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a b s t r a c t

In individual-centered simulations, the variety and consistency of agents’ behaviors reinforce the

realism and validity of the simulation. Variety increases the diversity of behaviors that users meet

during the simulation. Consistency ensures that these behaviors improve the users’ feeling of

immersion. In this work, we address the issue of the simultaneous influence of these two elements.

We propose a formalization of the construction of populations for agent-based simulations, which

provides the basis for a generic and non-intrusive tool allowing an out-of-the-agent design. First, the

model uses behavioral patterns to describe standards of behaviors for the agents. They provide a

behavioral archetype during agents’ creation, and are also a compliance reference, that allows to detect

deviant behaviors and address them. Then, a specific process instantiates the agents by using the

specification provided by the patterns. Finally, inference enables to automate behavioral patterns

configuration from real or simulated data. This formalization allows for the easy introduction of variety

in agents’ behaviors, while controlling the conformity to specifications. We applied the model to traffic

simulation, in order to introduce driving styles specified using behavioral patterns (e.g. cautious or

aggressive drivers). The behavioral realism of the traffic was therefore improved, and the experimenta-

tions we conducted show how the model contributes to increase the variety and the representativeness

of the behaviors.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Variety and consistency are two keys that foster the realism
in individual-centered simulations (Maim et al., 2009; Wright
et al., 2002). Indeed, repetitive or inconsistent behaviors highly
disturb users’ immersion. In this work, we propose a solution that
enables to improve the agents’ behavioral realism during multi-
agent simulations. For this purpose, we adopt an approach that
explicitly takes into account the variety and consistency of the
behaviors.

In this paper, we propose a behavioral differentiation model,
which provides the basis for a generic and non-intrusive tool,
allowing an out-of-the-agent design. It describes the agents’
behavior using behavioral patterns, which describe standards of
behaviors, external to the simulation model, that are used to
create agents of specific categories. At runtime, the behaviors
conformity is checked using the specifications provided by the
patterns. The agents are created using a specific process that
allows to introduce behavioral irregularities. This process is
ll rights reserved.
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croix),
inspired by an approach proposed by Reynolds (1999) for fuzzy
path following. We have generalized and extended it to generate
values in a constrained space, and to control the randomness of
the process. Finally, the behavioral patterns can be inferred from
simulations records or real-world situations. Based on an unsu-
pervised learning technique, the self-organizing maps proposed
by Kohonen (1995), inference enables to automatize the model
configuration.

The main contribution of this work is a formalization of the
construction of populations for agent-based simulations, both ab
initio and as generalization from sample data. Moreover, it
describes a set of tools that not only enhances the immersion of
the final user during the simulation – thanks to the improvement of
the realism – but also assists the simulation designer in building
scenarios in a more automated way.

We applied this model to traffic simulation in scanerTM , the
application developed and used for driving simulation by the
French car manufacturer Renault (Reymond and Kemeny, 2000;
Oktal, 2012). The software modules we developed introduce
various driving styles in the traffic (e.g. aggressive, cautious
drivers). These driving styles are specified using behavioral
patterns. They allow for the easy population of the database in an
automated way, and the update of pre-existing scenarios. These
developments have already been included in the commercial
version of the software. Beyond the subjective improvement in the
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traffic realism, our experimentations show how the proposed tool
increases the variety and representativeness of the behaviors.

This paper is organized as follows. In Section 2, we present
related works. Sections 3 and 4 present the grounds for this work,
and an overview of the proposed approach. We then describe our
model: the data model (Section 5), the generation method and
algorithms (Section 7), and the inference techniques used to
automate the simulation configuration (Section 8). Section 9 shows
how the model addresses our issue: increasing variety in simula-
tion, while insuring the behaviors consistency. Section 10 presents
the application of the model to traffic simulation in driving
simulators, and how it improves the realism in an industrial
application. Section 11 introduces another example, to illustrate
the genericity of the approach. Finally, the model is discussed in
Section 12, and future works are presented in Section 13.
2. Related works

Our work focuses on how we can articulate both behavioral
variety and consistency in simulations. These two notions are
considered as central issues in various works.

For instance, in crowd simulations, the realism is crucial to
improve the users’ immersion during the simulation, and to improve
the results validity. The realism is directly related to the variety of
the agents’ looks. Techniques increasing this diversity have thus
been developed: for instance, Maim et al. (2009) automatically
change virtual humans’ appearance by using diverse colors, acces-
sories and shape parameters. Variety in the simulation is increased,
which improves users’ immersion. However, this approach is based
on hard coded parameters in the graphics models, which limits its
genericity and flexibility.

In videogames, more and more attention is focused on the
improvement of the gameplay. Moreover, in that domain, the
non-player agents’ behaviors are often implemented as scripts,
defined by long and complex list of rules (Tozour, 2002). However,
such scripts can contain weaknesses that decrease the player’s
immersion in the virtual environment. Focusing in particular on the
variety and consistency of the behaviors, Spronk et al. (2006) have
proposed to dynamically improve agents’ behaviors using online
learning. The agents’ behaviors being defined by sets of rules
associated to activation weights, those weights are then dynami-
cally adapted during the game to improve the behaviors. However,
during the agent’s creation, these weights are randomly selected:
the approach does not specifically address this initial instantiation.
It could therefore benefit from an automated mechanism introdu-
cing behavioral profiles at this level.

In the computer graphics and virtual reality field, various
approaches focus on easing the configuration of the virtual envir-
onments. For instance, Ulicny et al. (2004) have proposed dedicated
tools for the designers, based on a painting metaphor. Using a brush,
the designer can paint new pedestrians in a simulation, or visual
and behavioral characteristics on existing ones. This approach
enables to easily create agents and to increase the behavioral
variety, but remains focused on the graphical part of the simulation.
In other works, predefined behavioral patterns are proposed to the
user (Pellens et al., 2009). After having selected a pattern, the user
has to adapt the pattern parameters to the values he desires.
However, this approach does not take into account the possibility
to automate the construction of whole populations.

Finally, in driving simulation, Wright et al. (2002) created virtual
drivers’ characters to reinforce the users’ immersion during the
simulation. The model combines the drivers’ speed choices with
behavioral parameters (sex, age, aggressiveness, alcoholic intoxica-
tion and fatigue). When implemented in a driving simulator, the
model improves the realism as perceived by the users. However,
this approach lacks flexibility: the modifications have to be inte-
grated within the core of the traffic model. Such changes are not
easy to introduce in commercial softwares, due to back-compat-
ibility issues or even because no modification is allowed on these
core components.
3. Motivation of the work

Our initial objective was to enhance the simulation realism.
In this section, we discuss how this objective led us to a second
one, which is to help the designer elaborate simulation scenarios.
Then, we describe the constraints introduced by the requirement
to integrate the proposed approach in a commercial software, and
the design choices needed to meet these requirements.

3.1. Objectives

The main objective of this work was to improve the realism of
the agents’ behavior in multi-agent simulations. To do so, we
focused on the variety and consistency of the behaviors. Indeed,
simultaneously taking both these dimensions into account is
important for the users’ immersion into a simulation. In traffic
simulation, the observation of different kind of behaviors (e.g.
aggressive or cautious drivers) contributes to the realism feeling
(Wright et al., 2002). However, an aggressive driver is character-
ized not only by a high speed, but also by short security distances
and a tendency to disregard speed limits. Consistency among all
these properties – and not only a subset of them – characterizes
the ‘‘aggressive driver’’ category. To handle these dependencies, we,
therefore, proposed to explicitly take both variety and consistency
into account.

Furthermore, in most commercial simulation tools, a scenario
is designed specifically for one experiment. A designer is in charge
of creating and implementing these scenarios. Since the design of
the scenario highly influences the simulation realism, he plays a
crucial role in the simulation outcomes. For instance, in scanerTM ,
the simulation tool used at Renault for driving simulation, each
vehicle had to be manually added in the scenario, and each
vehicle parameter had to be manually modified: reproducing
the variety usually met in a real traffic was thus a long and
repetitive task. Moreover, if the parameter values were not care-
fully chosen, unrealistic behaviors could appear during the
simulation. The consequences were that scenarios were usually
created with a small number of vehicles, and that these vehicles
kept their (similar) default parameters.

