
Toward a pragmatic methodology for open

multi-agent systems

Philippe Mathieu, Jean-Christophe Routier, and Yann Secq

Laboratoire d’Informatique Fondamentale de Lille – CNRS UMR 8022

Université des Sciences et Technologies de Lille

59650 Villeneuve d’Ascq Cedex
{mathieu,routier,secq}@lifl.fr

Abstract. This paper introduces the Rio methodology, which relies on
the notions of Role, Interaction and Organization. We define a model
of runnable specification of interaction protocols that represents inter-
actions between agents globally, and that can be processed in order to
generate Colored Petri Nets that handle agent conversations. Moreover,
these specifications are not tied to a particular agent model and could
therefore be used to enable multi-agent systems interoperability.

The Rio methodology aimed at the design of open multi-agent systems,
and is based on an engineering of these runnable interaction protocols.
They are described in term of conversation between micro-roles charac-
terized by their skills, then micro-roles are gathered in composite roles.
These composite roles are used to build abstract agents. Lastly, these lat-
ter can be distributed among the agents of a running multi-agent system.

1 Introduction

The idea of an agent based software engineering has appeared roughly ten years
ago, with the paper from Shoham entitled Agent Oriented Programming [15].
Since these days, several methodologies have been proposed to help developers
in their analysis and design[9, 2]. These methodologies are interesting but they
generally do not propose pragmatic concepts or principles facilitating the realiza-
tion of such systems. Moreover, they do not tackle the problem of multi-agent
systems interoperability that should be a primary concern as more and more
agent models and agent platforms are becoming available.

The FIPA association has published some standard specifications that pro-
vide a first step towards interoperability. Sadly, we believe that without a strong
commitment to interaction specification and standardized ontologies, interoper-
ability will not be reached. Thus, our proposal is a pragmatic methodology to
ease the design of open multi-agent systems. To achieve this goal, we rely on a
model of runnable specification of interaction protocols, which describes a global
sight of the conversations between the agents of the system. Unlike AgentUML

[13], our model of interaction is more than a description or a notation : we use
it to generate code to handle agent conversations.

In the first part of this article, we briefly survey two methodologies that have
been proposed for the design of complex distributed systems, then we put them
in relation with interaction oriented approaches. In the second part, we propose a
formalism for the runnable specifications of interaction protocols between micro-
roles. The latter are assembled in composite roles which are then atributed to the
agents of the system. This specification is made executable by the generation of
Colored Petri Nets for each micro-role. This runnable specification and the use of
a generic model of agent enable us to propose the Rio methodology facilitating
the design, the realization and the effective deployment of multi-agent systems.

2 Agent methodologies and interaction oriented

programming

Several agent oriented methodologies have been proposed like Aalaadin[4] or
Gaia [18]. These two methodologies do not make any assumption on agent mod-
els and concentrate mainly on the decomposition of a complex system in term
of roles. This point is fundamental, in particular because of the multiplicity of
available agent and multi-agent systems models. This multiplicity makes the
task of the developer difficult : which agent model should be used? Which or-
ganizational model should be chosen? Indeed, each platform imposes too often
both its own agent model and its organizational model. These methodologies
are interesting on many points, but remains too general to ease the transition
from the design stage to its concrete realization. Moreover, the various levels
of communication are not clarified in the description of interaction protocols.
Indeed, works on agent communication languages (ACL)[5] identify three levels
that constitutes a conversation: the semantic, the intention (these two are ex-
pressed through languages like KIF or SL, and KQML or FIPA-ACL), and the
interaction level. However, even by considering heterogeneous platforms sharing
the same ontology, it remains difficult to have guarantees on the respect of inter-
action protocols. This is the reason why works have been undertaken to formalize
this aspect with several objectives: to describe the sequence of messages, to have
certain guarantees on the course of a conversation and to ease interoperability
between heterogeneous platforms.

To illustrate these approaches based on a formalization of the interactions,
we studied three of them: April[12], AgenTalk[8] and COOL[1]. April is
a symbolic language designed to handle concurrent processes (close to works
done on actor languages [6]), that eases the creation of interaction protocols. In
April, the developer must design a set of handlers which treats each message
matching a given pattern. According to the same principles, AgenTalk adds
the possibility to easily create new protocols by specialization of existing proto-
cols, by relying on a subclassing mechanism. Another fundamental contribution
of AgentTalk is the explicit description of the protocol: the conversation is
represented by a set of states and a set of transition rules. This same principle
was employed in COOL, which proposes to model a conversation using a finite

state automata. In COOL, the need for the introduction of conventions between
agents to support coordination is proposed. This concept of convention must be
brought closer to the works of Shoham on social rules [16] and their contributions
on the global performance of the system.

