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Abstract— DKP (Deterministic Kinodynamic Planning) is The second category contains approaches such as RRT
a bottpm-up traject_ory planner for_ robots with f!atness [17], EST [12], DSLx [20] or PDST-EXPLORE [14].
properties. DKP builds an exploration tree of which the — Tpey yse randomized techniques to integrate controls and

branches are spline trajectories. DKP employs anA*-like . -
algorithm to select which branch of the tree to grow. The explore the local reachable space. This propagation psoces

selected trajectories are then grown in a propagation proces Makes them well scalable for robots with high degrees of
which respects the kinematic constraints, such as linearfgular ~ freedom and/or complicated system dynamics and avoids
speed limits or obstacle avoidance. In addition, DKP produes  the drawbacks of the previous techniques. Neverthelesss, th
trajectories that are immediately executable by the robot. results are by nature unpredictable, in terms of computatio

Various experiments are provided to show the ability of DKP i d soluti litv R ¢ ks f th th
to effectively handle complex environments with one or more Ime and solution quallly. <ecent works tfocuses then on the

robots. solution optimality (RRT [13]) and the use of sampled-

based approach in both discrete and continuous hybrid state
I. INTRODUCTION
spaces [1].

Computing a trajectory that takes into account both our hybrid approachDKP, first introduced in [9],

kinematic and dynamic constraints is known as kinodynamicro oses an intermediate solution between these two
planning [5], and is proven to be PSPACE-hard [22]. Prop

. ; . _categories. DKP builds in a 2-D space an exploration tree
Decoupled approachesseparate kinodynamic planning : . . . .
: . e > of which the branches are spline trajectories guided by an
in two successive problems; first, compute a path takin

into account a part of the problem constraints (classicallgpt'mlzatlon criterion. DKP is designed for robots which

obstacles) and, then, smooth this path with the remainin%iCeDt spline trajectories as solution when their model

constraints to make the solution admissible by the robo tisfies flatness properties [8] with two degrees of freedom

The efficiency of decoupled approaches, such as varian S?ntrary to [19], DKP. does not rely on a non I!near
of Elastic Bands [23], is explained by the fact that the guadratic solver which hides some random processes in order

; - . 0 explore the state space. In DKP, robots are specified
are generally customized for specific kinodynamic problems. : : ) .
with kinematic constraints, such as linear/angular speed

[15]. They also provide bounds on the computation tlme1Imits or obstacle avoidance, represented in a geometrical

allowing on-line planning, which explains their wide usage . .
e approach. The propagation process then defines a locally,
However, decoupled approaches present difficulties toesolv ™ " .
. : continuous and complete reachable space, cadmeter
complicated problems, with many degrees of freedom, . . . : .
. ) L space which models all the possible subtrajectories while
Moreover, they suffer from incompleteness issues: sinee th' " ". . .
I ) : satisfying all constraints of the problem. We might also
initial path is not guaranteed to be feasible by the roba, th,” . : . .
. : . . .design specific constraints for a particular robot which
path smoothing phase may fail to satisfy all kinodynamic

constraints or fail to find a solution even if one exists restricts thisparameter spacewith a deterministic process,

To solve these difficulties [18], we can distinguisﬁ tvvoD.KP then produce_s vario_us locally _optimal sul:_)trajecto_ries
categories ohybrid approaches which incorporate a local with _respect_of kmema_ﬂc constraints a_nd diverse time
motion planner (selection process) within a global patlg%luratlons. This propagation process provides an expansive
planner (propagation process) to ensure the respect of
constraints. The first category contains heavily custothize
approaches: both local and global motion planner are théd [ w ®)
designed to generate complex local maneuvers [11] and . .
improve the quality of the global path to be tracked. The
successfully deal with very specific problems, such as | A . N
which integrates perception sensors in the local planner; '] . ‘ [ ) >
the multi resolution approaches like AD18].

Start

Fig. 1. (a) Trajectory computed by DKP (in blue) for a robotiethcan
This work is supported by the Lille Catholic University, aarpof a  only turn left. (b)parameter spacassociated to the goal point (see Section
project in the Handicap, Dependence and Citizenship pole. lNI-A for detalils).