To successfully increase the realism during a simulation, we
had thus not only to improve the agents’ behaviors themselves,
but also to help the scenario designer to introduce these realistic
behaviors into the simulation.

3.2. Constraints

Another dimension we had to take into account when design-
ing the model is that it had to be integrated into a commercial
software. This introduced two specific constraints: first, the
proposed model had to provide a running mode where non-
regression with the previous version would be insured; second,
the proposed model had to be totally non-intrusive, as no
modification of the original source code of the simulation soft-
ware was allowed by the editor.

To guaranty non-regression, we proposed to use a two-level
control mechanism in the agents’ creation process. The first level
provides an easy way to switch off the improvements introduced
by the model, and to return to the previous simulation running
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mode. The other one allows to finely configure the properties of
the creation process.

To guaranty non-intrusiveness, we proposed a model that can
use only external parameters of the simulation, provided for
instance through an API, and run in a specific process outside
the simulation software.

These objectives – increase the realism for the final user while
considering the designer crucial role – and constraints – guaranty
non-regression and provide a non-intrusive model – drove the
design of the proposed model.
Population Construction Model

Behavioral
Patterns

Model Agents

Parameters

Simulation

Simulation
Agents

Behavioral
Parameters

creation

conformity check

Fig. 1. The designer specifies Behavioral Patterns, which are used to instantiate

the Model Agents. These Model Agents enable to assign parameter values to

simulation agents and control the conformity to the Behavioral Pattern.

They allow to fully separate model and simulation, enabling their implementation

in distinct processes.
4. Overview of the approach

To address these needs, we propose a formalization of the
construction of populations for multi-agent simulations.

4.1. Presentation of the approach

This formalization is structured around the notion of beha-

vioral pattern, which describes both a cluster of similar behaviors,
and a standard of behavior. For instance, in traffic simulation, it
might be aggressive or cautious drivers ‘‘categories’’: aggressive
drivers will have similar, but not identical, behaviors. This
standard of behavior might also be a description they do not
share: a driver can behave aggressively while considering himself
normal, or even cautious.

Moreover, in our case, the non-intrusiveness constraint means
that the simulation and the proposed model have to be disso-
ciated. The simulation software, including the agents’ decision
model, cannot be modified, and has to be used as provided by the
simulator editor. Therefore, we cannot suppose that the decision
model of the agents in the simulation handles the notion of
behavioral pattern. This has one major implication, which is also
one of the limits of the approach: the agents cannot reason on
their behavior. This means that the agents cannot explicitly
choose to change their pattern. An agent only changes it during
the course of its actions, depending on its decision model, and
without knowing it.

Finally, we chose to base our approach on a parameter
description of the behavior, as this representation is common in
simulations and can therefore be used ad hoc. If more complex
representation are used, they usually can be reduced to a para-
meter based description. For instance, in the software used at
Renault, drivers’ behaviors are described through parameters like
their maximal speed, their percentage of respect of the speed
limits, or their security distance with other vehicles. In this paper,
we therefore restrict our approach to simulations where the
behaviors can be expressed through a set of parameter values.

Note that if the non-intrusiveness constraint does not have to
be respected – for instance if the source code of the simulation
can be freely modified – the simulation agents could be made able
to reason about their own behaviors. To do so, the simulation
model has to be altered, to allow the agents to own a representa-
tion of their current behavioral pattern. Then, in specific situations,
an agent can choose to change its pattern, temporarily or perma-
nently. This change is achieved through a request for a new set of
parameter values from the behavioral differentiation model that
will replace its current values.

4.2. Global presentation of the model

In our approach, behavioral patterns are used to provide a
description of agents’ behaviors, based on their configuration
parameters (Lacroix et al., 2008b), and to check the conformity
at runtime.
The model’s mechanism can be described as follows (Fig. 1).
During the conception of a simulation scenario, the designer
specifies Behavioral Patterns and Parameters, based on his knowl-
edge of the behavioral parameters used by the simulation agents.
Model Agents encapsulate these elements, and represent a transi-
tion structure between Behavioral Patterns and simulation agents.
Hence, model and simulation can be implemented in distinct
computing processes, which allow a non-intrusive use of the
model. Finally, at runtime, the Model Agents are used to control
the simulation agents’ parameter values, and assess behavioral
irregularities. Such irregularities can be authorized, limited, or
forbidden.

Variety is introduced through the various aspects of the
patterns definition, as well as irregular behaviors. Consistency
and conformity are ensured by the possibility to detect irregula-
rities and control the respect of the specification at runtime.

Example 1. We introduce here the example used in the following
sections. The context is a crowd simulation populated with virtual
humans, for which we suppose we have no access to the simulation
decision model. Each pedestrian of the crowd uses three behavioral
parameters:
�
 its maximal speed vmaxA ½0;15� km=h,

�
 its desired speed vdA ½0,vmax�,

�
 and its personal space sAfbig,normal,smallg, representing the

private area each individual aims at preserving around itself.
5. Presentation of the data model

In this section, we present the definitions of the proposed
model. We consider a multi-agent system with a set of agents A
defined in an environment E. The agents aiAA are characterized
by various parameters Pai .

In the following, we consider the use of the model only with
external parameters of the simulation, i.e. the parameters acces-
sible from outside the simulation, by opposition to internal
parameters, which are accessible only from inside the simulation.
Indeed, the proposed model is not dependent on the simulation
engine when it applies to external parameter.

It is to be noted that the model can only be used on a subset of
agents using the same parameters. For instance, if the simulation
includes pedestrians and vehicles, the model has to be applied
independently to each agent’s type.
5.1. Parameters

We first introduce the notion of Parameter. In the model, a
Parameter is designed to match one of the agents’ behavioral
parameters in the simulation. The behavioral parameters of the
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simulation may have several corresponding Parameters in the
model, to answer different needs.

A Parameter is a tuple including different elements. A Para-

meter holds a reference on another Parameter pref , called the
‘‘reference parameter’’. pref is either another Parameter or null.
Moreover, if pref ðpÞ ¼ null, then p is called a ‘‘root parameter’’.

A Parameter includes two elements relative to its definition
space. First, the definition domain Dp defines the Parameter type
and possible values. A Parameter might be a real number, an
integer, a string, or even an action rule. The domain can be
continuous, discrete, etc. It is to be noted that in the applica-
tions presented, the Parameters are mostly real numbers defined
over discrete or continuous domains. The second element is the
default value vdp

ADp. By default, with real numbers, on a
discrete or discontinuous domain this value is the closest
number of the domain mean value; on continuous domains it
is the mean value.

The two last elements of a Parameter are used for agent
creation and conformity check. The probability distribution gp is
defined on the distribution domain Dp. This distribution is used to
generate values for the Parameter, using an algorithm described in
Section 7. It contributes to the creation of variety among agents’
behaviors. By default, gp is the uniform distribution over Dp.
Finally, the distance function fp allows to compute the gap
between a Parameter value and its definition domain. This func-
tion is used to quantify the irregularities, as described in Section
6. By default, on a discrete or discontinuous domain, this function
returns 0 over the domain, and 1 outside. On a continuous
domain, the default function is

8xADpref
, f pðxÞ ¼

0 if xADp

9x�meanðDpÞ9
maxðDpref

Þ�minðDpref
Þ

else

8><
>:

Without loss of generality (the bounds may be chosen as wide as
necessary), the definition domains have to be finite, to allow the
max and min function to be defined.

Finally, we note P the set of all the Parameters defined in the
model.

Definition 1. A Parameter p is a tuple ðlp,pref ,Dp,vdp
,gp,f pÞ defined

by
�
 lp a unique label,

�
 pref ðpÞ a reference parameter,

�
 Dp a finite definition domain, with if pref anull, then DpDDpref

,

�
 vdp

ADp a default value,

�
 gp a probability distribution over Dp,

�
 f p : Dpref

/½0;1� a distance function, with if pref ðpÞ ¼ null, then
f p : Dp/½0;1�.