Thus, the introduction of this level of interaction management while rigidify-
ing in a certain way the possible interactions between agents, brings guarantees
on coordination and allows the reification of these interactions. The table below,
inspired by work of Singh[17], illustrates the various levels of abstractions within
a multi-agent system :

Applicative skills Business knowledge

Agent models and system skills Agent oriented design

Conversation management Interaction oriented design

Message transport Agent platform (i.e. agents container)

To conclude, we would like to cite a definition given by Singh[17] of the in-
teraction oriented approach, which characterizes our approach :

We introduce interaction-oriented programming (IOP) as an approach to or-
chestrate the interactions among agents. IOP is more tractable and practical
than general agent programming, especially in settings such as open information
environments, where the internal details of autonomously developed agents are
not available.

It is the point of view that we adopt, by proposing a pragmatic methodology
for the design and realization of open multi-agent systems, relying on the concept
of runnable specification of interaction protocols.

3 Rio : Roles, Interactions and Organizations

In this section, we will present the methodology that we are developing, and
which relies on the concept of runnable specification of interaction protocols.
This methodology falls under the line of Gaia[18], and thus aims the same
applicability. However, Gaia remains too general to ease the transition from
the system design stage to its realization. The purpose of our proposal is to
facilitate this transition. The Rio methodology relies on four stages, the two first
represent reusable specifications, while the two last are singular with the targeted
application. Moreover, we will not speak about building an application, but about
designing an agent society. Indeed, the Rio methodology proposes an incremental
and interactive construction of multi-agent systems. We see a multi-agent system
like a set of distributed containers that have to be enriched by interactions in
order to achieve tasks. We will detail this approach by studying the four stages
of our methodology (figure 1). It should be noted that the analysis stage is not
represented here and could be done using Gaia. When entities and processes
that are involved have been identified, we can start the Rio methodology by
specifying interaction protocols.

Choice of skill interface implementation

Pre/Post−conditions on messages
Messages transformations to customize them to skill interfaces

Linking between abstract and concrete agents

Agent society instanciation

Abstract multi−agent definition

Abstract agent society specification

Abstract agent definition
Abstract agent occurence definition
Linking between abstract role and organization

Composite roles specification

Generic element definition
Composite roles definition

Interaction protocols specification

Interaction graph definition

Ontologies of messages that are exchanged
Information that are created within protocol

Textual description describing the protocol
Defining micro−roles and their symbol

Micro−role/skill interface linking

Fig. 1. The stages of the Rio methodology

3.1 Interaction protocols specification.

The first stage consists in identifying the involved interactions and roles. Then,
it is necessary to determine the granularity of these interactions. Indeed, for
reasons of re-use of existing protocols, it is significant to find a balance between
protocols using too many roles, these protocols becoming thus too specific, and
protocols where there are only two roles, in this case the view of the interaction
is no more global.

The purpose of these runnable interaction protocol specifications, is the
checking and the deployment of interaction protocols within multi-agent sys-
tems. On all these stages, the designer has to define the specification, the other
stages being automated. For that, we define a formalism representing the global
view of an interaction protocol, and a projection mechanism which transforms
this global view into a set of local views dedicated to each role. The interaction
protocols are regarded here as social laws within the meaning of Shoham[16],
that means that agents lose part of their autonomy (conversational rules are
static), but the system gains in determinism (because conversations are pre-
cisely defined) and in reliability (because the code needed to handle the flow of
messages is generated).

Messages ontologies : X_ontology, Y_ontology

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����m1

(m1, m2)

m2 m3

(m3, (m4, m5))

m4

m5

extracted information inserted information

Interaction protocol nam : myProtocol Textual description of the interaction protocol : ...

Micro−roles : Micro−role A Micro−role B Micro−role C

Initiator micro−roles

Fig. 2. Cartouche that specifies interaction protocols

The specification of the interaction protocols can then be done in three ways :
either ex-nihilo, by specialization, or by composition. Creation ex-nihilo con-
sists in specifying the interaction protocol by detailing its cartouche (figure 2).
Specialization makes it possible to annotate an existing cartouche. Thus, it is
possible to specify the cartouche of an interaction protocol such as FIPA Con-

tractNet, its specialization will consist in changing micro-roles names to adapt
them to the application, to refine message patterns, and if required to modify
insertions/extractions of information. Finally, the composition consists in assem-
bling existing protocols by specifying associations of micro-roles and information
transfers. The figure 3 illustrates a specification of the FIPA Contract Net Pro-
tocol, that is represented by an XML encoding reproduced below.

