny =20,
Proof. in Annex O

Because of the features of the null Conway functions, negative iterations
of function ¢ can be taken into account. In other words, the Conway tran-
sitions n — ¢(n) will be extended to equivalence relations n = ¢g(n). Indeed
according to the definition of these functions, the only power of 2 you can
reach by iterating ¢ from any 2" is 2° (and you reached it iff n € Dom/(f)).
Conversely, by iterating g(=1 from 2° the only powers of 2 you reach (and
you reach all of them), are the 2” such that n € Dom(f). So we can consider
that, ignoring loops on 2°; there is only one path form 2" to 2° (if any) us-
ing positive iterations of ¢ and therefore only one path (the same in reverse
sense) from 20 to 2" using negative iterates.

Definition 6 A Conway equivalence relation is defined from a null Conway
function and its basic equivalence relations : ¥ n € N, n =, ¢g(n)

Corollary 3.5 For every recursively enumerable set, 3 containing {0}, the-
re exists a Conway equivalence relation =, such that : ¥ = {n € N | 2" =, 1}

Proof. 1t is obvious that for every recursively enumerable set, 3} containing
{0}, there exists a null Minsky machine M which domain is 3. Then if ¢ is
the null Conway function associated with M, =, satisfies the assertion. O

*We denote ¥V k € N, g(_k)(n) ={meN | gk(m) =n}.

4 Recursively Enumerable Set and Binary Horn
Clause

Let us show that the SLD resolution of a goal w.r.t. one binary Horn clause
can codify any recursively enumerable subset of N containing {0}.

Theorem 4.1 Let §f be a special symbol. For every recursively enumerable
set X containing {0}, there exist a right-linear binary Horn clause and a
goal such that any natural integer n, belongs to X iff from a certain number
of SLD resolution steps, the first argument of the initial goal must be a list
of which the (2")*" element is marked by {.

Remark. The following program is an illustration in the case where ¥ is N :

, { PX|LL Y, X|LL) & p(L,LL) .
b e LD -

This program put a f in all the (27)"" positions of [f|L]. Let us note that
the propagation of the mark is here “I-linear”, that is, the (27)"* element
will be marked after at most 2 SLD-resolution steps.

Lemma 4.2 For every natural integers a,a’, b, b, there exvist a variable X,
a right-linear binary clause p(t) < p(tt) and a goal < p(7y) such that :

{y=tlu{tti=tipr | Vi> 0T xy = {Xapp = Xovigw | >0} .

Proof. The following program :

—
p([27 - '7—|L]7 [X|LL]) — p(L,LL).
— p([—7 o '7—|L]7L)'
b

The size of the first variable of the Horn clause decreases in ¢ while the
one of the second decreases in one, so we have :

If there was no b in the goal, the equality of the two arguments would have
generate : Z; = X, the b shifts this equation then we have : Z; = X ;4.
By composition of two programs like this one, we obtain :

a a'

—N— ——
p([27 — " '7—|L1]7 [X|L2]7 [Z7—7 o '7—|L3]7 [X|L4]) — p(L17L27L37L4)'
Fp([—v o '7—|L]7L7 [—7 o 7—|LL]7LL)
N — N —’
b b’

It involves the equalities :
Xaith = 7; and Xy = Z; .

O
Remark. If we want to code the relation Xg;4p = Xyrppr with b < @ and
b < ', it is possible to write :

a a’

e e e N
p([—7 o '7Z7 — " |L1]7 [X|L2]7 [—7 o '7Z7 — " |L3]7 [X|L4])
S—— S——
b b’
« p(L1, L2, L3, L4).
« p(L, L, LL,LL).

Lemma 4.3 For every Conway function g, there exist a variable X, a right-
linear binary clause p(t) < p(tt), and a goal < p(v) such that :

({’y:tl}U{tti:tH_l | Vi>0})T{X}E {Xn:Xg(n) | Vn>0} .

(STyx} is the projection onto the variables X; of the equations expressed in

S.)

