
Deterministic Kinodynamic Planning with Hardware Demonstrations

François Gaillard1,2 Michaël Soulignac1 Cédric Dinont1 Philippe Mathieu2

1 ISEN Lille, CS Dept.
41, Boulevard Vauban

59046 Lille Cedex, France
{firstname.lastname}@isen.fr

2 LIFL
University of Lille 1

59655 Villeneuve d’Ascq Cedex, France
UMR USTL/CNRS 8022

{firstname.lastname}@lifl.fr

Abstract— DKP (Deterministic Kinodynamic Planning) is
a bottom-up trajectory planner for robots with flatness
properties. DKP builds an exploration tree of which the
branches are spline trajectories. DKP employs anA∗-like
algorithm to select which branch of the tree to grow. The
selected trajectories are then grown in a propagation process
which respects the kinematic constraints, such as linear/angular
speed limits or obstacle avoidance. In addition, DKP produces
trajectories that are immediately executable by the robot.
Various experiments are provided to show the ability of DKP
to effectively handle complex environments with one or more
robots.

I. I NTRODUCTION

Computing a trajectory that takes into account both
kinematic and dynamic constraints is known as kinodynamic
planning [5], and is proven to be PSPACE-hard [22].

Decoupled approachesseparate kinodynamic planning
in two successive problems; first, compute a path taking
into account a part of the problem constraints (classically
obstacles) and, then, smooth this path with the remaining
constraints to make the solution admissible by the robot.
The efficiency of decoupled approaches, such as variants
of Elastic Bands [23], is explained by the fact that they
are generally customized for specific kinodynamic problems
[15]. They also provide bounds on the computation time,
allowing on-line planning, which explains their wide usage.
However, decoupled approaches present difficulties to solve
complicated problems, with many degrees of freedom.
Moreover, they suffer from incompleteness issues: since the
initial path is not guaranteed to be feasible by the robot, the
path smoothing phase may fail to satisfy all kinodynamic
constraints or fail to find a solution even if one exists.

To solve these difficulties [18], we can distinguish two
categories ofhybrid approaches which incorporate a local
motion planner (selection process) within a global path
planner (propagation process) to ensure the respect of
constraints. The first category contains heavily customized
approaches: both local and global motion planner are then
designed to generate complex local maneuvers [11] and/or
improve the quality of the global path to be tracked. They
successfully deal with very specific problems, such as [6]
which integrates perception sensors in the local planner; or
the multi resolution approaches like AD∗ [18].

This work is supported by the Lille Catholic University, as part of a
project in the Handicap, Dependence and Citizenship pole.

The second category contains approaches such as RRT
[17], EST [12], DSLx [20] or PDST-EXPLORE [14].
They use randomized techniques to integrate controls and
explore the local reachable space. This propagation process
makes them well scalable for robots with high degrees of
freedom and/or complicated system dynamics and avoids
the drawbacks of the previous techniques. Nevertheless, their
results are by nature unpredictable, in terms of computation
time and solution quality. Recent works focuses then on the
solution optimality (RRT∗ [13]) and the use of sampled-
based approach in both discrete and continuous hybrid state
spaces [1].

Our hybrid approachDKP, first introduced in [9],
proposes an intermediate solution between these two
categories. DKP builds in a 2-D space an exploration tree
of which the branches are spline trajectories guided by an
optimization criterion. DKP is designed for robots which
accept spline trajectories as solution when their model
satisfies flatness properties [8] with two degrees of freedom.
Contrary to [19], DKP does not rely on a non linear
quadratic solver which hides some random processes in order
to explore the state space. In DKP, robots are specified
with kinematic constraints, such as linear/angular speed
limits or obstacle avoidance, represented in a geometrical
approach. The propagation process then defines a locally,
continuous and complete reachable space, calledparameter
space, which models all the possible subtrajectories while
satisfying all constraints of the problem. We might also
design specific constraints for a particular robot which
restricts thisparameter space. With a deterministic process,
DKP then produces various locally optimal subtrajectories
with respect of kinematic constraints and diverse time
durations. This propagation process provides an expansive

Start

Goal
x

y

(a) (b)

Fig. 1. (a) Trajectory computed by DKP (in blue) for a robot which can
only turn left. (b)parameter spaceassociated to the goal point (see Section
III-A for details).