Approach Selection process Propagation process Diversity source
planner from [11] none degree 5 polynomials generated lookup table
by non-linear programming
AD™ inflated A* searches combination of actions planner from [11]
RRT random configuration random integration commands
EST random milestones random integration commands
DSLx random leads random integration commands
PDST deterministic branch random integration commands + time
RRT" random configuration random integration commands
+ cost-based "rewire”
DKP A* search guadratics generated by trajectory time duration
deterministic optimization oveparameter space
TABLE |

PROPERTIES OF SOME HYBRID APPROACHES

exploration of the local search space and prevents DKP fromTo find trajectories from aStart state to aGoal state,
using random processes to avoid from local minima. DKP builds an exploration tree of which the branches are

Unlike [11] or random approaches, even if subtrajectoriesubtrajectories, lying into the reachable regions of a 2-
are simple, DKP takes advantage of this simplicity td continuous space. The exploration tree expands in a
control the behavior of the DKP local planner by separatinfully known environment (static and mobile obstacles). Let
the reachable space computation from the solution seargh,.. ,(t) denote a subtrajectory in the exploration tree
Moreover, this simplicity, coupled to an efficient globaland Py, ., (t) the overall trajectory which contains the
planner, is enough to produce complex maneuvers, asbtrajectoriey,(t), Pioki (1) - Pko.. .k, (t). L€t Ty, bE
illustrated in Figure 1. the time horizon of subtrajectories (we should select it

DKP combines some of the advantages of existings a subdivision of an estimated time needed to reach
hybrid approaches, such as the exploration tree of randdie Goal state). To choose which branch to grow, the
approaches, with guarantees on the feasibility of theelection process is guided by an application-dependent
trajectory, the quality of the solution, the reproductlili optimization criterionp in an A* manner. The selected
of the results and the control of the computation timesubtrajectories are then pursued by the propagation goces
Moreover, the parameter space is a powerful way to desigvhich builds subtrajectories subject to continuity and
specific constraints for our robots and clearly identify th&inematic constraints. In DKP, we deal with constraints
reachable space. A summary of the differences with previolry setting bounds on linear/angular speed and linear
techniques is provided in Table I. acceleration. We describe static/mobile obstacle avaielay

This paper proposes an enhanced and more efficiemsing their semialgebraical shape. We are able to enfoece th
definiton of DKP, which is not constrainted to diskrobot motionin a moving or static area using semialgebtaica
shaped constraint. We also introduce a backtracking modbapes. Other types of constraints could be defined. From
which exploits the parameter space properties to enhantte end of selected subtrajectary, .. 1, (¢), the propagation
the exploration process. This paper provides then sevegaiocess produces a set of new subtrajectorigs ., k..., ()
hardware experiments to highlight the description of diffe  with various time durations and adds them to the exploration
two-wheeled robots in three situations. Our geometricdtee. Contrary to [19], we do not impose the number of knots
approach to constraints makes these various descriptiansour spline trajectories in the problem definition (how kebu
easily solvable in DKP. In each described case, DK®e choose this number without solving the problem itself ?).
precisely renders the abilities of the robots. A simulatioThe overall process is illustrated by the Figure 2.

study provides key results about overall performances.
yp y P IIl. PROPAGATION PROCESS

Il. DETERMINISTIC KINODYNAMIC PLANNING A. The parameter space

}L
> P

The DKP propagation process creates new subtrajectories
from a selected branch, taking into account the kinodynamic
Py 500 constraints. DKP first finds all the admissible subtrajeetr

7, Py,

P, .
10T 5 represented by parameter spacelenotedE. We consider
= Goal quadratic subtrajectoriesy, ..k, (t) = (Zk,..k, (1) = af +
Start Vo0 Z"ecum aTt+a5t? Yok, (1) = af +adt+adt?) in the exploration
S Obstacle tree, witht € [0,7%, % ]. The continuity through initial
0 n y g

position and speed with the previous subtrajecigyy. .« (t)

Fig. 2. DKP builds spline trajectories fronbtart to Goal with sets the lesser degree paramet@@ o of and oY
subtrajectorie®y, ...x,, (t) in an exploration tree guided by an optimization f Th L = ’y =0 1 f
criterion subject to kinematic constraints. The securistaiice corresponds © Pko...knkn+1 (t). The remaining(ag, a;) parameters o

to robot clearance. Dho...knkns, (t) (Mesured inm/s?) set the quadratic shape.