Messages ontologies : FIPA_Contract_Net_ontology

����������
���������� ����������

���������� ����������
����������/cfp /propose /accept

/not_understood
/failure/reject/refuse

/inform_done
/inform_ref

BID CHOOSE DO

Micro−roles :

 :

initiator (1)

Interaction protocol name : FIPA Contract Net Description : implementation of the FIPA contract net protocol

Participant (+) Initiator micro−roles

<interaction>
<protocol name="FIPA Contract Net">

<roles>

<role name="Initiator" occurence="1"/>
<role name="Participant" occurence="+"/>

</roles>
<skills>

<skill name="bid">

<input type="/cfp"/>
<output type="/propose"/>

<output type="/refuse"/>
<output type="/not_understood"/>

</skill>
<skill name="choose">

<input type="/propose"/>

<output type="/reject"/>
<output type="/accept"/>

</skill>
<skill name="do">

<input type="/accept"/>

<output type="/failure"/>
<output type="/inform_done"/>

<output type="/inform_ref"/>
</skill>

</skills>

<net>

<nodes>
<place role="Initiator" initial="1"

ids="1,3,4,7,8"/>
<place role="Participant" ids="2,5,6"/>

</nodes>
<arcs>

<arc from="1" to="2" type="/cfp"/>

<arc from="2" to="3" type="/refuse"/>
<arc from="2" to="3"

type="/not_understood"/>
<arc from="2" to="4" type="/propose"/>
<arc from="4" to="5" type="/reject"/>

<arc from="4" to="6" type="/accept"/>
<arc from="6" to="7" type="/failure"/>

<arc from="6" to="8"
type="/inform_done"/>

<arc from="6" to="8"
type="/inform_ref"/>

</arcs>

</net>
</protocol>

</interaction>

Fig. 3. The FIPA Contract Net interaction protocol and its XML encoding

Now that we have seen the formalism representing interaction protocols, we
will explain the transformation making it possible to obtain a runnable specifica-
tion. The specification of interaction protocols gives to the designer a global view
of the interaction. Our objective is to generate for each micro-role a local view
starting from this global view, this one could then be distributed dynamically
to the agents of the system.

The projection mechanism transforms the specification into a set of au-
tomata. More precisely, an automata is created for each micro-role (figure 4).
This automata manages the course of the protocol : coherence of the protocol
(messages scheduling), messages types, side effects (skill invocation). The imple-
mentation of this mechanism is carried out by the generation of Colored Petri
Nets[7]. Indeed, we use the color of tokens to represent messages patterns, in
addition we have a library facilitating the interactions between generated net-
works and the agent skills. On the basis of the interaction graph, we create
a description of Colored Petri Net for each micro-role, and we transform this
textual description to a Java class. This class is then integrated within a skill,
which is used by conversation manager skill.

Fig. 4. Generated Colored Petri Nets for FIPA Contract Net protocol.

The interest of this approach is that the designer graphically specifies the
global view of the interaction, the projection mechanism generates the skill
needed to the management of this interaction. Moreover, thanks to the dynamic
skill acquisition, it is possible to add new interaction protocols to running agents
of the system.

At the end of this stage, the designer has defined a set of interaction protocols.
He can then go to the next stage : the description of composite roles, which
will allow the aggregation of micro-roles that are involved in complementary
interactions.

3.2 Composite roles specification.

This second stage specifies role models. These models are abstract reusable de-
scriptions, which correspond to a logical gathering of micro-roles. These patterns
define abstract roles, which gather a set of consistent interaction protocols. For
example, a composite role Supplies management will gather the micro-role
Buyer within the Providers seeking interaction protocol and the micro-role
Storekeeper of the interaction Supplies delivery. Indeed, a role is gener-

AC : Agent Concret

µ 12µ 11

ι 1

µ 23µ 22µ 21

ι 2

µ 32µ 31

ι 3

xι : Interaction protocol

µ xy : Micro−role

µ 21 ι 2(,)
µ 32 ι 3(,)

µ 12 ι 1(,)

CR 2

µ 11 ι 1(,)
µ 23 ι 2(,)
µ 31 ι 3(,)

CR 1

µ 22 ι 2(,)

CR 3

AA 1

CR 1 CR 3

AA2

CR 2

AA 1

AC 1

AA2

AC 2

AA2

AC 3

CR : Composite role AA : Agent Abstrait

Fig. 5. Synthetic illustration of Rio stages

ally composed of a set of tasks which can be, or which must be carried out by
the agent playing this role. Each one of these tasks can be broken up and be
designed as a set of interactions with other roles. The concept of composite role
is thus used to give a logical coherence between the micro-role representing the
many facets of a role.