Approach Selection process Propagation process Diversity source
planner from [11] none degree 5 polynomials generated lookup table

by non-linear programming
AD∗ inflated A* searches combination of actions planner from [11]
RRT random configuration random integration commands
EST random milestones random integration commands

DSLx random leads random integration commands
PDST deterministic branch random integration commands + time
RRT∗ random configuration random integration commands

+ cost-based ”rewire”
DKP A* search quadratics generated by trajectory time duration

deterministic optimization overparameter space

TABLE I

PROPERTIES OF SOME HYBRID APPROACHES

exploration of the local search space and prevents DKP from
using random processes to avoid from local minima.

Unlike [11] or random approaches, even if subtrajectories
are simple, DKP takes advantage of this simplicity to
control the behavior of the DKP local planner by separating
the reachable space computation from the solution search.
Moreover, this simplicity, coupled to an efficient global
planner, is enough to produce complex maneuvers, as
illustrated in Figure 1.

DKP combines some of the advantages of existing
hybrid approaches, such as the exploration tree of random
approaches, with guarantees on the feasibility of the
trajectory, the quality of the solution, the reproducibility
of the results and the control of the computation time.
Moreover, the parameter space is a powerful way to design
specific constraints for our robots and clearly identify the
reachable space. A summary of the differences with previous
techniques is provided in Table I.

This paper proposes an enhanced and more efficient
definition of DKP, which is not constrainted to disk
shaped constraint. We also introduce a backtracking mode
which exploits the parameter space properties to enhance
the exploration process. This paper provides then several
hardware experiments to highlight the description of different
two-wheeled robots in three situations. Our geometrical
approach to constraints makes these various descriptions
easily solvable in DKP. In each described case, DKP
precisely renders the abilities of the robots. A simulation
study provides key results about overall performances.

II. D ETERMINISTIC K INODYNAMIC PLANNING

Fig. 2. DKP builds spline trajectories fromStart to Goal with
subtrajectoriespk0...kn(t) in an exploration tree guided by an optimization
criterion subject to kinematic constraints. The security distance corresponds
to robot clearance.

To find trajectories from aStart state to aGoal state,
DKP builds an exploration tree of which the branches are
subtrajectories, lying into the reachable regions of a 2-
D continuous space. The exploration tree expands in a
fully known environment (static and mobile obstacles). Let
pk0...kn(t) denote a subtrajectory in the exploration tree
and Pk0...kn(t) the overall trajectory which contains the
subtrajectoriespk0

(t), pk0k1
(t), ..., pk0...kn(t). LetTk0...kn be

the time horizon of subtrajectories (we should select it
as a subdivision of an estimated time needed to reach
the Goal state). To choose which branch to grow, the
selection process is guided by an application-dependent
optimization criterionρ in an A∗ manner. The selected
subtrajectories are then pursued by the propagation process
which builds subtrajectories subject to continuity and
kinematic constraints. In DKP, we deal with constraints
by setting bounds on linear/angular speed and linear
acceleration. We describe static/mobile obstacle avoidance by
using their semialgebraical shape. We are able to enforce the
robot motion in a moving or static area using semialgebraical
shapes. Other types of constraints could be defined. From
the end of selected subtrajectorypk0...kn(t), the propagation
process produces a set of new subtrajectoriespk0...knKn+1

(t)
with various time durations and adds them to the exploration
tree. Contrary to [19], we do not impose the number of knots
in our spline trajectories in the problem definition (how could
we choose this number without solving the problem itself ?).
The overall process is illustrated by the Figure 2.

III. PROPAGATION PROCESS

A. The parameter space

The DKP propagation process creates new subtrajectories
from a selected branch, taking into account the kinodynamic
constraints. DKP first finds all the admissible subtrajectories,
represented by aparameter spacedenotedE. We consider
quadratic subtrajectoriespk0...kn(t) = (xk0...kn(t) = αx

0 +
αx
1t+αx

2t
2, yk0...kn(t) = αy

0+αy
1t+αy

2t
2) in the exploration

tree, with t ∈ [0, Tk0...kn ]. The continuity through initial
position and speed with the previous subtrajectorypk0...kn(t)
sets the lesser degree parametersαx

0 , α
x
1 , α

y
0 and αy

1

of pk0...knkn+1
(t). The remaining(αx

2 , α
y
2) parameters of

pk0...knkn+1
(t) (mesured inm/s2) set the quadratic shape.