So, theparameter spacdé” denotes all the allowable valuesdesign choise is to keep the simpler subtrajectories and to
of (a3, ad) [16] which define subtrajectories satisfying thelie on the selection process to achieve complex maneuvers.

constraints.
D. Example

B. The kinodynamic constraints

We define a constraint by its constraint function
fe(Pro. .k, (), t), bounded in[D_,D;] (D-,D;y € R),
applied on a quadratic at time step The kinodynamic
constraints are implemented in DKP by their geometrical
representation (using semialgebraic shapes), der@tét,

-0.055
-0.06006)

(a) (b) (©)

in their respective basis: Fig. 3. The resultlng)arameter spaceshich model all valid parameter
; ; it values (a%,a¥) (in m/s?) for (a) a linear acceleration constraint, (b)
« the linear accelerationycceieration(t), Within the a linear gpeeQd constraint and (c) an obstacle avoidanceraims after
domam [A- A+ W|th ConStramt function: considering them for everytep = 0.1s up to time horizonT’ = 10s.
= &(t)? + 4(t)?, defines an annulus of radii
A—,zf1+ in the baS'S(l’ ?J) . _ Consider the following situation of a robot with:
« the linear speedsy.ca(t), within the domalr;{S_,.SE], « initial position p(0) = (0,0)m and speed vector
with - constraint function: S(¢) = x(t) _+'y(ff) : Sv(0) = (0.1,0.2)m/s;
defines an annulus of radfl_,S; in the basis(; 3); « a security diStance, opo; = 0.5m;

- a forbidden area in the real plane in the basis , the following constraints, considered evetyp = 0.1s
(x;y) applies readily to static obstacles. Because up to time horizon?” = 10s:

our constraints are time-defined, a mobile obstacle
avoidance only differs by the need to translate its shape
along its trajectory. Shapes are grown to model the robot
clearance.

« forcing the motion to lie in an allowed area of the
environment almost shares the definition of the obstac
avoidance.

As we want to work on the allowable shapes o
Pho...knkns: (t), We define affine transformations matrices
M.(t) from the constraint basis to theparameter space
basis. Finally, a constraint on a quadratig,. , (t),
projected in the parameter basis . .(¢t) x G.(t), is
represented by a geometrical shape which restricts the
parameter valuega?,ay), hence the allowed shapes of @

— linear acceleration bounded betwegand1m/s?;

— linear speed bounded betweerand 1m/s;

— disk shaped static obstactebs = (2,0).

Figure 3 shows theparameter spacdor each constraint.

Flgure 4 shows (@) their intersection and (b) how the choice
a point in (a3,a)) sets the shape of a subtrajectory

fsatlsfylng the constraints.

i : i Start (0,0) (b)
Dko...k,, (t). Other constraints on quadratic could be defined Obstacle (2,0)

whenever we can describe its shape in one of the previous
bases. An example of a constraint which forbids the robdig. 4. The green area in (a) represents the intersectioheoptevious

constraint representations: it models all valid parametdues (a2,a12/)
eligible for each constraint. Figure (b) shows the impact«f, y2) on the
L shape of the quadatric subtrajectory. Choosing paramétérsas) outside
C. Parameter space building process the constrainegharameter spackeads to a constraint violation, here obstacle

avoidance.
The propagation process defines a locally reachable space,

called parameter spacewhich models all the possible

subtrajectories satisfying all constraints of the probleet E. Solutions over parameter space

C be a set of such constraints as described in the previousThe propagation process exploits tparameter space
section and7}, ..k, the time horizon of the subtrajectory to identify the locally optimal subtrajectory. Let th@oal
Pko...k,, 10 be createdE(T) denotes theparameter space be in (z4,y,). The functionp,. to be minimized is the
for every time step, notesltep, with ¢ € [0,T%,...x,], such distance of the subtrajectories endpain}.. k., (Tk,.. .k, ) tO

as: E(T) = {ﬂtT:o M.(t) x G.(t) | ¢ € C,tmod step = Goal . We can analytically find the exact values needed to
0}. Every point (a3, ad) chosen iNE(Ty,.. 1, ) defines a reach theGoal: a§ = (v, — af — a¥Tk,. 1)/ Tho..k, > @Nd
quadraticpy, ..k, (t) of durationTy, ., WhICh satisfies the af = (y, — of a?Tko...kn)/Tko...an- If this point belongs
kinodynamic constraints at evetyc {0, step, ..., Tk,..k,}.- 1O E(Tko...kn) then it is valid for all motion constraints and
Our current approach is limited for robots with two degreethese values set the shape of a subtrajeqigyy,, (¢) which