Example 2. Based on Example 1, we define two ‘‘root para-
meters’’, the maximal speed vmax and the personal space s, as
well as two other Parameters based on these ‘‘root parameters’’,
the normal maximal speed vnormal and the normal personal
space snormal
�
 the maximal speed vmax is defined by pref ¼ null, Dp ¼

½0;15� km=h, vdp
¼ 5 km=h, gp and fp the default functions,
�
 the personal space s is defined by pref ¼ null, Dp ¼

fbig, normal, smallg, vdp
¼ normal, gp and fp the default

functions,

Fig. 2. Each parameter definition domain is a subset of the definition domain of its
�

reference parameter, which induces a Parameters hierarchy. vnormal and vjogger have

vmax as reference parameter, but vjogger is very specific: its domain is a singleton.

As for vslow and vquick, they use vnormal as reference parameter, and define more

specific domains.
the normal maximal speed vnormal is defined by pref ¼ vmax,
Dp ¼ ½4;6� km=h, vdp

¼ 5 km=h, gp the normal distribution
described by a mean value m¼ vdp

and variance s2 ¼ 1 trun-
cated at Dp bounds, and fp the default distance function,
�
 the normal personal space snormal is defined by pref ¼ s,
Dp ¼ fnormalg, vdp

¼ normal, gp and fp the default functions.

We have P ¼ fvmax, s, vmax,normal, snormalg. Fig. 2 represents vmax and
vnormal, as well as three other Parameters that could be created, to
illustrate the variety of possible configurations.

5.2. Behavioral patterns

We then define the Root Behavioral Pattern. The Root Behavioral

Pattern is used to list all the ‘‘root parameters’’ defined in a
simulation. As will be seen in Section 9, it is used to ensure
agents’ conformity with their specification.

All Parameters in the Root Behavioral Pattern are ‘‘root para-
meters’’, i.e. their ‘‘reference parameter’’ is null, and all ‘‘root
parameters’’ belong to the Root Behavioral Pattern.

Definition 2. A Root Behavioral Pattern Broot is a set fPBroot
g, with

PBroot
a finite set of parameters p, which verifies

8pAP, ðpref ðpÞ ¼ nullÞ3ðpAPBroot
Þ

By definition, Broot is unique.

Example 3. In our example, Broot is defined by PBroot
¼ fvmax,sg.

We then introduce the notion of Behavioral Pattern. Behavioral

Patterns are used to specify the agents’ behaviors. During agents
creation, they provide a behavioral archetype for the agents. Then,
at runtime, they are used to check the conformity with the
specifications.

A Behavioral Pattern is a set including different elements. First,
it holds a ‘‘reference pattern’’ Bref ðBÞ, different from null. The
induced hierarchy is used to introduce common characteristics
for sets of Behavioral Patterns. A Behavioral Pattern also holds a
finite set PB of Parameters p. Each of these Parameters must have a
not null ‘‘reference parameter’’, i.e. no ‘‘root parameter’’ can be
included in a Behavioral Pattern. Moreover, each Parameter p must
have a ‘‘parent’’ Parameter in the ‘‘reference pattern’’ Bref ðBÞ (i.e.
pref ðpÞAPBref ðBÞ), and each Parameter of the ‘‘reference pattern’’ has
to be included at most once. A Behavioral Pattern also holds a set
of properties QB. These properties allow to reference an applica-
tion context, like a geographic area of validity.

Finally, two elements relative to deviations from the Behavioral

Pattern are included. The first one is the deviation rate tB, used
during the agents’ creation. The deviation rate is a probability that
describes if, for an agent instantiated from this pattern, the agent
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will be created as deviant. The second one is the maximal gap to
the pattern dmaxB

, which specifies the tolerance toward the
amplitude of the behavioral irregularities. These two elements
allow the user to have a close control on the irregularities, both in
proportion and in amplitude: a certain percentage tB of the
population instantiated from a Behavioral Pattern can be created
in deviation from the pattern in a certain limit specified by dmaxB

.
A Behavioral Pattern thus defines a set of Parameters (PB) in a

specific context (QB), and provides regulative elements relative to
potential irregularities (tB and dmaxB

Þ.
Definition 3. A Behavioral Pattern B is a set flB,Bref ,PB,QB,tB,dmaxB
g

with
�

Fig
Patt

refe

incl
lB a unique label,

�
 Bref ðBÞ a reference pattern, with Bref ðBÞanull,

�
 PB a finite set of parameters p, which verifies
8pAPB, pref ðpÞanull

8p1APB, (p2APBref
,pref ðp1Þ ¼ p2

8p1APB, 8p2APB�fp1g, pref ðp1Þapref ðp2Þ

8><
>:
�
 QB a set of properties,

�
 tB a deviation rate, with tBA ½0;1�,

�
 dmaxB

a maximal gap to the pattern, with dmaxB
A ½0;1�.
Example 4. Our first objective is to create pedestrians having a
normal behavior in the simulation. However, we would like to
obtain some agents adopting a slightly different behavior, to
increase the variety and thus the simulation realism. To answer
that need, we only have to define the Behavioral Pattern Bnormal

using the following elements: Bref ¼ Broot, PB ¼ fvmax,normal, snormalg,
QB ¼ |, tBnormal

¼ 0:05, and dmaxBnormal
¼ 0:1. This way, most of the

agents instantiated from this pattern will behave normally, and
there is a 5% chance that they will adopt a deviant behavior at
their creation. The maximal gap to the pattern can reach 10%.
Fig. 3 represents Broot and Bnormal as well as two other patterns
that could be defined similarly.

The Behavioral Patterns present two interesting properties. The
first one is that for each Parameter of a Behavioral Pattern, the
definition domain of this Parameter is necessarily included in the
domain of the corresponding Parameter in the ‘‘reference pattern’’.
The definition domains are thus more and more restricted when
we go down the Behavioral Patterns hierarchy.
Property 1. 8BaBroot, 8pAPB, pref ðpÞAPBref ðBÞ and DpDDpref ðpÞ.
. 3. The Root Behavioral Pattern only includes Root Parameters. A Behavioral

ern includes only Parameters which reference parameter is included in its

rence pattern. However, all Parameters do not have to be included: Bslow only

udes the maximal speed (vslow), and not the personal space.
Proof. Let B1aBroot and p1APB1
. By Definition 3, (p2APBref ðB1Þ

such that pref ðp1Þ ¼ p2. Moreover, p1APB1
, thus pref ðp1Þa0. There-

fore p2a0. By Definition 1, we have ðp2a0Þ ) ðDp1
DDp2

Þ. &

A second property is that no Behavioral Pattern can hold a
Parameter having a definition domain wider than the ‘‘reference
parameter’’ in Broot. Broot defines the whole set of Parameters

which might be used in the Behavioral Patterns, as well as the
wider definition domains that can be used.

Property 2. 8BaBroot, 8pAPB, (!pr APBroot , DpDDpr
.

Proof. Let B1aBroot and p1APB1
. With Definition 3, (p2APBref ðB1Þ

such that pref ðp1Þ ¼ p2. Moreover, p2 is unique: with Definition 1
each parameter holds one and only one reference parameter.
If Bref ðB1Þ ¼ Broot, p2 suits our need and we choose pr ¼ p2. If not,
we try again the process until we reach Broot. The hierarchy being
finite, and each behavioral pattern holding one and only one
reference pattern, the process is finite and has a solution. &

5.3. Model agents

We then introduce the notion of Model Agent. A Model Agent is
a middleman between a Behavioral Pattern and a simulation
agent: a Model Agent encapsulates the behavioral parameters of
a simulation agent, and associates a Behavioral Pattern to these
parameters. It allows to implement the model and the simulation
in different computing processes.