So, theparameter spaceE denotes all the allowable values
of (αx

2 , α
y
2) [16] which define subtrajectories satisfying the

constraints.

B. The kinodynamic constraints

We define a constraintc by its constraint function
fc(pk0...kn(t), t), bounded in [D−, D+] (D−, D+ ∈ R),
applied on a quadratic at time stept. The kinodynamic
constraints are implemented in DKP by their geometrical
representation (using semialgebraic shapes), denotedGc(t),
in their respective basis:

• the linear accelerationcAcceleration(t), within the
domain[A−, A+], with constraint function:
A(t) =

√

ẍ(t)2 + ÿ(t)2, defines an annulus of radii
A−,A+ in the basis(ẍ; ÿ);

• the linear speedcSpeed(t), within the domain[S−, S+],
with constraint function:S(t) =

√

ẋ(t)2 + ẏ(t)2,
defines an annulus of radiiS−,S+ in the basis(ẋ; ẏ);

• a forbidden area in the real plane in the basis
(x; y) applies readily to static obstacles. Because
our constraints are time-defined, a mobile obstacle
avoidance only differs by the need to translate its shape
along its trajectory. Shapes are grown to model the robot
clearance.

• forcing the motion to lie in an allowed area of the
environment almost shares the definition of the obstacle
avoidance.

As we want to work on the allowable shapes of
pk0...knkn+1

(t), we define affine transformations matrices
Mc(t) from the constraintc basis to theparameter space
basis. Finally, a constraint on a quadraticpk0...kn(t),
projected in the parameter basis byMc(t) × Gc(t), is
represented by a geometrical shape which restricts the
parameter values(αx

2 , α
y
2), hence the allowed shapes of

pk0...kn(t). Other constraints on quadratic could be defined
whenever we can describe its shape in one of the previous
bases. An example of a constraint which forbids the robot
to turn in one direction is illustrated by the Figure 1(a).

C. Parameter space building process

The propagation process defines a locally reachable space,
called parameter space, which models all the possible
subtrajectories satisfying all constraints of the problem. Let
C be a set of such constraints as described in the previous
section andTk0...kn the time horizon of the subtrajectory
pk0...kn to be created.E(T ) denotes theparameter space
for every time step, notedstep, with t ∈ [0, Tk0...kn ], such
as: E(T ) = {

⋂T

t=0 Mc(t) × Gc(t) | c ∈ C , t mod step ≡
0}. Every point (αx

2 , α
y
2) chosen inE(Tk0...kn) defines a

quadraticpk0...kn(t) of durationTk0...kn which satisfies the
kinodynamic constraints at everyt ∈ {0, step, ..., Tk0...kn}.
Our current approach is limited for robots with two degrees
of freedom and flat outputs, so the parameter space is a 2-D
space. We should extends this problem to cubics (or higher
degrees of freedom) instead of quadratics but the parameters
space building complexity would dramatically grow: our

design choise is to keep the simpler subtrajectories and to
lie on the selection process to achieve complex maneuvers.

D. Example

Fig. 3. The resultingparameter spaceswhich model all valid parameter
values (αx

2
, αy

2
) (in m/s2) for (a) a linear acceleration constraint, (b)

a linear speed constraint and (c) an obstacle avoidance constraint, after
considering them for everystep = 0.1s up to time horizonT = 10s.

Consider the following situation of a robot with:
• initial position p(0) = (0, 0)m and speed vector

Sv(0) = (0.1, 0.2)m/s;
• a security distancerrobot = 0.5m;
• the following constraints, considered everystep = 0.1s

up to time horizonT = 10s:

– linear acceleration bounded between0 and1m/s2;
– linear speed bounded between0 and1m/s;
– disk shaped static obstacleObs = (2, 0).

Figure 3 shows theparameter spacefor each constraint.
Figure 4 shows (a) their intersection and (b) how the choice
of a point in (αx

2 , α
y
2) sets the shape of a subtrajectory

satisfying the constraints.

Fig. 4. The green area in (a) represents the intersection of the previous
constraint representations: it models all valid parametervalues (αx

2
, αy

2
)

eligible for each constraint. Figure (b) shows the impact of(αx
2
, αy

2
) on the

shape of the quadatric subtrajectory. Choosing parameters(αx
2
, αy

2
) outside

the constrainedparameter spaceleads to a constraint violation, here obstacle
avoidance.