of freedom and flat outputs, so the parameter space is a 2r@achesGoal att = Ty, . 1, . Otherwise, the best solution
space. We should extends this problem to cubics (or high@ar E is on the boundary of this space. We use QuadTree
degrees of freedom) instead of quadratics but the parasnet§f] to get a precise tiling with rectangles over the border
space building complexity would dramatically grow: ourof E. We then use a rough optimization which consists

to turn in one direction is illustrated by the Figure 1(a).



in choosing the best point among remarkable points in theonsequently, the computation time of the algorithm can be
considered rectangle (corners and center). Each of theéspoibounded.
from E(Ty,.. k,) defines a subtrajectory on whigh,. is

- B. A spline as trajectory solution
applied. The best solution is found from all the rectangles o P J v

the tiling: this subtrajectory has the closest end pointe t 1he final trajectory P(1) = Py,_ky(t) is built by
| retrieving the predecessors of the last subtrajectory
goal. . S . L
Pko..kn (t)  Which satisfies the stopping criterion.
F. Diverse time durations for exploration Consequently, the trajectory is mgde upMdkubtrajectories.
We remark thatE(T) = {ﬂtT:o M) x Go(t)} = The total duration isTe,g = > ;" Tko..k,- LEt t be in

(O Melt) % Gelt)} ANy Me(t) x Golt)y € B/(x) [Tl by o [ Ol s T ]
with 77 < T. This means that theparameter spacer Pt Si t[h ko"\'/’“"lf” kof“'kn]’btr(.a ta:Je ° sucjh asy
computed for a duratiori” involves the computation of (t) is the value of subtrajectorypy,..

the parameter spaceF’ with lower time durations7”. P(t) = Po...ka (t = Tho...kus ). .
. The DKP global planner can build complex maneuvers
As a consequence, for given step, we can create more

. . ; . , P even with quadratics selected in tparameter spacérom
subtrajectories with lower time horizon$” using the . S . o
. - s, ; an exploration tree built in an Amanner. The solution is
intermediateparameter spaceE’(T’) when computing the S . e -
arameter spacé(T), as shown by Figure 5 admissible for robots with flatness properties in the cooilit
P P ' yrig ' they do not suffer from the acceleration discontinuity

between branches.
Goal

C. Robot control

The robot controls are obtained from the traject&y) =
y Is Py,..ky(t) by applying the following commandsi(t) =
i_,x < #(0)? +9(1)? and w(r) = L9200 we then
Start V() use a saturated controller [3] which solves the tracking
problem in the presence of input saturations and unknown

disturbances.

Fig. 5. Deterministic propagation of subtrajectories wdtifferent time
durations and respect of kinodynamic constraints.

D. DKP exploration modes

IV. SELECTION PROCESS We can natur_ally use DKE exploration in the following
two modes: optimal mode withias = 1 or greedy mode
with bias >> 1. Optimal and greedy modes are respectively
DKP explores the environment with an exploration tregised in the illustrative examples of Sections V-A and V-B.
guided by an optimization criterion in an*Ananner. As the  As a third mode, the DKP selection process may be
A* algorithm, the scores that DKP propagates to quadratenhanced by a backtracking process that adds virtual
subtrajectories are the result of an evaluation funciior  obstacles in order to handle local minima. When a
g + bias x h. g is the cumulated real cost anfd is the subtrajectoryy, .. ,,, cannot be pursuedeg. its parameter
heuristic part. More commonly, we use length of the root tgpaceF is empty,px,.. k, ., iS removed from the exploration
the current branch as real cgsand euclidian distance from tree. The previous subtrajectony,, , is selected and