Proof. in Annex O

Proof of the theorem. According to the previous lemmas, let X be the
variable which codes the Conway equivalence relation of 3 (as told in Corol-
lary 3.5), then the list L is linearly built as [Xy, X, -+, X,,, - -] with all the
X; linked by the relations X; = X ;. Consequently, according to Corol-
lary 3.5 :

Y={neN|Xym=,X}

Moreover at startup, if variable Xy is marked by g, then this mark will be
propagated to all Xon where n belongs to X.. O

The next example is an illustration of Lemma 4.2. It shows that binary
Horn clauses can produce relations like X ;14 = Y44 and thus easily express
very complex problem like, here, the Collatz problem.

FEzxample 2. Back to the Collatz conjecture, the Collatz’s program can be
translated into equivalence relations on Var x N :

VEkeNIfkiseven Then Xi, = X Else Xy = Xsgpy1 -
2

Let f be the function such that Vi > 0, f(2¢) =7 and f(2i—1) = 6:—2.
Since there does not exist some k& € N such that f5(1) = n (V n > 4), we
may assert that we may extend the previous relation to the following system
of equations :

Xi = Xy
Xoio1 = X3(2i-1)+1

The following binary clause and goal generate such equations :

L, Lo L3
——
p(X UL, X [V][« — Y, [W]) < p(U, V, W).
2,2, 7).

Through the inferences the solved systems of equations increases as :

L2: [Yh X17 Y27 X27 Y37 X37 7Yn7Xn|Vn]
Ll = [Xh X27 X37 X47 X57 X67 "'7Xn—17Xn|Un]
L3 = [—7 — — Y17 — — Ty — Yn7 — —|Wn]

Then, from the goal < p(Z, 7, 7), we force the equalities :
1. Li=Ly = Xy_1=Y;and Xy, = X,
2. L1 =1L = Xg_2=Y,.

that is
X; = Xy and Xyo;_1 = Xgi—2

With a goal of the form :

Fp([a7—7"'7—7ﬁ|L]?[av—7"'7—7a|[/]7[617—7"'7—761|L]) .

n n n

we force X1 = a and X,, = a. Therefore, the resolution is finite iff a unifica-
tion fails because of X,, # Xy, that is, if the 32 +1 program is finite from the
input n. In other words, the 3z + 1 conjecture is equivalent to prove that,
given any goal p(L, L, L) where L is a list of the form [a, _,---, _,a | _], the
resolution is finite. O

We use the previous theorem and the undecidability of the belonging of
an element to a recursive enumerable set to prove :

Theorem 4.4 There is no algorithm that, when given a right-linear binary
Horn clause and given a goal, always decides in a finite number of steps
whether or not the resolution (with or without occur—check) stops.

Proof. 1t is a direct consequence of Theorem 4.1. By initializing L in the
goal as [f, Xo,+--, Xgn_1,b | LL] where mark b is put on the (27)" element
of L, then the resolution stops iff equation (§ =b) occurs, that is, iff n is an
element of . Since there is no algorithm that, when given an integer n and
a recursively enumerable set X, always decides in a finite number of steps
whether or not n belongs to 3, the result is proved. It is easy to check that
the occur—check does not play any role in the proof. O
This result was first established in [7] with a slightly different proof.

5 Emptiness Problem

Remark. Another proof, established independently at the same time, of
this problem can be found in [10], it is based on a codification of the Post
correspondence problem into an append-like program.

Let us suppose that the Conway equivalence relation is “linear”, then the
propagation of mark § is linear too. Then it is possible to write a program
for which a solution at the (2”)”% step is equivalent to say that n does not
belong to the linear recursive set. Therefore, we cannot decide whether or
not such Horn clauses have no solution because of Corollary 3.2.

Theorem 5.1 There is no algorithm such that, when given a program of
the following form :

p(fact)

p(left) < p(right) .

— p(goal) .
where fact, right are linear terms, always decides in a finite number of
steps, whether or not this program has at least one solution.

Lemma 5.2 For every linear recursive set ¥, (containing {0}), there exist
a right-linear binary clause and a goal such that any natural integer, n,
belongs to 3. iff after at most 2™ SLD resolution steps, the first argument of
the initial goal must be a list of which (2”)”% element is marked by §.