E. Solutions over parameter space

The propagation process exploits theparameter space
to identify the locally optimal subtrajectory. Let theGoal

be in (xg, yg). The functionρloc to be minimized is the
distance of the subtrajectories endpointpk0...kn(Tk0...kn) to
Goal . We can analytically find the exact values needed to
reach theGoal : αx

2 = (xg −αx
0 − αx

1Tk0...kn)/Tk0...kn

2 and
αy
2 = (yg −αy

0 −αy
1Tk0...kn)/Tk0...kn

2. If this point belongs
to E(Tk0...kn), then it is valid for all motion constraints and
these values set the shape of a subtrajectorypk0...kn(t) which
reachesGoal at t = Tk0...kn . Otherwise, the best solution
for E is on the boundary of this space. We use QuadTree
[7] to get a precise tiling with rectangles over the border
of E. We then use a rough optimization which consists



in choosing the best point among remarkable points in the
considered rectangle (corners and center). Each of the points
from E(Tk0...kn) defines a subtrajectory on whichρloc is
applied. The best solution is found from all the rectangles of
the tiling: this subtrajectory has the closest end point to the
goal.

F. Diverse time durations for exploration

We remark thatE(T ) = {
⋂T

t=0 Mc(t) × Gc(t)} =

{
⋂T ′

t=0 Mc(t)×Gc(t)} ∩ {
⋂T

t=T ′ Mc(t)×Gc(t)} ⊂ E′(T ′)
with T ′ < T . This means that theparameter spaceE
computed for a durationT involves the computation of
the parameter spaceE′ with lower time durationsT ′.
As a consequence, for given step, we can create more
subtrajectories with lower time horizonsT ′ using the
intermediateparameter spaces E′(T ′) when computing the
parameter spaceE(T ), as shown by Figure 5.

Fig. 5. Deterministic propagation of subtrajectories withdifferent time
durations and respect of kinodynamic constraints.

IV. SELECTION PROCESS

A. Exploration tree in a continuous space

DKP explores the environment with an exploration tree
guided by an optimization criterion in an A∗ manner. As the
A∗ algorithm, the scores that DKP propagates to quadratic
subtrajectories are the result of an evaluation functionρ =
g + bias × h. g is the cumulated real cost andh is the
heuristic part. More commonly, we use length of the root to
the current branch as real costg and euclidian distance from
the end of the evaluated branch to the goal as the heuristic
part h. bias modifies the heuristic and the behavior of the
selection process.

Let Tmin and Tmax be the minimum and maximum
allowed time horizons of subtrajectories. When a
subtrajectory pk0...kn is selected, DKP creates new
subtrajectoriespk0...Kn(t) with various time durations,
based on astepvariety such thatTmin ≤ Tk0...knkn+1

=
kn+1 × stepvariety ≤ Tmax . In contrast to [2] which
needs to invalidate some generated controls, theparameter
spaceguarantees that all subtrajectories generated by our
propagation process satisfy all the constraints, including
obstacle avoidance.

Unlike usualA∗ path planners, the subtrajectories used
in DKP lies on a continuous space and two subtrajectories
rarely coincide. Subtrajectories are filtered with discretization
criteria upon subtrajectory endpoint, speed vector direction,
speed vector norm and subtrajectory length. We are thus able
to control the number of subtrajectories created by DKP and,

consequently, the computation time of the algorithm can be
bounded.

B. A spline as trajectory solution

The final trajectoryP (t) = Pk0...kN (t) is built by
retrieving the predecessors of the last subtrajectory
pk0...kN (t) which satisfies the stopping criterion.
Consequently, the trajectory is made up ofN subtrajectories.
The total duration isTend =

∑N

i=0 Tk0...ki . Let t be in
[0;T0]∪ ...∪ [Tk0...kn−1

;Tk0...kn ]∪ ...∪ [Tk0...kN−1
;Tk0...kN ].

If t is in [Tk0...kn−1
;Tk0...kn ], the value of the trajectory

P (t) is the value of subtrajectorypk0...kn such as
P (t) = pk0...kn(t− Tk0...kn−1

).
The DKP global planner can build complex maneuvers

even with quadratics selected in theparameter spacefrom
an exploration tree built in an A∗ manner. The solution is
admissible for robots with flatness properties in the condition
they do not suffer from the acceleration discontinuity
between branches.