A Model Agent am holds a reference Behavioral Pattern Bam and a
set of pairs of Parameters and associated values ðp,vpÞ. The Para-

meters come from the reference pattern Bam , and all the Parameters

of this pattern are included. For each Parameter, the value vp has to
be inside the domain Dpref

, but not necessarily inside Dp.
A Model Agent is the instantiation of a Behavioral Pattern: it

includes all its Parameters, each of one associated to a value. The
instantiation process is described in Section 7.

Definition 4. A Model Agent am is a set flam ,Bam ,Cam g with
�
 lam a unique label,

�
 Bam a reference behavioral pattern,

�
 Cam ¼ fðp,vpÞ, pAPBam

g a set of pairs of parameters labels and
associated values, which verifies
8pAPBam

, (cACam , c¼ ðp,vpÞ

8c¼ ðp,vpÞACam , (p1APBam
, p1 ¼ p

8c¼ ðp,vpÞACam , vpADpref
ðpÞ

8><
>:

The conditions on the set Cam enable to ensure that each
Parameter of the Model Agent’s reference pattern Bam is included in
the Model Agent; all Parameters included in the Model Agent belong
to the reference pattern Bam ; and all the values included in the Model

Agent belong to the definition domain of the ‘‘reference parameter’’
of the Parameter included in the Model Agent’s reference pattern.

Example 5. A Model Agent am1
instantiated from the behavioral

pattern Bnormal might have the following characteristics: Bam1
¼

Bnormal and Cam1
¼ fðvmax,normal, 5:2Þ, ðsnormal, normalÞg. The Model

Agent associates a value to each of the parameters included in
its reference pattern.

5.4. Settings

Finally, a Setting is used to define the context of a simulation,
i.e. the available Behavioral Patterns and global model parameters.

The Setting includes all or part of the Behavioral Patterns

defined in the environment. A real value sS specifies the global
determinism of the simulation. This value is used during the
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generation of the Model Agents, according to the process pre-
sented in Section 7.

Definition 5. An Setting S is a set flS,BS,sSg with
�
 lS a unique label,

�
 BS a finite set of behavioral patterns,

�
 sS the global determinism criteria of the simulation, with
sSA ½0;1�.
Example 6. The Setting Stown, defined by ffBnormalg, 0:01g includes
the pattern ‘‘normal pedestrian’’, with a 1 % global determinism
criteria.

6. Behavioral irregularities

After having defined the semantics of our approach, we now
consider the question of the behavioral irregularities. In our
approach, irregularities from the behavioral patterns are used to
increase the behaviors variety. Moreover, their quantification
enables to control the conformity to the specification.

6.1. Definition

Irregularities are defined as follows: a Model Agent presents a
behavioral irregularity if and only if at least one of the values
associated to one of its Parameters does not belong to this
Parameter domain in the Behavioral Pattern.

Definition 6. A Model Agent am presents a behavioral irregularity
from its reference behavioral pattern Bam if and only if
(c¼ ðp,vpÞACam such that vp=2Dp.

Example 7. Let am2
be a Model Agent with Bam2

¼ Bnormal and
Cam2
¼ fðvmax,normal, 7Þ, ðsnormal, normalÞg. The reference pattern spe-

cifies Dvmax,normal
¼ ½4;6� km=h. We have 7=2Dvmax,normal

: ðam2
deviates

from its reference behavioral pattern.

An agent deviates occasionally from its reference pattern,
when its parameter values cross the bounds of the definition
domains during the simulation. An agent can also present a
behavioral irregularity at its creation, before eventually going
back to a conformal state. Irregularities increase the variety of the
produced behaviors, allowing unspecified behaviors to appear.
However, to be able to ensure the conformity to the specifica-
tions, these irregularities have to be quantified.

Definition 7. Let qam
be defined by

qam
¼

P
cACam

f pðvpÞ

CardðPNam
Þ

qam
represents the quantification of agent’s am deviation. The

higher the number of deviant Parameters, and the higher the gap
with the Parameter definition domain, the greater the qam

value is.
The quantification is based on the function fp to allow users to
customize it if needed.

Example 8. With Model Agent am2
from Example 7

qam2
¼

f vmax,normal
ðvmax,normalðam2

ÞÞþ f snormal
ðsnormalðam2

ÞÞ

Cardðfvmax,normal,snormalgÞ

¼

7�5

20�0
þ0

2
¼ 5%

Property 3. 8amAAm, qam
A ½0;1�.
Proof. Let c¼ ðp,vpÞACam . Then vpADpref
(Definition 4), therefore

f pðvpÞA ½0;1� (Definition 1). Furthermore, CardðCam Þ ¼ CardðPNam
Þ

(Definition 4), therefore qam
A ½0;1�. &

When an irregularity is detected, the model can either allow or
forbid it, depending on the value of the maximal gap to the
pattern dmaxBam

. At each time step of the simulation, the popula-
tion construction model executes the Algorithm 1 to control
agents’ deviation. If qam

rdmaxBam
, the agent is in the authorized

limits, and the new parameter values are kept. If qam
4dmaxBam

, the
deviation is too high, and is therefore forbidden: the Parameter

values previously saved are restored and copied in the simulation
agent, erasing the new values. The agent therefore remains in the
authorized limits.

Algorithm 1. Reaction to behavioral irregularities.
Require: Am the set of Model Agents, a the simulation agent
represented by am
1:
 for all amAAm do

2:
 atemp’am {temporary copy of am}
3:
 for all pAPam do

4:
 vpðamÞ’vpðaÞ {copy a’s parameters values in am}
5:
 end for

6:
 if qam

4dmaxBam
then {irregularities forbidden}
7:
 am’atemp {restore am’s previous values}
8:
 for all pAPam do

9:
 vpðaÞ’vpðamÞ {force a to its previous state}
10:
 end for

11:
 end if

12:
 end for
6.2. Deviant behaviors

Different kinds of Model Agents may be produced, depending if
their behavior is defined by static parameters only, or also by
dynamic ones. A dynamic parameter can be modified directly by
the simulation decision model, at runtime. In contrast, a static
parameter can only change value if it undergoes an external
action (a user manual modification for instance). For an agent
aiAA, we have Pai

d the set of dynamic parameters, and Pai
s the set

of static ones (Pai ¼Pai

d [ P
ai
s ).

First, a Model Agent can be conformal. Such an agent defines
only static parameters, and each of those parameter takes its
value in the parameters definition domain. These parameters
being static, their values will never change, and the agent will
always conform to the behavioral pattern.

Definition 8. A Model Agent am of reference pattern Bam is
conformal if and only if 8pAPBam

, pAPam
s and vpðamÞADp.

Example 9. In the behavioral pattern Bnormal defined in Example
4, we now specify dmaxBnormal

¼ 0. vmax and snormal being static, they
do not change value during the simulation: each Model Agent

instantiated from Bnormal is conformal.

A Model Agent can also be always deviant. Such an agent
defines at least one static parameter that was instantiated with
a value outside its definition domain. The agent presents there-
fore a behavioral irregularity from its reference pattern. The
parameter being static, it is never modified: the agent remains
in deviation during the whole simulation.

Definition 9. A Model Agent am of reference pattern Bam is always

deviant if and only if (pAPBam
such that pAPam

s and vpðamÞ=2Dp.

Example 10. The agent am2
defined in Example 7 is always

deviant: vnormal is a static parameter, and the value 7 does not
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belong to Dvnormal
. vnormal does not change during the simulation,

therefore am2
always remains in deviation.

Finally, a Model Agent can be deviant. A deviant agent defines at
least one dynamic parameter. At its creation or during the
simulation, this parameter may take a value outside its definition
domain. If this happens, the agent presents therefore a behavioral
irregularity from its reference pattern. However, the parameter
being dynamic, this value may change again and return to the
parameter definition domain, and the agent to a conformal state.
A deviant agent may never reach the state of behavioral irregu-
larity, if the specification of s or dmaxBa

does not allow it.

Definition 10. A Model Agent am of reference pattern Bam is
deviant if and only if (pAPBam

, pAPam

d .