Proof. Let X, be a linear recursive set, by definition, there exists a linear
and null Conway function of which domain is >,. It is easy to check that
the associated Conway equivalence relation is at worst a—linearly computed
by the binary Horn clause C3 and the goal obtained by the Lemma 4.3
codification. In other words, mark § is linearly propagated in the first list—
argument of the goal. It is now easy to define a “1-linear” pair (binary Horn
clause C1, goal) from this “a-linear” pair (Cy, goal), each resolution step of
C corresponding to « steps of Cf. O

Proof of the theorem. Let us write a right-linear binary Horn clause and a
goal for which resolution constructs a characteristic list of powers of 2 :
p(IXIL], Y, X|LL), b, Z|LLL)) & p(L, LL, LLL) .
’ < p([8,81L], [8, 4] L], L)

In comparison to example 11y, a third argument has been added in order to
instanciate the non—powers of 2 with b. This program is such that after n
resolution steps the first argument L is :

L=1[Xy,Xo, -, Xy,]

where V k < n, X =4 if k is a power of 2 and X = b otherwise.

Let us code now a class of programs for which the existence of solutions
is undecidable. Let X, be any linear recursive set, and its characteristic pair
(right-linear Horn clause, goal) (Cf. Lemma 5.2), let us denote it as follows :

I p(t17t27"'7tk)%p(ttlvtt%"ﬁttk) .
3
Fp(ghg?v o 7gk) .

Now follows our particular class of programs :

p(Y17Y27 o '7Yk7 bv Z7 [ML]vLLvLLL) —
p(tlv lg.--- ; tkv W7 [U|V]7 [X|L]7 [Y7X|LL]7 [bv Z|LLL])

— p(tty, tta, -, tt, UV, L, LL, LLL) .
— P(917927 s Gk X7917 [rﬁ mL]v [m mL]v L) .

The n first arguments codify Y., the two following arguments allow to
extract, at the n'" iteration, the n!” argument of the characteristic list of
3., and the three last arguments codify the characteristic list of powers of 2.
Because of the fact, there is a solution at the n'” step iff :

114

e 1 is a power of 2 (the three last arguments)

e the n'" element of the characteristic list of ¥, is not marked by 4,
because it must be unifiable with b (the (n 4 2) first arguments)

In other words, since we know that the marking (by) is “1-linear”, there
is a solution at the (27)! step iff n does not belong to X,. Therefore, Il4
has no solution iff 3, is equal to N. According to Corollary 3.2, that is
undecidable. O

Because of the symmetry of the problem, we can strengthen the previous
theorem in an obvious way :

Corollary 5.3 There is no algorithm such that, when given a program of
the following form :

p(fact)

plleft) < p(right) .

+— p(goal) .
where goal and left are linear always decides in a finite number of steps,
whether or not this program has at least one solution.

Proof. Because of the symmetry of the problem. O

As a consequence, we can establish that :

Theorem 5.4 The class of quantificational formulas with four subformulas
is undecidable with respect to the consistency. There is no algorithm which,
given a quantificational formula with four subformulas, decides in a finite
number of steps, whether or not the formula is consistent.

This result solves the last open problem in mathematical logic concern-
ing the satisfiability of quantificational formulas with a small number of
subformulas. The 5-formulas case was solved in [9].

6 Linear Horn Clause and Other Subcases

We have proved that when the Horn clause is right— or left—linear, the prob-
lems were undecidable. Now it is natural to study the behaviour of this small
program depending on the linearity of the terms goal, left, right and fact.
We prove that the halting problem becomes decidable as soon goal or left are
linear. The emptiness problem remains undecidable in the linear Horn clause
case. The proof in the first case is based on the weighted graphs [4, 5, 12, 6].
In the second case, we use the same method as for Theorem 5.1, we simply
transform any append-like program in an equivalent one by linearizing the
Horn clause. We are not going to give the detailed proofs here, they will
appear soon in a extended report and can be actually communicated to all
interested people.
So we state :

Theorem 6.1 There exists an algorithm that, when given a left-linear bi-
nary Horn clause and given a goal, always decides in a finite number of steps
whether or not the resolution (with or without occur—check) stops.

Theorem 6.2 For the class of programs :

p(fact)
plleft) < p(right) .
— p(goal) .

where

1. left, right are linear and fact and goal are any terms, the emptiness
problem is undecidable.