C. Robot control

The robot controls are obtained from the trajectoryP (t) =
Pk0...kN (t) by applying the following commands:s(t) =
√

ẋ(t)2 + ẏ(t)2 and ω(t) = ÿ(t)×ẋ(t)−ẍ(t)×ẏ(t)
ẋ(t)2+ẏ(t)2)3/2

. We then
use a saturated controller [3] which solves the tracking
problem in the presence of input saturations and unknown
disturbances.

D. DKP exploration modes

We can naturally use DKP exploration in the following
two modes: optimal mode withbias = 1 or greedy mode
with bias >> 1. Optimal and greedy modes are respectively
used in the illustrative examples of Sections V-A and V-B.

As a third mode, the DKP selection process may be
enhanced by a backtracking process that adds virtual
obstacles in order to handle local minima. When a
subtrajectorypk0...kn+1

cannot be pursued,i.e. its parameter
spaceE is empty,pk0...kn+1

is removed from the exploration
tree. The previous subtrajectorypk0...kn is selected and
this adaptation process locally modifies the environment
representation by adding some virtual obstacles in order to
change the reachable parts. A new propagation process is
then done on the subtrajectorypk0...kn . When the trajectory
pk0...kn backtracking cases reaches atrigger value, this
subtrajectory is also removed, the previous subtrajectory
pk0...kn−1

is selected, a bigger virtual obstacle is added,
new propagation is done with it and so on. With this
adaptation process, DKP will try to pursue a branch by
locally modifying its best solutions. This backtracking mode
is used in the illustrative example of Section V-C.

DKP could be used in real world applications with limited
information and dynamic environment: in such cases, we are
aware that DKP is hard to tune and that DKP should be
customized with better selection processes, for exampleD∗

[24] or AD∗ [18], and better guidance. Our future works
will focus on an intelligent online planning with a common
adaptation of the exploration process (the backtracking mode
being an example) and the iterative planning.



V. I LLUSTRATIVE EXAMPLES

The following examples demonstrate the ability of DKP
to take into account various kinodynamic constraints, static
and moving obstacles. They also illustrate that trajectories
provided by DKP are directly executable on real robots,
without any smoothing phase. Our solution is deployed on
Mindstorm robots using our platform APM(Robot) [4].

APM(Robot) provides generic communication processes
between modules and/or robots for implementation, testing
and deployment of our experiments, such as Robot Operating
System [21] or Player/Stage [10].

The robots localize themselves by integrating odometer
data, and continuously send localization messages to a
computer. The computer generates commands using the
trajectory tracking algorithm described in [3], and sends them
back to the robots.

Figures - depict top views of the solutions planned by DKP
and their real executions, illustrating the state of the robots
every 100ms. In the planned subtrajectories, real obstacles
are drawn in black and grown obstacles (tacking into account
the robots clearance) in light gray. The branches of the
exploration tree are shown in green (open nodes in theA∗

sense) and magenta (closed nodes).

A. Medium and low-acceleration robots

This example illustrates the benefits of DKP over classical
grid-based approaches, such as A* and variants (D*, E*),
providing trajectories which are not necessarily executable
by the robot.

1) Description: DKP has been run in optimal mode
(bias = 1) with the following parameters: maximal time
horizon Tmax = 6s, time step for constraint evaluation
step = 0.5s; robots characteristics: velocity bounds:S− =
9cm/s, S+ = 18cm/s, acceleration bounds:A− = 0cm/s2,
A+ = 3cm/s2 for the low-acceleration robot (Fig. 6a) and
A+ = 7cm/s2 for the medium-acceleration robot (Fig. 6c).

2) Results: The trajectory provided by DKP is similar
to the one provided by a grid-based approach (here A*)
for a robot with medium acceleration capabilities, but the
two trajectories can significantly differ for low acceleration
capabilities. Trajectories provided by DKP seems longer,
but the corresponding overcosts are necessary to respect the
robot’s kinodynamic constraints.

Counter-intuitively, using such grid-based trajectoriesas
leads (like in DSLx) does not necessarly speed up the search,

Fig. 6. Trajectories for a medium-acceleration robot (7cm/s2): (a)
trajectory planned by DKP; the dotted line represents the trajectory planned
by theA∗ algorithm on a 25x25 grid, (b) executed trajectory; trajectories
for a low-acceleration robot (3cm/s2): (c) trajectory planned by DKP; (d)
executed trajectory.