3.3 Agent societies specification.

This third stage can be regarded as a specification of an abstract agent society,
i.e. a description of abstract agents and their occurrence, as well as the link
between composite roles and organizations. Once the set of composite roles is
created, it is possible to define the abstract agents, which are defined by a set of
composite roles. Abstract agents can seen as agent patterns, or agent templates :
they define a type of agent relying on interactions that the agent can be involved
in. For the designer, these abstract agents describe applicative agent models.
Because these models introduce strong dependencies between composite roles,
they are specific to the targeted applications and cannot therefore hardly be
reused.

For example, the Office Stationery Delivery composite role could be
associated with the Travelling expenses management composite role to

Interaction Protocols

(

(

(

(

Buyer
Seeking providers

Storekeeper

Travelling expenses management

President

Travelling notes recording

Seeking providers

Travelling notes recording

User

BuyerProviders

Traveller

Director Secretary

)

)

Laboratory Secretary

Travelling expenses management

Secretary
Mission orders emission)

Mission orders emission

Office stationery delivery

Office stationery delivery)

Office stationery management

Office stationery management

,

,Storekeeper

,

Assistant Assistant ,

Composite Roles Abstract Agent

Fig. 6. The Secretary example

characterize a Laboratory secretary abstract agent (fig 6). Once abstract
agents are defined, it is necessary to specify their occurrence in the system. This
means that each abstract agent has an associated cardinality constraint that
specifies the number of instances that could be created in the system (exactly
N agents of this type, 1 or more, 0 or more, or [m..n]).

The second part of this stage consists in specifying for each abstract agent,
and even for the composite roles of these agents, which organization should be
used to find their acquaintances. Indeed, when agents are running, they have to
initiate interaction protocols, but in order to do that they initially have to find
their interlocutors. Organizations are used as a media for this search. The con-
cept of organization is necessary to structure interactions that intervene between
entities of the system. This concept brings some significant benefits : a means to
logically organize the agents, a communication network per defect and a media
to locate agents, roles or skills. Moreover, its reification provides a back door in
the system, making it possible to visualize and to improve interactions between
agents[11]. So, in this stage, the designer has to associate each interaction with
the organization that should be used to locate acquaintances. It is thus possible
to use different organizations within each abstract agent.

3.4 Instantiating an agent society in a multi-agent system.

This last stage specifies deployment rules of the abstract agents on the running
agents of a system. We have a complete specification of the agent society, that
can be mapped on the concrete agents of the multi-agent system. For that, it
is necessary to indicate the assignments from abstract agents to concrete ones.
Then, the connection between a skill interface and its implementation is carried
out. The designer indeed must, according to criteria that are applicative or
specific to the hosting platform, bind the implementation with skill interfaces.

It is during deployment that the use of our generic agent model[10] is justified
as a support to the dynamic acquisition of new skills related with the interaction.
Indeed, the interaction, once transformed by the projection mechanism, is rep-
resented for each micro-role by a Colored Petri Net (figure 4) and its associated
skills. All these information are sent to the agent, which adds applicative skills
and delegates the CPN to the conversation manager.

When an agent receives a message, the conversation manager checks if this
message is part of a conversation in progress (thanks to the conversation iden-
tifier included in the KQML message), if it is the case, it delegates the message
processing to the concerned CPN instance, if not it seeks the message pattern
matching for the received message and instantiates the associated CPN. If it
does not find any, the message will have to be treated by the agent model.

4 Conclusion

Multi-agent systems are now becoming a new design paradigm. Many agent
models have been proposed, as well as many multi-agent toolkits or framework.
This diversity poses the problem of multi-agent systems interoperability. In this
paper, we have presented the Rio methodology, which is based on the notions of
role, interaction and organization. We use these notions to propose an engineer-
ing of interaction protocols and to enable interoperability for open multi-agent
systems.