Example 11. Suppose that a dynamic parameter vdesired and a
behavioral pattern Bdesired including this parameter have been
defined. Then any Model Agent instantiating Ndesired is deviant.

7. Parameters generation

Our approach describes agents’ behaviors using behavioral
patterns. However, the creation of agents’ parameters requires
the instantiation of a Behavioral Pattern into a Model Agent. In this
section, we describe an algorithm designed to control the ran-
domness introduced in an instantiation process, and its applica-
tion to the case of behavioral patterns instantiation (Lacroix et al.,
2008a).

7.1. Motivation of the algorithm design

The proposed algorithm was inspired by an approach proposed
by Reynolds (1999) for path following. In that approach, an agent
is enabled to steer along a predetermined path, represented for
instance by a spline or a poly-line, instead of being rigidly
constrained to follow it. The idea is to constrain the agent’s
position inside a ‘‘tube’’, defined as a circle of a specified radius
swept along the path. To do so, the – predicted – future position
of the agent is projected on the path. If the distance between the
projection and the predicted position is greater than the specified
radius, the agent has to steer back to the path. Otherwise, it is
considered as being correctly following the path.

Similar to this approach, our objective is to generate values in
a determined space, and if the generated values is predicted to be
outside the domain (i.e. in deviation), we want to be able to react
(usually refusing or accepting the value). Instead of constraining
an agent’s position in a ‘‘tube’’, we want to constrain a parameter
value within a definition domain. However, in our case, the
algorithm has to handle many different parameters, possibly of
different types. Inspired by Reynolds approach, we thus propose
an algorithm able to cope with any number of dimensions and
any type of parameters.

Moreover, we added the possibility to control the randomness
of the process. Indeed, the objective was to provide a tool that
enhances the simulation realism and eases the scenario design. To
answer these needs, the algorithm had to provide a precise
control mechanism. This control has to be assured on the global
determinism of the process, to allow reproducibility, and on the
determinism of each object instantiation, to allow a very fine level
of specification. We therefore introduced a two level control: the
higher level controls the global determinism of the algorithm, and
the lower level controls the determinism on an object-level basis.

This necessity to control irregularities is required for industrial
needs. In traffic simulation for instance, you may need to allow
them to broaden the range of simulation cases tested, when in
exploitation of immersive simulators you have to guaranty no
irregularity can ever appear. Moreover, it addresses the non-
regression constraint introduced in Section 3.2.

7.2. Algorithm description

The objective is to introduce variety among agents, while
producing consistent behaviors. To do so, the creation of the
agents is based on their reference Behavioral Pattern. Each of these
pattern is associated to a Parameters set, and these Parameters

specify a definition domain and a probability distribution on that
domain. These characteristics provide all the elements needed to
create the agents. Moreover, to increase the variety, we wish to be
able to allow the creation of deviant agents. dmaxB

is used to
control this deviation.

Algorithm 2. Generation of the parameter values.
Require: a behavioral pattern B¼ fB,Bref ,PB,QB,tB,dmaxB
g, s the

global determinism criteria.
Ensure am a Model Agent. B its reference pattern.

1:
 repeat

2:
 a’uniform_randomð½0;1�Þ ; k¼ kþ1

3:
 if aos then

4:
 for all pAPB do

5:
 b’uniform_randomð½0;1�Þ

6:
 if botB then

7:
 vpðamÞ’gpref

fpotential deviation, vpADpref
g

8:
 else

9:
 vpðamÞ’gp fno deviation, vpADpg
10:
 end if

11:
 end for

12:
 else

13:
 for all pAPB do

14:
 vpðamÞ’gp fno deviation,vpADpg
15:
 end for

16:
 end if

17:
 until qðamÞ

odmaxB
or k4max_try
The algorithm proceeds as following (Algorithm 2). First, a
random number a is generated using a uniform function over
½0;1�, and compared to the global determinism criteria s. This
provides the first (high) level of control. If aos, irregularities are
allowed, and we proceed to the second level of control. The
second level controls the irregularities at the Parameter level. For
each Parameter of the Model Agent, a random number b is
generated using a uniform function over ½0;1�. If tN 4b, irregula-
rities are allowed for this Parameter p, and the Parameter value is
computed using the gpref

function, taking value in Dpref
, and not Dp.

As Dp �Dpref
, the value might be outside Dp: irregularities are

possible. If tN rb, irregularities are forbidden. The value is
computed using gp, and thus vpADp: this parameter will not be
in deviation. Finally, if irregularities have been globally forbidden,
all Parameters p are generated in their definition domain Dp.

This procedure also evaluates the conformity to the reference
Behavioral Pattern. If the irregularity exceeds the maximal gap to
the pattern dmaxB

, the generated values are rejected, and the
procedure is run again. It is to be noted that to ensure the end of
the procedure, a conformal agent is automatically generated after
a configurable number of steps (empirically fixed at 10). This
pragmatic solution introduces a bias in the generation process,
but guaranties its efficiency.

Example 12. The behavioral pattern Bnormal from Example 1
allows to generate agents having a 4–6 km/h maximal speed,
and ‘‘normal’’ as personal space value.
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The proposed algorithm creates the Parameter values of the
Model Agent by instantiating its reference Behavioral Pattern.
Furthermore, the controlled randomness introduced in the pro-
cess enables the creation of a great variety of agents. Executed at
the beginning of the simulation, this algorithm creates the initial
agents population. During the simulation, it can be used to
dynamically instantiate the agents.
8. Automated configuration of the model

The last part of the proposed model aims at providing the
model with one important capability: the automation of beha-
vioral patterns configuration (Lacroix et al., 2009). The objective is
to assist the user in the configuration of the model to ease its
implementation in existing simulation.

8.1. Behavioral patterns inference

Our objective was to a use a method which would: not require
any domain specific configuration to preserve the model gener-
icity; be fully automated to limit supervision needs; and be robust
to errors to allow the use of low quality data.

To answer these issues, we chose to use unsupervised classi-
fication techniques. Indeed, unsupervised algorithms do not
require user feedback during classification: they automatically
build clusters of similar data. Moreover, these algorithms are
generic: using inputs built with agents’ parameters values and
outputs matching the behavioral patterns structure, the algorithm
can be used on a large variety of applications. Finally, these
algorithms are robust, as noisy inputs are categorized in existing
clusters without triggering errors.

A wide variety of unsupervised algorithms have been devel-
oped (Gallant, 1993), and various well-tried techniques are
available (Anderberg, 1973; Carpenter and Grossberg, 1987).
In our particular case, we selected Kohonen neural networks
(Kohonen, 1995). In Kohonen networks, also called self-organiz-
ing maps, during the training phase, for each example input
vector, the closest neuron to this vector is declared the winner,
and the weights of this neurons and its neighbors are adjusted
toward the input vector. The network self-organizes, and pro-
gressively builds a topological map of the inputs. One of the
properties of this map is that the vectors which are close in the
data space match close neurons in the map space. Therefore, they
provide a spatial representation of the data that allows the final
users to visualize them more easily, as a low dimensional view of
high dimensional data. This user friendly visualization is the first
reason why we chose to use Kohonen Networks. The second
reason is that in self-organizing maps, the distance function can
be easily adapted to match user needs.

8.2. Algorithm description

Our method is based on a Kohonen network having a rectan-
gular topology, using ðkþ1Þ � ðkþ1Þ neurons. The network is
dynamically built using the size k of the inputs, for genericity
purpose. Inputs are vectors holding the values of the agents’
parameters.

Algorithm 3 presents the procedure used. During initialization,
a Kohonen network is built, and a Behavioral Pattern is created for
each of the network neurons. The network is then trained using
the input set. The second step automatically builds the elements
of the Behavioral Patterns. For each neuron ui,j, a Behavioral Pattern

Bi,j and the vector Wi,j of weights computed during training are
available. Because of their design, each component wi,j,h of the
vector Wi,j matches a Parameter ph of Bi,j. Thus, we assign the
default value wi,j,h to this Parameter. It uses the default probability
distribution and distance function. Finally, during the third step,
the definition domains of the Parameters are computed. The
whole set of inputs is used in classification mode (instead of
training). The extreme values of the inputs provide the definition
domain bounds.