(a) (b) (c) (d) 

Fig. 7. (a) Planned trajectory; from (b) to (d) executed trajectory

and worse, could lead to incompleteness issues (since the
dotted line trajectory is not guaranteed to be executable by
the robot, like in Figure 6c).

B. Cluttered environment

This example illustrates the ability of DKP to find
solutions very quickly in complex environments, using the
greedy mode.

1) Description: In this example, the environment contains
randomly placed obstacles, creating numerous dead ends
where random approaches could classically get stuck for a
long time. DKP has been run in greedy mode (bias = 10)
with the following parameters:Tmax = 6s, step = 0.5s;
S− = 0cm/s, S+ = 10cm/s, A− = 0cm/s2, A+ =
10cm/s2.

2) Results: DKP founds a solution with a very limited
exploration tree (compared to those of Fig. 6, which are
much more expanded). Even if the search is here strongly
biased towards the goal, the time diversity on subtrajectories
duration allows DKP to escape from local minima.

C. Overtaking robot

This example illustrates the ability of DKP to handle
moving obstacles. Here, only 0-order data on obstacles (i.e.
their position) is taken into account during the propagation
process. Similarly to [25], higher order data could be
integrated in DKP to anticipate the future states of the
obstacle.

1) Description: Two robots R1 (bottom) and R2

(top) perform straight line moves at constant velocities
(respectively3cm/s and 4cm/s). A third robot R3 uses
DKP to plan the time-minimal trajectory avoidingR1 and
R2. Since this paper does not focus on trajectory estimation,
obstacle trajectories are here known in advance and provided
to DKP. DKP has been run in backtracking mode (bias =
10) with the following parameters:Tmin = Tmax = 1s,
step = 0s; S− = 0cm/s, S+ = 20cm/s, A− = 0cm/s2,
A+ = 10cm/s2. Additional parameters, specific to the
backtracking mode, are: the minimal virtual obstacle radius
rvobstacle,pk0...kn

= Tk0...kn+1
× S+/size with size = 10,

trigger value to backtracktrigger = 4.
2) Results: In this example, DKP computed a trajectory

overtakingR1 while avoidingR2. Other parameters (a lower
acceleration or faster obstacles) lead to a totally different
solution (results not shown), consisting, for instance, in
following R1 until the goal is reached.



Fig. 8. (a) Planned trajectory; from (b) to (d) executed trajectory

VI. SIMULATION STUDY

A. Simulations preparation

We produce100 series of cluttered environments of size
24m × 24m with Nobs ∈ [0, 10, ..., 100] non-overlapping
static obstacles with disk shape of radius1m, as illustrated
in Introduction (Fig. 1). In each of them, we set a random
Start state (position and speed vector) and aGoal state in
free areas in a square of size20m × 20m in the center
of the environment. The distance between randomStart
and Goal is between5 and 10 meters. In addition to the
static obstacle avoidance constraints, we set the following
kinematic constraints: a linear acceleration between0 and
1m/s2 and a linear speed between0 and 1m/s. We use
Euclidean distance from the subtrajectory endpointpk0...kn

for the heuristic parth = ρloc = dGoal from ρ. We use the
length of the subtrajectorypk0...kn as the distance evaluation
function part, noteddsubtrajectory , between a subtrajectory
pk0...kn and its previous subtrajectorypk0...kn−1

such as
g = dsubtrajectory . On each environment and with the defined
constraints, we use DKP in its three modes described in the
first 3 columns of table II. We produce a total number of
1100 simulations for each mode with an increasing number
of obstacles. For the backtracking mode, the minimal virtual
obstacle radius is set torvobstacle,pk0...kn

= Tk0...kn+1
×

S+/size with size = 10. The trigger value to backtrack is
set totrigger = 4.

To bound the experiment time, the maximum number
of allowed propagation processes is set to500 iterations.
To compare the solution, we present the average minimum
duration to cover direct line from theStart to theGoal at
the maximum allowed speed, when a solution is found by
DKP.