A. Exploration tree in a continuous space

Rn41
n

the end of the evaluated branch to the goal as the heuristhis adaptation process locally modifies the environment
part h. bias modifies the heuristic and the behavior of therepresentation by adding some virtual obstacles in order to
selection process. change the reachable parts. A new propagation process is
Let Tyin and Th,., be the minimum and maximum then done on the subtrajectopy, . x,. When the trajectory
allowed time horizons of subtrajectories. When @y, ., backtracking cases reachesteigger value, this
subtrajectory px,..r, is selected, DKP creates newsubtrajectory is also removed, the previous subtrajectory
subtrajectoriespy, ...k, (t) with various time durations, py,. is selected, a bigger virtual obstacle is added,

Kn—1
based on astep,qpet, SUCh thatTin < Tk, k,k,,, = NEW propagation is done with it and so on. With this
knt1 X step,gricty < Tmaz. IN contrast to [2] which adaptation process, DKP will try to pursue a branch by
needs to invalidate some generated controls,péa@meter locally modifying its best solutions. This backtracking deo
spaceguarantees that all subtrajectories generated by oigrused in the illustrative example of Section V-C.
propagation process satisfy all the constraints, inclydin DKP could be used in real world applications with limited
obstacle avoidance. information and dynamic environment: in such cases, we are

Unlike usual A* path planners, the subtrajectories usedware that DKP is hard to tune and that DKP should be
in DKP lies on a continuous space and two subtrajectoriesistomized with better selection processes, for examyjle
rarely coincide. Subtrajectories are filtered with diseagton [24] or AD* [18], and better guidance. Our future works
criteria upon subtrajectory endpoint, speed vector dimact will focus on an intelligent online planning with a common
speed vector norm and subtrajectory length. We are thus alaldaptation of the exploration process (the backtrackindeno
to control the number of subtrajectories created by DKP anbiging an example) and the iterative planning.



V. ILLUSTRATIVE EXAMPLES

The following examples demonstrate the ability of DKP
to take into account various kinodynamic constraints,icstat
and moving obstacles. They also illustrate that trajeetori
provided by DKP are directly executable on real robots,
without any smoothing phase. Our solution is deployed on Fig. 7. (a) Planned trajectory; from (b) to (d) executedeirtgry
Mindstorm robots using our platform APM(Robot) [4].

APM(Robot) provides generic communication processes
between modules and/or robots for implementation, testirmnd worse, could lead to incompleteness issues (since the
and deployment of our experiments, such as Robot Operatidgtted line trajectory is not guaranteed to be executable by
System [21] or Player/Stage [10]. the robot, like in Figure 6c).

The robots localize themselves by integrating odometer
data, and continuously send localization messages tO @ c|uttered environment
computer. The computer generates commands using the
trajectory tracking algorithm described in [3], and serius This example illustrates the ability of DKP to find
back to the robots. solutions very quickly in complex environments, using the

Figures - depict top views of the solutions planned by DKRreedy mode.
and their real executions, illustrating the state of theoteb 1) Description: In this example, the environment contains
every 100ms. In the planned subtrajectories, real obstacleandomly placed obstacles, creating numerous dead ends
are drawn in black and grown obstacles (tacking into accoutithere random approaches could classically get stuck for a
the robots clearance) in light gray. The branches of theng time. DKP has been run in greedy modéué = 10)
exploration tree are shown in greesp¢n nodes in thed*  with the following parametersT,, .. = 6s, step = 0.5s;
sense) and magental¢sed nodes). S_ = Ocm/s, Sy = 10cm/s, A_ = Ocm/s?, Ay =
10em/s2.

2) Results: DKP founds a solution with a very limited

This example illustrates the benefits of DKP over ClaSSiC%ka)ration tree (Compared to those of F|g 6, which are
grid-based approaches, such as A* and variants (D*, E*fauch more expanded). Even if the search is here strongly
providing trajectories which are not necessarily exedetabpjased towards the goal, the time diversity on subtrajezsor

by the robot. duration allows DKP to escape from local minima.
1) Description: DKP has been run in optimal mode

(bias = 1) with the following parameters: maximal time
horizon T,,.. = 6s, time step for constraint evaluation
step = 0.5s; robots characteristics: velocity bounds: = This example illustrates the ability of DKP to handle
9cm/s, S = 18cm/s, acceleration boundst_ = 0cm/s®,  moving obstacles. Here, only 0-order data on obstacles (i.e
Ay = 3cm/s? for the low-acceleration robot (Fig. 6a) andiheir position) is taken into account during the propagatio
Ay = Tem/s” for the medium-acceleration robot (Fig. 6¢). process. Similarly to [25], higher order data could be