The heart of our proposal is the idea of runnable specification of interaction
protocols. This specification, that can naturally be represented graphically, gives
a global view of a conversation between several roles. These micro-roles are
characterized by the messages that they can handle and by the skills they need in
order to fulfill their function. Then, we have a projection algorithm that generate
Colored Petri Nets for each micro-role, that represent the local vision that each
participant has of the interaction. By using these specifications, it is possible
to create abstractions that characterize the various roles and agents of a multi-
agent system : the composite roles, which gather a set of micro-roles, and abstract
agents, which gather a set of composite roles. These specifications are described
in an XML encoding, making it possible for other agent/platform designers to
implement interaction protocol management within their agent/platform.

We are working on an agent platform and its associated tools to support the
Rio methodology. The technologies that we are using are Colored Petri Nets to
manage conversations, Owl (formerly Daml+Oil) for messages ontologies and
knowledge representation [14], and an OSGi framework as component model [3]
to implement agent skills.

References

1. M. Barbuceanu and M. S. Fox. Cool: A language for describing coordination in
multiagent systems. In Proceedings of the First International Conference oil Multi-
Agent Systems (ICMAS-95), pages 17–24, San Francisco, CA, 1995.

2. F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE:
Modelling multi-agent systems in a compositional formal framework. Int Journal
of Cooperative Information Systems, 6(1):67–94, 1997.

3. H. Cervantes and R.S Hall. Beanome : A component model for the osgi framework.
In Workshop on Software Infrastructures for Component-Based Applications on
Consumer Devices, held in Lausanne in September 2002.

4. J. Ferber and O. Gutknecht. Operational semantics of a role-based agent architec-
ture. In Proceedings of ATAL’99, jan 1999.

5. T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an Agent Com-
munication Language. In Proceedings of the 3rd International Conference on In-
formation and Knowledge Management (CIKM’94), pages 456–463, Gaithersburg,
Maryland, 1994. ACM Press.

6. C. Hewitt. Viewing control structures as patterns of passing messages. In Artificial
Intelligence: An MIT Perspective. MIT Press, Cambridge, Massachusetts, 1979.

7. Kurt Jensen. Coloured petri nets - basic concepts, analysis methods and practi-
cal use, vol. 1: Basic concepts. In EATCS Monographs on Theoretical Computer
Science, pages 1–234. Springer-Verlag: Berlin, Germany, 1992.

8. Nobuyashu Osato Kazuhiro Kuwabara, Toru Ishida. Agentalk : Describing multia-
gent coordination protocols with inheritance. In Proc. 7th International Conference
on Tools with Artificial Intelligence (ICTAI’95), pages pp. 460–465, 1995.

9. E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A methodology for developing
agent based systems. In Chengqi Zhang and Dickson Lukose, editors, First Aus-
tralian Workshop on Distributed Artificial Intelligence, Canberra, Australia, 1995.

10. P. Mathieu, J.C. Routier, and Y. Secq. Dynamic skill learning: A support to
agent evolution. In Proceedings of the AISB’01 Symposium on Adaptive Agents
and Multi-Agent Systems, pages 25–32, 2001.

11. P. Mathieu, J.C. Routier, and Y. Secq. Principles for dynamic multi-agent organisa-
tions. In Proceedings of Fifth Pacific Rim International Workshop on Multi-Agents
(PRIMA2002), August 2002.

12. Frank G. McCabe and Keith L. Clark. April – agent process interaction language.
In M. Wooldridge and N. R. Jennings, editors, Intelligent Agents: Theories, Ar-
chitectures, and Languages (LNAI volume 890), pages 324–340. Springer-Verlag:
Heidelberg, Germany, 1995.

13. J. Odell, H. Parunak, and B. Bauer. Extending uml for agents, 2000.
14. Filip Perich, Lalana Kagal, Harry Chen, ovrin STolia, Youyong Zou, Tim Finin,

Anupam Joshi, Yun Peng, R. Scott Cost, and Charles Nicholas. ITTALKS: An
application of agents in the Semantic Web. In Engineering Societies in the Agents
World II, volume 2203 of LNAI, pages 175–193. Springer-Verlag, December 2001.
2nd International Workshop (ESAW’01), Prague, Czech Republic, 7 July 2001,
Revised Papers.

15. Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51–92, 1993.
16. Yoav Shoham and Moshe Tennenholtz. On social laws for artificial agent societies:

Off-line design. Artificial Intelligence, 73(1-2):231–252, 1995.
17. Munindar P. Singh. Toward interaction-oriented programming. Technical Report

TR-96-15, 16, 1996.
18. M. Wooldridge, NR. Jennings, and D. Kinny. The GAIA methodology for agent-

oriented analysis and design. Journal of Autonomous Agents and Multi-Agent
Systems, 2000.