B. Results and computation times

Simulations have been run on a2.53 GHz 64-bits dual-
core PC with4 GB of RAM (DKP implementation is single-
threaded). Table II sums up the overall averages and standard
deviations for the results of simulations. They show that
DKP needs a lot of time diversity to deal with complex
environments and obstacle avoidance. With subtrajectories
of 0.5, 1, 1.5 and 2, seconds, both the greedy and optimal
searches only fail in the typical situation in which the random
initial speed vector directly faces an obstacle. In this case, as
expected from theA∗-based selection process, the optimal
mode produces the best solutions but a lot of computation
time is used to grow the exploration tree and some
situations are not solved within the500 allowed iterations

of the propagation processes. The greedy mode considerably
reduces both this computation time and the number of
simulations. In this mode, the number of simulations with no
solutions (simulations which need more than500 iterations
to get a solution and simulations for which DKP stops on
a failure) does not increase. Nevertheless, solution quality is
diminished. Backtrack mode exhibits a good balance between
the speed of the greedy mode and the quality of solutions
in optimal mode. With small subtrajectories of0.5 seconds,
the backtracking mode gets good solutions with a quality
close to optimal mode while approaching the greedy mode
computation time. As explained by [18], with backtracking
mode, we avoid the mismatch between the powerful local
planning and the approximate global planning. Even if
backtracking mode requires a lot of time to get unstuck
from local minima, the solution quality remains close to
the optimal mode. One effective optimization should be to
register theparameter space, and reuse it when backtracked
with virtual obstacles. Nevertheless, such a solution would
require a lot of memory. This mode would effectively scales
in larger environment with the same step size because only
one main branche is pursued: it only requires more iterations
to provide a solution. The overall complexity then relies on
the number of obstacles in the environment but a dynamic
window approach should be used in this case.

Figure 9 focuses on the computation times for every set
of obstacles in each mode. The evolution of computation
time is the same for each mode. When the environment is
nearly filled by non-overlapping obstacles, the free space
between obstacles forms corridors which naturally guide the
search. Therefore, the computation time begins to decrease.
As expected, the performance of the backtracking mode are
between the optimal and greedy mode.

VII. C ONCLUSION AND FUTURE WORKS

DKP is a hybrid path planner for robots which are
able to follow spline trajectories. DKP is an intermediate
approach between heavily customized approaches which
are efficient for specific problems and the more general
approaches which use random processes to deal with
complex environments and models with many degrees of
freedom. Based on a selection/propagation architecture,
DKP creates an exploration tree with subtrajectories. The
solution, a spline trajectory, can characterize complex
maneuvers, even with quadratic subtrajectories, thanks tothe
efficient relationship between our selection process and our
propagation process. In particular, this simplifying choice
allows us to exploit an exact representation of all admissible
subtrajectories which satisfy all constraints of our problem:
the so-calledparameter space. Our propagation process
first sets up those parameter spaces and then identifies the
suboptimal subtrajectories with diverse time durations. With
these subtrajectories, DKP balances well the complexity
of the propagation process and the selection process.
Moreover, theparameter spaceconstruction, separated from
the solution search, enables us to build specific adaptation
processes, such as the backtracking process.



mode bias subtrajectories Computation time Solution duration Line solution simulations DKP Not finished
duration duration number fails search

optimal 1 0.5;1;1.5;2 1.54± 0.7 8.79 ± 1.62 7.46± 1.39 1100 57 59

greedy 10 0.5;1;1.5;2 0.4± 0.07 12.88 ± 2.87 7.58± 1.42 1100 57 0

backtracked 1 0.5 0.5± 0.19 9.97 ± 1.98 7.59± 1.42 1100 61 0

TABLE II

SIMULATIONS ON DKP: BACKTRACKING MODE EXHIBITS A GOOD BALANCE BETWEEN THE SOLUTION QUALITY AND THE

COMPUTATION TIME

Fig. 9. average, minima, maxima,15th and85th percentiles of computation times of1100 DKP simulations in (a) optimal mode, (b) greedy mode and
(c) backtracking mode (100 simulations for [0,10,...,100] obstacles).

In this paper, hardware experiments highlight the strong
points of DKP by describing three situations applied to
different two-wheeled robots. We illustrate our geometrical
approach for constraints by simply providing bounds on the
robot’s speed and acceleration, a description of the shapes
and trajectory for static/mobile obstacle avoidance. This
makes DKP easily applicable to various problems for which
can set specific restrictions over theparameter space. In each
described case, we can precisely describe the abilities of the
robots. Furthermore, the solutions are directly usable forthe
control of our robots.