2) Results: The trajectory provided by DKP is similar jntegrated in DKP to anticipate the future states of the
to the one provided by a grid-based approach (here A¥pstacle.

for a r<_)bot \{vith medi.um. _accelera_tion capabilities, put the 1) Description: Two robots R; (bottom) and R,
two trajectories can significantly differ for low acceleoat
capabilities. Trajectories provided by DKP seems longe
but the c_orresponding overcpsts are necessary to resgect gkp o plan the time-minimal trajectory avoiding, and
robot's kinodynamic constraints. R». Since this paper does not focus on trajectory estimation,

Counter-intuitively, using such grid-based trajector@®s qpstacle trajectories are here known in advance and pravide
leads (like in DSLx) does not necessarly speed up the seargh,pkp. DKP has been run in backtracking modéaé =

10) with the following parameters?,,;, = Tma:z = 1s,
-_’ step = 0s; S_ = Ocm/s, Sy = 20cm/s, A_ = Ocm/s?,

A. Medium and low-acceleration robots

C. Overtaking robot

(top) perform straight line moves at constant velocities
respectively3em/s and 4cm/s). A third robot Rs uses

(a) b)

A, = 10cm/s?. Additional parameters, specific to the
backtracking mode, are: the minimal virtual obstacle radiu
Tvobstacle,pry. k= Lko...knsr X S, /size with size = 10,
trigger value to backtrackrigger = 4.

2) Results:In this example, DKP computed a trajectory
Fig. 6.  Trajectories for a medium-acceleration rob8trt/s*): (@)  overtakingR; while avoidingR,. Other parameters (a lower

trajectory planned by DKP; the dotted line represents thiedtory planned : :
by the A* algorithm on a 25x25 grid, (b) executed trajectory: {rajeies acceleration or faster obstacles) lead to a totally differe

for a low-acceleration robot¢m/s2): (c) trajectory planned by DKP; (d) Solution (results not shown), consisting, for instance, in
executed trajectory. following R; until the goal is reached.

i




of the propagation processes. The greedy mode considerably
reduces both this computation time and the number of
simulations. In this mode, the number of simulations with no
solutions (simulations which need more thab0 iterations
to get a solution and simulations for which DKP stops on
a failure) does not increase. Nevertheless, solution tyuali
diminished. Backtrack mode exhibits a good balance between
the speed of the greedy mode and the quality of solutions
in optimal mode. With small subtrajectories @b seconds,
the backtracking mode gets good solutions with a quality
. ) ) close to optimal mode while approaching the greedy mode
A. Simulations preparation computation time. As explained by [18], with backtracking
We producel00 series of cluttered environments of sizemode, we avoid the mismatch between the powerful local
24m x 24m with N, € [0,10,...,100] non-overlapping planning and the approximate global planning. Even if
static obstacles with disk shape of radiltg, as illustrated backtracking mode requires a lot of time to get unstuck
in Introduction (Fig. 1). In each of them, we set a randonfrom local minima, the solution quality remains close to
Start state (position and speed vector) and7aal state in the optimal mode. One effective optimization should be to
free areas in a square of siZ®m x 20m in the center register theparameter spaceand reuse it when backtracked
of the environment. The distance between randtart  with virtual obstacles. Nevertheless, such a solution doul
and Goal is between5 and 10 meters. In addition to the require a lot of memory. This mode would effectively scales
static obstacle avoidance constraints, we set the follpwirin larger environment with the same step size because only
kinematic constraints: a linear acceleration betwéeand one main branche is pursued: it only requires more iteration
Im/s?> and a linear speed betwe@nand 1m/s. We use to provide a solution. The overall complexity then relies on
Euclidean distance from the subtrajectory endppint. ,,  the number of obstacles in the environment but a dynamic
for the heuristic parth = poc = dgoar from p. We use the window approach should be used in this case.
length of the subtrajectonys, .., as the distance evaluation Figure 9 focuses on the computation times for every set
function part, notedi,sirajectory, DEIWEEN a subtrajectory of obstacles in each mode. The evolution of computation
Dko..k, and its previous subtrajectoryy,. k. , such as time is the same for each mode. When the environment is
9 = dsubtrajectory- ON €aCh environment and with the definechearly filled by non-overlapping obstacles, the free space
constraints, we use DKP in its three modes described in thetween obstacles forms corridors which naturally guide th
first 3 columns of table Il. We produce a total number okearch. Therefore, the computation time begins to decrease
1100 simulations for each mode with an increasing numbehs expected, the performance of the backtracking mode are
of obstacles. For the backtracking mode, the minimal virtudetween the optimal and greedy mode.
obstacle radius is set Ouobstacie.prg. 1 = Lhownis X
St /size with size = 10. The trigger value to backtrack is
set totrigger = 4. DKP is a hybrid path planner for robots which are
To bound the experiment time, the maximum numbeable to follow spline trajectories. DKP is an intermediate
of allowed propagation processes is set5ti) iterations. approach between heavily customized approaches which
To compare the solution, we present the average minimuatne efficient for specific problems and the more general
duration to cover direct line from th§tart to the Goal at approaches which use random processes to deal with
the maximum allowed speed, when a solution is found bgomplex environments and models with many degrees of