After these training steps, a full set of Behavioral Patterns has
been created.

Algorithm 3. Automated creation of behavioral patterns.
Require: a simulation which external parameters are

Pe ¼ fpi,iA ½1, n�g, a set of inputs E ¼ fElg with 8l, El ¼ ðvkÞ, krn,
where the vk match the simulation parameters

1:
 network initialization: creation of a rectangular Kohonen

network K of size ðkþ1Þ � ðkþ1Þ, neurons ui,j and weights

Wi,j ¼ ðwi,j,hÞ, hrk
2:
 behavioral patterns initialization: creation of ðkþ1Þ2

Behavioral Patterns Bi,j, holding the k Parameters pk which

labels matches the inputs, with QBi,j
¼ |, tBi,j

¼ 0 and

dmaxBi,j
¼ 1. Each Bi,j uses Broot as reference pattern.
3:
 training of K with the set of examples E

4:
 for all i,jrkþ1 do {Behavioral Patterns creation}

5:
 for all hrk do

6:
 save the weight value wi,j,h of the current neuron ui,j as

the default value of the matching Parameter ph in the
Behavioral Pattern Bi,j: vdBi,j

ðphÞ’wi,j,h
7:
 if wi,j,h is greater than the maximum, or lower than the

minimum of Dpref ðphÞ
, update the corresponding bound of

the domain

8:
 end for

9:
 end for

10:
 for all ElAE do {Parameters definition domains creation}

11:
 classify the example El using the network K. Let ui,j be the

triggered neuron

12:
 for all hrk do

13:
 if wi,j,h is greater than the maximum or lower than the

minimum of Dph
, update the corresponding bound of the

domain

14:
 end for

15:
 end for
8.3. Automated configuration using real or simulated data

This procedure enables to automatically produce a set of
Behavioral Patterns matching real or simulated data. To do so, model
Parameters matching the parameters available in the data set are
created. Using the data as inputs, the Algorithm 3 infers a set of
behavioral patterns that represent the recorded observations.

This method provides an easy way to parameterize a model,
and allows to reproduce observed situations. In simulations
representing observable situations, for instance those involving
pedestrians or vehicles, data can be recorded from the real world.
These data can then be used to infer a set of behavioral patterns.
Another option is to use this method to produce patterns using a
set of simulated data recorded from a previous simulation. The
objective is then usually to reproduce a specific setting.

It is to be noted that we reach here one of the limits of the
approach: considering that agents’ behaviors are fully defined by
their parameters. Indeed, the data are recorded at a specific time
step, when a behavior is characterized over time. Therefore, the
approach does not reproduce exactly the agents’ real behavior,
but creates similar initial conditions for the simulation. However,
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this remains a promising first step toward a full automation of the
approach.
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Fig. 4. Behavioral pattern definitions offer various possibilities to create variety.

For instance: a generic pattern with a wide definition domains, a normal pattern, a

shopping pattern, or a very specialized jogger pattern. Agents a1, a2, a3 and a4 have

been instantiated from the normal pattern. They all have different behavioral

parameters: agents a1 and a2 are conformal agents, when a3 and a4, as always

deviant agents, presenting behavioral irregularities regarding both their maximal

speed and personal space.
9. Back to our issue: variety and consistency

In this section, we show how the model presented provides a
solution to our issue: the introduction of variety in the agents’
behaviors, and the conformity control of their parameters with
the specifications. We finally present how the model can be
introduced in existing simulations.

9.1. Introduction of variety in agents’ behaviors

Behavioral Patterns provide a flexible tool to create various
behaviors. In our approach, this variety is introduced through the
Behavioral Patterns definitions, and through the behavioral
irregularities.

Based only on the definitions of the Behavioral Patterns, the
ability to create as many Parameters and as many Behavioral

Patterns as desired offers wide variety possibilities. Indeed, the
definition domains of the Parameters can introduce specific
characteristics, and a Behavioral Pattern can include any Para-

meter. For example, if a Behavioral Pattern only specifies a single
Parameter, whose definition domain is a singleton, the Behavioral

Pattern will always produce the same value for this Parameter. On
the contrary, if a Behavioral Pattern is based on all simulation
Parameters, each of them having a wide definition domain, then
an important variety of agents’ parameter values, and thus
behaviors, will be produced.

Example 13. In order to study the influence of joggers in a
simulated pedestrian flow, we introduce the Behavioral Pattern

Bjogger, with the Parameter vjogger of reference parameter vmax, such
that vdjogger

¼ 11 km=h and Dvjogger
¼ f11g km/h. The generation of a

population of 99% of the agents instantiating Bnormal and 1%
instantiating Bjogger allows to introduce easily joggers in the
simulation. Moreover, deactivating that Behavioral Pattern is
enough to prevent the appearance of any jogger in the simulation.

Variety is also introduced between the agents belonging to the
same Behavioral Pattern. Indeed, during the instantiation of the
values by the generation algorithm, the probability distribution
naturally introduces variety: the Parameters in the Model Agent

take various values in their definition domain. The flexibility of
the approach is increased by the possibility of adapting the
distribution to users’ needs. The default function is a uniform
distribution, but any kind of function can be used, like Gaussian
ones.

Example 14. Two agents instantiated from the same Behavioral

Pattern Bnormal will get two different sets of values from the
definition domain. For instance, two agents a1 and a2 instantiated
from Bnormal could be a1 (vmaxða1Þ ¼ 4:7 km=h, sða1Þ ¼ normal), and
a2 (vmaxða2Þ ¼ 5:2 km=h, sða2Þ ¼ normal).

Another element used to increase variety in agents’ behavior is
the behavioral irregularities. Irregularities allow the occurrence of
unspecified behaviors in the simulation. For instance, in driving
simulators used to evaluate drivers’ aid systems, unusual beha-
viors might unsettle the drivers. This widens the test range, and
thus increases the system robustness. In the model, three para-
meters specify the irregularities. The deviation rate tN defines the
proportion of allowed irregularities. The maximal gap to the pattern
dmaxB

avoids Parameter values to be ‘‘too far’’ from the behavioral
pattern. Finally s centralizes the activation of deviation use at the
global level (if s¼ 0, no irregularity can appear, whatever values
taken by tBÞ.

Example 15. We define the Behavioral Pattern Bnormal00 , similar to
Bnormal, but with a deviation rate tBnormal00

¼ 0:01. s¼ 1 to allow
deviations. The Behavioral Pattern Bnormal00 produces 1% of deviat-
ing agents, which speed is generated from Dvmax ¼ ½0, 15� km/h
instead of Dvnormal

¼ ½4, 6� km=h. For instance, agent a3 (vmaxða3Þ ¼

12:4 km=h and sða3Þ ¼ small) and a4 (vmaxða4Þ ¼ 1:4 km=h and
sða4Þ ¼ normal) are two deviating agents created from the Beha-

vioral Pattern Bnormal00 : vmaxða3Þ=2Dvnormal
and vmaxða4Þ=2Dvnormal

.
Allowing irregularities produces pedestrians moving quickly as
well as slow ones, others accepting a small personal space, which
increases the variety in the simulation.