2. left, right and fact (resp. goal) are linear and goal (resp. fact) is any,
the emptiness problem is decidable.

3. fact or goal is ground, the emptiness problem is decidable.

Sketch of Proof.

1. Let us consider the following program :

p(_7_7_7L7L) %
— —
p((X|LX),[U,— -+, —|LU), [V,— -+, —|LV], LLU, LLV)
— p(LX, LU, LV,[U|LLU],[V|LLV]) .
%p(L,[_,"',_|L]7[_7---,_|L],H,H) .
b d

it produces the equality :
Xaith = Xeitd

And no other different relation on X is defined.

It is easy to extend it to create several different equalities on X, and
therefore to the codification of Conway equivalence relations.

Now it is quite clear that a proof similar to the one of Theorem 5.1
can be made to prove the result in the linear clause case.

2. using similar proof’s method to the one of Theorem 6.1.

3. based on weighted graphs formalism.

7 Summarize

The below tabulars summarize the known results concerning the halting and
emptiness problems depending on the form of the characteristic elements

goal, fact, left and right for append-like programs

‘ goal ‘ left ‘ m'ght‘ Halting Problem ‘

ground | any any decidable [17]
linear | any any decidable [6]
any | linear | any decidable[here]
any any | linear undecidable [7]

‘ goal ‘ left ‘ right ‘ fact ‘ Emptiness Problem ‘
ground | any any | ground decidable [17]
linear | any any linear decidable [6]
ground | any | any any decidable [here]

any any any | ground

linear l}near l}near ‘ any decidable [here]
any | linear | linear | linear

A L linear | linear undecidable [10][here]
linear | linear | any any

any | linear | linear | any undecidable[here]

Linearity seems to mark the border between decidability and undecid-
ability. Concerning halting problem, as soon as goal or left are linear, it
becomes decidable. For the emptiness problem, three linear terms insure
the decidability.

The technique based on our original codification of the Conway functions
provides an homogeneous frameproof concerning the study of the binary
recursive Horn clauses. Indeed, it allows to solve the halting and emptiness
problems and a lot of other properties (boudedness,...). Recently, using this
codification (and some other results), we have proved that the append-like
programs have the same computational power as Turing machines [8]. This
result can be seen as the Bohm—Jacopini [1] theorem to Logic Programming.

Endly, our problem seems to be closed to implication of clause. Consid-
ering the program :

p(fact)
p(left) < p(righty), p(rights) .
— p(goal) .

where fact and goal are ground. The existence of solutions for this pro-
gram is equivalent to the implication of clause A = B. Where A is left +
righty, righty; and B is fact < goal. The problem has been shown undecid-
able for the case where B is any in [15]. We hope our technique can solve
this particular case.

Acknowledgements : We would like to thank Prof. Jean—Paul Delahaye,
the basic idea of proof of Theorem 3.1 is due to him.

References

[1] Béhm C., Jacopini G. “Flow diagrams, Turing machines and languages
with only two formation rules.” Communications of the Association for
Computing Machinery, Vol.9, pp. 366-371. 1966.

[2] Bibel W., Hélldobler S., Wiirtz J. “Cycle Unification.” CADE pp. 94—
108. June 1992.

[3] Conway J.H. “Unpredictable Iterations.” Proc. 1972 Number Theory
Conference. University of Colorado, pp 49-52. 1972.

[4] Dauchet M., Devienne P.; Lebegue P. “Weighted Graphs : a Tool
for Logic Programming.” 11th Colloquium on Trees in Algebra and
Programming (CAAPS6). 1986.

[5] Devienne P. “Les Graphes orientés pondérés : un outil pour I’étude de
la terminaison et de la complexité dans les systemes de réécritures et
en programmation logique.” Ph. D. Thesis. Lille. 1987.

[6] Devienne P. “Weighted graphs — tool for studying the halting problem
and time complexity in term rewriting systems and logic program-
ming.” Journal of Theoretical Computer Science, n°75, pp. 157-215.
1990.

[7] Devienne P., Lebegue P., Routier J.C. “Halting Problem of One Binary
Horn Clause is Undecidable.” Proceedings of STACS’93, LNCS n°665,
pp. 48-57, Springer—Verlag. Wiirzburg. 1993.