Fig. 8. (a) Planned trajectory; from (b) to (d) executedeirtyry

V1. SIMULATION STUDY

VIlI. CONCLUSION AND FUTURE WORKS

DKP. freedom. Based on a selection/propagation architecture,
S DKP creates an exploration tree with subtrajectories. The
B. Results and computation times solution, a spline trajectory, can characterize complex

Simulations have been run on2a53 GHz 64-bits dual- maneuvers, even with quadratic subtrajectories, thanitseto
core PC withd GB of RAM (DKP implementation is single- efficient relationship between our selection process and ou
threaded). Table 1l sums up the overall averages and stdndaropagation process. In particular, this simplifying awoi
deviations for the results of simulations. They show thaallows us to exploit an exact representation of all admissib
DKP needs a lot of time diversity to deal with complexsubtrajectories which satisfy all constraints of our pewi]
environments and obstacle avoidance. With subtrajestorithe so-calledparameter spaceOur propagation process
of 0.5, 1, 1.5 and 2, seconds, both the greedy and optimafirst sets up those parameter spaces and then identifies the
searches only fail in the typical situation in which the ramd  suboptimal subtrajectories with diverse time durationghW
initial speed vector directly faces an obstacle. In thiegas these subtrajectories, DKP balances well the complexity
expected from thel*-based selection process, the optimabf the propagation process and the selection process.
mode produces the best solutions but a lot of computatidvioreover, theparameter spaceonstruction, separated from
time is used to grow the exploration tree and somthe solution search, enables us to build specific adaptation
situations are not solved within th&0 allowed iterations processes, such as the backtracking process.



mode bias | subtrajectoriess Computation time| Solution duration| Line solution | simulations| DKP | Not finished
duration duration number fails search
optimal 1 0.5;1;1.5;2 1.54 +£0.7 8.79 £1.62 7.46 £1.39 1100 57 59
greedy 10 0.5;1;1.5;2 0.4 +£0.07 12.88 £ 2.87 7.58 £1.42 1100 57 0
backtracked| 1 0.5 0.5+0.19 9.97 £1.98 7.59 £1.42 1100 61 0
TABLE Il

SIMULATIONS ON

DKP: BACKTRACKING MODE EXHIBITS A GOOD BALANCE BETWEEN THE SOLUTON QUALITY AND THE

COMPUTATION TIME
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Fig. 9. average, minima, maximast" and85t” percentiles of computation times 100 DKP simulations in (a) optimal mode, (b) greedy mode and

(c) backtracking modelQ0 simulations for [0,10,...,100] obstacles).

In this paper, hardware experiments highlight the strondg]
points of DKP by describing three situations applied to

different two-wheeled robots. We illustrate our geometric ;4

approach for constraints by simply providing bounds on the
robot’s speed and acceleration, a description of the shapes
and trajectory for static/mobile obstacle avoidance. Thi
makes DKP easily applicable to various problems for whichi2]

can set specific restrictions over therameter spacdn each

described case, we can precisely describe the abilitielseof t;; 3,

robots. Furthermore, the solutions are directly usablaffer

control of our robots.

Future work will focus on the adaptation process. w4
should take advantage of our description of constraints to
provide a common reasoning for the exploration process, ti!]

analysis of the results and the replanning process.
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