Fig. 4 illustrates the different possibilities presented in this
section. We represent Behavioral Patterns involving two para-
meters as two dimension figures. It is to be noted that for better
visualization, the personal space parameter is represented here as
a continuous parameter between �1 and 1. With �1¼ small,
0¼ normal and 1¼ big, rounding the values to the nearest integer
brings us back to the case of Example 1. Various possibilities are
illustrated in Fig. 4: a generic behavioral pattern, having wide
definition domains; the normal pattern from Example 4; a shop-

ping pattern involving slower agents accepting only small perso-
nal spaces; or a in a hurry pattern with quick agents having small
personal spaces. The jogger behavioral pattern presented in
Example 13 is represented by a singleton. Agents a1 and a2, from
Example 14, belong to the normal pattern, but adopt distinct
behaviors. Finally, agents presenting irregularities regarding the
normal pattern will be generated using any value in the ‘‘root
behavioral pattern’’, creating agents like a3 and a4. Here, these
agents are always deviant, but deviant ones could also be created
depending on the model specification.
9.2. Parameters conformity regarding the specifications

The model enables to introduce easily variety among the
agents’ behaviors. It allows also to control the conformity of
agents’ parameter values at their creation and during the simula-
tion. To do so, we compare the values of agents’ parameters and
the specification provided by their reference behavioral patterns,
and react according to the criteria defined by the user. Presented
in Algorithm 4, the mechanism is an extension of Algorithm 1.
It controls the conformity using two elements: the Root Behavioral

Pattern Broot, and the maximal gap to the pattern dmaxB
. This

control is done using the Model Agent, which provides a reference
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between the simulation agents and the Behavioral Patterns. The
Model Agent enables to refer to the adequate ‘‘root parameters’’,
Root Behavioral Pattern, or Parameters definition domains.

First, by implementation, no behavioral irregularity from the
Root Behavioral Pattern Broot is allowed. According to Property 2, this
means that if one of the parameters of a simulation agent takes a
value outside the domain of the corresponding ‘‘root parameter’’,
this change is forbidden, and the value is forced at the domain
bound. Therefore, the definition domains specified for the ‘‘root
parameters’’ define the absolute limits of the parameter values in
the simulation. The Root Behavioral Pattern Broot provides a frame for
the model execution: the system guaranties that no parameter will
ever go beyond the definition domains defined in that Root

Behavioral Pattern. This property is particularly interesting for the
final users, who can easily understand this mechanism.

Second, the maximal gap to the pattern dmaxB
constrains the

behaviors at runtime. This parameter defines the maximal
allowed value for qam

. If dmaxB
¼ 0, no deviation is allowed. If

dmaxB
¼ 1, the Parameter values can change freely, and behavioral

irregularities are possible (within Broot limits). Between these two
values, dmaxB

defines the degree of conformity to the specification,
allowing more or less important irregularities to appear.

Algorithm 4. Conformity control of agents’ parameter values.
Require: Am the set of Model Agents, a the simulation agent
represented by am, b¼ false a boolean

1:
 for all amAAm do

2:
 atemp’am {temporary copy of am}
3:
 for all pAPam do {copy a’s parameter values in am}

4:
 vpðamÞ’vpðaÞ
5:
 end for

6:
 for all pAPam do {check of root behavioral pattern}

7:
 if vpðamÞ=2Dpref ðpÞðBrootÞ then
8:
 b’true {change forbidden}

9:
 end if

10:
 end for

11:
 if qam

4dmaxBam
then {quantification of the irregularities}
12:
 b’true {change forbidden}

13:
 end if

14:
 if b then {change forbidden, return to previous values}

15:
 am’atemp
16:
 for all pAPam do

17:
 vpðaÞ’vpðamÞ
18:
 end for

19:
 end if

20:
 end for
That flexibility enables a precise control over the simulation:
in experimentations where the behaviors have to remain under
control, irregularities will be limited or forbidden. In simulations
where unusual or unspecified behaviors are interesting, they will
be authorized. We point out that even if irregularities are
authorized, they do not necessarily appear. For instance, if the
definition domain of a Parameter is close to these of its reference
parameter, they will seldom happen.

Finally, it is to be noted that the behaviors instantiated by the
model will be consistent only if the Behavioral Pattern specification is
itself consistent. Indeed, nothing guaranties the consistency of the
behaviors defined using the Behavioral Patterns. On the contrary,
users might wish to experiment the influence of inconsistent
behaviors, and introduce them using patterns. The model only
allows to control the conformity of agents’ parameter values with
the specification provided in the Behavioral Pattern.
9.3. Introducing the model in an existing simulation

The model can be used as a tool to introduce diversity in the
simulation and control the conformity of the elements produced.
Indeed, by design, the tool integration does not require any
modification of the simulation. The model interacts with the
simulation using its public configuration parameters. The simula-
tion runs using its own decision model, and sends a request to the
model in specific situations, like for parameters creation.

To use the tool, a user only has to specify the Parameters, their
default values, their definition domains, and one Behavioral

Pattern. All other elements required by the model are automati-
cally completed using default values.

These default values are created as following. For each Para-

meter p provided by the user, a ‘‘root parameter’’ is automatically
created, using the same values, and set as p reference parameter.
The probability distribution gp and distance function fp use their
default values, and a Root Behavioral Pattern Broot including all the
‘‘root parameters’’ is created. As for user defined Behavioral

Patterns, their reference pattern is Broot, none of them hold
properties (QB ¼ |), no deviation is allowed (tB ¼ 0) and devia-
tions remain unconstrained (dmaxB

¼ 1). Finally, a Setting is auto-
matically created with all the patterns and s¼ 0.

Communication between model and simulation can rest on
pre-existing simulation functions. It might for instance be net-
work messages, like in the application presented in Section 10.
If such a function does not exist, the input point has to be created,
for instance with specific developments or by adding the model as
an internal module. The non-intrusive property is then partially
lost, but using the model remains interesting due to its modular-
ity and the out-of-the-agent design it introduces.

Finally, the complexity of the configuration process can be
illustrated through the number of parameters that have to be
manually defined to produce a fixed variability. In the case of a
population of n agents using p behavioral parameters, if no
automated process is used, pn parameters have to be defined,
and the consistency of the behaviors has to be manually assessed.
Using the proposed model, for each Behavioral Pattern B, at most p

Parameters have to be defined, each one involving the definition of
five numerical values, one probability distribution, and one
distance function. If we use normal distributions and the default
distance function, for a setting involving nB patterns, 7 � p � nB

values have to be set, and the consistency of the produced
behaviors is guaranteed.

The proposed approach allows to produce various and
consistent behaviors while defining only a limited number of
parameters.
10. Application to traffic simulation

In this paper, our main application is the simulation of road
traffic in driving simulators. In this section, we present our
objectives in that particular case, the implementation of the
model in a commercial software, and experimental results show-
ing how it improved the existing simulation.

10.1. Traffic simulation in driving simulators

Traffic and drivers’ behavior is a widely studied field, from a
psychological (Salvucci et al., 2001; Summala, 2005) as well as
engineering perspective (Bazzan, 2005; Dresner and Stone, 2008).
One of the tools involved in these researches is driving simulators.
In such simulators, a real driver is introduced in the simulation,
and interacts with autonomous vehicles handled by the simula-
tion (Fig. 5). Driving simulators are used in the automotive



Table 1
The pseudo-psychological parameters of the agents are taken into account during

the decision phase of the traffic decision model, and influence the virtual drivers’

behaviors.

Parameter Possible values Default

Maximal speed vmax ½0,1� km=h 130 km/h

Security distance ts ½0,1� s 2 s

Risk taking to overtake ro ½�1;2� 0

Speed limit respect rs ½0,1� 1

Priorities respect op ftrue,falseg True

Traffic signs respect os ftrue,falseg True
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industry for various purposes, like the development of driving aid
systems or vehicles design (Reymond et al., 2001; Toffin et al.,
2007). The traffic has thus to be as realistic as possible, to induce a
mental state similar to a drive in the real world and improve the
validity of the experimentation results. The objective in driving
simulators is to immerse the driver of the simulator in the
simulated traffic, and produce specific traffic situations (Olstam
and Espié , 2007). In contrast to traffic simulation tools like AIMSUN

(Barcel �o and Casas, 2002) or VISSIM (Fellendorf and Vortisch, 2001),
the reproduction of real traffic flows is therefore not the most
important criteria used to evaluate the validity of the results.

Various driving simulation software are available (Cremer
et al., 1995; Olstam, 2005; Doniec et al., 2008). Among them,
scanerTM was initially developed by Renault, and is now
co-developed and distributed by Oktal (2012). scanerTM is based
on a distributed architecture, and modules communicate using
the network. Communications are based on a common protocol,
available through an API. This API was used to implement the
developments presented here.