[8] Devienne P., Lebegue P., Routier J.C., Wiirtz J. “ The B6hm—Jacopini
Theorem for Horn Clause Languages.” Technical Report I'T 252. LIFL.
Lille. Juin 1993.

[9] Goldfarb W., Lewis H.R. “The decision problem for formulas with a
small number of atomic subformulas” J. Symbolic Logic 38(3), pp.471-
480, 1973.

[10] Hanschke P., Wiirtz J. “Satisfiability of the Smallest Binary Program.”
Information Processing Letters, vol. 45, n°5. pp. 237-241. April 1993.

[11] Lagarias J.C. “The 3z 4+ 1 problem and its generalizations.” Amer.
Math Monthly 92, pp. 3-23. 1985.

[12] Lebegue P. “Contribution a I’Etude de la Programmation Logique par
les Graphes Orientés Pondérés” Ph. D. Thesis. Lille. 1988.

[13] Lloyd J.W. “Foundations of Logic Programming.” Second, Extended
Edition Springer—Verlag. 1987. Springer Verlag

[14] Minsky M. “Computation : Finite and Infinite Machines.” Prentice—
Hall. 1967.

[15] Marcinkowski J., Leszek Pacholski “Undecidability of the Horn—Clause
Implication Problem” Proc. of the 33rd FOCS. 1992.

[16] Salzer G. “Solvable Classes of Cycle Unification Problems.” IMYCS,
Smolenice (CSFR). 1992.

[17] Schmidt—Schauss M. “Implication of clauses is undecidable.” Journal
of Theoretical Computer Science, n°59, pp. 287-296. 1988.

[18] Wiirtz J. “Unifying Cycles.” Proceedings of the Furopean Conference
on Artificial Intelligence. pp. 60-64. August 1992.
8 Annex

Proof of Theorem 3.1 From every Minsky machine M. with zero as input,
M a null Minsky machine can be defined as follows.
Let @ be a natural integer, and n be the input of M,

1. Compute o X n and put it in a new register r.
2. if | r |= 0 then goto 5 else substract one from r and continue
3. Proceed one computation—step of M-(0)

4. If M-(0) have reached one of its final computation—state
then go into “an infinite loop” else goto 2

5. end : put zero in all the registers and halt.

Any natural integer n belongs to the domain of M iff the “infinite loop” is
not reached, that is, M»(0) is computed in more than a x n steps. Thus by
construction this null Minsky machine is total iff M+(0) does not stop.

Let us compute the complexity of M for any n € Dom(M) . Step
1. may be done in (a x n) transitions, M reach step 5. after (2a x n)
transitions. Once in this step, the sum of all the contents of the k registers
of M> is, by construction, at most (o x n). Consequently it takes at worst
(v x n 4+ k) transitions to put 0 in all the registers of M» then of M. Hence
the complexity of M is (4da x n+ k).

Thus by construction, the null Minsky machine M is linear and is total
iff M-(0) does not stop, that is undecidable. 0

Proof of Proposition 3.4 Since 0 belongs to the domain, there exists £ > 0
such that ¢(¥)(2°) = 20, Thus, if there exists &' > 0 such that 20 € ¢(=*)(2)
then by definition :

g (2°%) = 27 and ¥ o > 0, g{~FHRFaxk) 90y = 90,
Hence for all @ > 0 we have :

g(—k'+axk) (g(k') (20)) — g(—k'-l-ozxk) (271) — 90
Since there exists ag > 0 such that —&"+ ag X k& > 0, we have the result. O

Proof of Lemma 4.3 Let ¢ be a periodically piecewise linear function defined
by d,ag,---,aq-1. Foralln = ad+k (0 < k < d), we have g(n) = g(ad+k) =
agn = (apd)a + kag, with (axd, kag) € N?. Then the (X, = X (,)),ey can
be decomposed into a finite number of equivalence relations in the form
(Xaits = Xarigp)iso- All the right-linear binary clauses and goals which
characterized these relations (see Lemma 4.2) can be merged in one right—

linear binary clause and one goal by merging their arguments. O