Future work will focus on the adaptation process. We
should take advantage of our description of constraints to
provide a common reasoning for the exploration process, the
analysis of the results and the replanning process.

REFERENCES

[1] M.S. Branicky, M.M. Curtiss, J. Levine, and S. Morgan. Sampling-
based planning, control and verification of hybrid systems.IEE
Proceedings Control Theory and Applications, 153(5):575, 2006.

[2] M.S. Branicky, R.A. Knepper, and J.J. Kuffner. Path and trajectory
diversity: Theory and algorithms. InICRA’08, pages 1359–1364.

[3] M. Defoort, J. Palos, A. Kokosy, T. Floquet, W. Perruquetti, and
D. Boulinguez. Experimental motion planning and control for an
autonomous nonholonomic mobile robot. InICRA’07, pages 2221–
2226.

[4] C. Dinont, F. Gaillard, and M. Soulignac. APM(robot): Towards a
platform for meta-reasoning in robotic applications. InProceedings
5th National Conference on Control Architecture of Robots.

[5] B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion
planning. Journal of the ACM, 40(5):1048–1066, 1993.

[6] C. Urmson et al. A robust approach to high-speed navigation for
unrehearsed desert terrain.Journal of Field Robotics, pages 467–508,
2006.

[7] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval
on composite keys.Acta Informatica, 4:1–9, 1974.

[8] M. Fliess, J. Lévine, and P. Rouchon. Flatness and defect of nonlinear
systems: Introductory theory and examples.International Journal of
Control, 61:1327–1361, 1995.

The authors gratefully thank Gabriel Chênevert and Benjamin Parent for
their carreful reading of this paper.

[9] F. Gaillard, C. Dinont, M. Soulignac, and P. Mathieu. Deterministic
kinodynamic planning. InProceedings of the Eleventh AI*IA
Symposium on Artificial Intelligence, pages 54–61.

[10] B. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. InICRA’03,
pages 317–323.

[11] T. Howard and A. Kelly. Optimal rough terrain trajectory generation
for wheeled mobile robots.IJRR, 26(1):141–166, February 2007.

[12] D. Hsu, R. Kindel, J.C. Latombe, and S. Rock. Randomized
kinodynamic motion planning with moving obstacles. The
International Journal of Robotics Research, 21(3):233, 2002.

[13] S. Karaman and E. Frazzoli. Incremental sampling-based algorithms
for optimal motion planning.Proceedings of Robotics: Science and
Systems, Zaragoza, Spain, 2010.

[14] A.M. Ladd and L.E. Kavraki. Fast tree-based exploration of state
space for robots with dynamics.Algorithmic Foundations of Robotics
VI, pages 297–312, 2005.

[15] F. Lamiraux, E. Ferré, and E. Vallée. Kinodynamic motion planning:
connecting exploration trees using trajectory optimization methods. In
ICRA’04. Proceedings, volume 4, pages 3987–3992.

[16] S. M. LaValle. Planning Algorithms. Cambridge University Press.
[17] S.M. LaValle and J.J. Kuffner. Randomized kinodynamicplanning.

IJRR, 20:278–400, 2001.
[18] M. Likhachev and D. Ferguson. Planning long dynamically feasible

maneuvers for autonomous vehicles.IJRR, 28(8):933, 2009.
[19] M.B. Milam, K. Mushambi, and R.M. Murray. A new computational

approach to real-time trajectory generation for constrained mechanical
systems. InCDC’00, pages 845–851.

[20] E. Plaku, L.E. Kavraki, and M.Y. Vardi. Discrete searchleading
continuous exploration for kinodynamic motion planning. In Robotics:
Science and Systems, pages 326–333, 2007.

[21] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng. ROS: an open-source Robot
Operating System. InICRA Workshop on Open Source Software, 2009.

[22] J.H. Reif. Complexity of the generalized mover’s problem. In J.T.
Schwartz, M. Sharir, and J. Hopcroft, editors,Planning, Geometry,
and Complexity of Robot Motion, pages 267–281. 1987.

[23] O. Khatib S. Quinlan. Elastic bands: connecting path planning and
control. In ICRA’93, pages 802–807.

[24] A. Stentz. The focussed D* algorithm for real-time replanning. In
ICRA’05, pages 1652–1659.

[25] D. Wilkie, J. van den Berg, and D. Manocha. Generalized velocity
obstacles. InIROS’09, pages 5573–5578.