In scanerTM , the traffic module is based on a multi-agent
system architecture (Champion et al., 1999). The traffic decision
model uses different pseudo-psychological parameters, to incor-
porate the psychological factors involved in drivers’ behaviors
(Dewar, 2002). Presented in Table 1, these parameters are taken
into account during the decision phase of the model. They allow
to manage the drivers’ behaviors, in particular those related to the
risk taking and the respect of traffic law.

10.2. Objective: introducing a controlled variety in the traffic

The major issue at stake in scanerTM was that the behaviors of
the autonomous vehicles were based on parameters defined
during scenario creation. As presented in Section 3, each vehicle
had to be manually added in the scenario, and was created with
the same behavioral parameter values. The design of a scenario
involving a high number of vehicles was thus a long and
repetitive work, and scenario was therefore usually created with
as few vehicles as possible, and these vehicles used their (similar)
default parameters. These elements highly diminished the
immersion of the users in the simulation, and two main elements
were thus targeted in our work: introduce variety to increase the
users’ immersion, and automate the process to ease the work of
the scenario designers.

To achieve these goals, we introduced driving styles in the
traffic. Indeed, driving styles reflect the fact that drivers can adopt
various behaviors (aggressive, cautious, etc). Moreover, it has
been shown that introducing such styles in a simulated traffic
increases the users’ immersion in driving simulators (Wright
et al., 2002).
Fig. 5. Left, one of Renault’s driving simulators: the user, wearing a virtual reality h

scanerTM , the application used at Renault, where the scenario involves confronting the
Driving styles represent ‘‘categories’’ of drivers having similar
personality traits. They can thus be represented using Behavioral

Patterns. Moreover, styles imply consistency between parameters:
an aggressive driver not only drives quickly, but takes also more
risks. Behavioral Patterns allow taking these constraints into
account.

Driving styles being described as Behavioral Patterns, the
behavioral differentiation model allows to automatically and
easily generate agents belonging to the desired Behavioral Pattern,
i.e. drivers reproducing the specified driving style.

10.3. Implementation of the model in the existing simulation

The model enables the introduction of driving styles in the
simulation. Wright et al. (2002) showed that driving simulator
users only distinguish a limited set of driving styles: aggressive,
normal, and cautious. In scanerTM , we chose to provide these
three driving styles as the default configuration of the software.
However, parameters can be manually changed to adapt to the
simulation context: for instance, an aggressive behavior in France
may not be perceived as such in Italy.

We also chose to use only the existing parameters of the traffic
decision model: the maximal speed vmax, the safety time ts, the
overtaking risk ro, the speed limit risk rs, the observe priority op

and the observe signalization os parameters. This way, no mod-
ification of the simulation is needed, and the introduction of the
model is fully non-intrusive. As underlined in Section 3, this was a
major issue for the integration in the commercial version of the
software.

The definition domains were empirically defined, using the
expertise of scenario designers. We defined three Behavioral

Patterns, matching the three targeted driving styles: Bcautious,
Bnormal and Baggressive. For these three Behavioral Patterns, tBi

¼ 0,
dmaxBi

¼ 1, and QBi
¼ fFrance, highwayg. Table 2 presents the

Behavioral Patterns and Parameters used in the implementation.
For all the real numbers, the probability function gp is defined as a
elmet, drives in the simulation using a real car’s cockpit. Right, a screenshot of

driver to a risky situation while driving on snow, with limited car adherence.



Table 2
Definition of the Parameters of the Behavioral Patterns. From up to bottom: the ‘‘root parameters’’ of the Root Behavioral Pattern Broot, and the Parameters of Bcautious, Bnormal,

and finally Baggressive. Each of these three behavioral patterns enables the creation of agents reproducing a specific driving style.

Behavioral pattern Parameter label pref Dp vdp
gp fp

Broot vmax (maximal speed) 0 ½0, 300� km=h 130 km/h m¼ 130, s¼ 10 Default

ts (safety time) 0 ½0, 10� s 2 s m¼ 2, s¼ 1 Default

ro (overtaking risk) 0 ½�1, 2� 0 m¼ 0, s¼ 1 Default

rs (speed limit risk) 0 ½0, 2� 1 m¼ 1, s¼ 1 Default

op (observe priority) 0 ftrue, falseg True Default Default

os (observe signalization) 0 ftrue, falseg True Default Default

Bcautious vmax,cautious vmax ½90, 110� km=h 100 km/h m¼ 100, s¼ 10 Default

ts,cautious ts ½1:5, 2:5� s 2.0 s m¼ 2:0, s¼ 0:25 Default

ro,cautious ro ½�1:0, 0:0� �0.5 m¼�0:5, s¼ 0:25 Default

rs,cautious rs ½0:8, 1:0� 0.9 m¼ 0:9, s¼ 0:025 Default

op,cautious op ftrueg True Default Default

os,cautious os ftrueg True Default Default

Bnormal vmax,normal vmax ½110, 130� km=h 120 km/h m¼ 120, s¼ 10 Default

ts,normal ts ½1:0, 2:0� s 1.5 s m¼ 1:5, s¼ 0:25 Default

ro,normal ro ½0:0, 1:0� 0.5 m¼ 0:5, s¼ 0:25 Default

rs,normal rs ½0:9, 1:1� 1.0 m¼ 1:0, s¼ 0:025 Default

op,normal op ftrueg True Default Default

os,normal os ftrueg True Default Default

Baggressive vmax,aggressive vmax ½130, 150� km=h 140 km/h m¼ 140, s¼ 10 Default

ts,aggressive ts ½0:5, 1:5� s 1.0 s m¼ 1:0, s¼ 0:25 Default

ro,aggressive ro ½1:0, 2:0� 1.5 m¼ 1:5, s¼ 0:25 Default

rs,aggressive rs ½1:0, 1:2� 1.1 m¼ 1:1, s¼ 0:025 Default

op,aggressive op ftrue, falseg True Default Default

os,aggressive os ftrue, falseg True Default Default
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normal distribution of mean value m and variance s, truncated at
Dp bounds. Finally, the Root Behavioral Pattern Broot is defined by
PBroot

¼ fvmax, ts, ro, rs, op, osg.
The developments have been implemented in different mod-

ules, and interfaced with the simulation using the scanerTM API.
The first module is used to edit pre-existing scenarios. It intro-
duces driving styles during scenario design, and allows to apply
driving styles on groups of vehicles, using a statistical repartition
defined by the user (for instance, 10% aggressive and 90% normal
drivers). The second module dynamically creates new vehicles
during the simulation, and controls the vehicles parameters. It is
used to easily populate a database using traffic generators, and
create an ‘‘ambient traffic’’. The model is applied during the
vehicles creation. The module also provides additional function-
alities, such as traffic statistic recording. Finally, a third module
allows to infer behavioral patterns from simulation records.

These three modules provide functionalities at the different
simulation steps: during scenario creation, to easily introduce
variety in the traffic; at runtime, to create new vehicles of various
behaviors and control their parameters; and after the simulation,
to analyze its results.

10.4. Experimental results

We evaluated the model contributions through experimenta-
tions on the traffic. We present here the protocol used, as well as
experimental result on variety, behaviors representativeness, and
behavioral patterns inference.
10.4.1. Experimental protocol

The simulations took place on a database representing a
highway, on a 11 km long section. There are no entries or exit
lanes on the section, to ensure a constant vehicles flow. Three
traffic detectors recorded vehicles speed, lane, and initial beha-
vioral patterns, at kilometers 2.2, 6 and 10.8. Traffic generators
created a traffic demand of 3000 vehicles/h at the beginning of
the section, which represents a dense flow. After the initial
creation of the vehicles, the scanerTM traffic module was used
to compute their displacements. Each simulation lasted 2h30 –
due to the commercial software design, time could not be
accelerated – and the data presented below are average values
of five distinct simulation runs. The p-values of Welch’s t tests
computed between each series of measured parameters values
were never lower than 0.49 (on average 0.69 for the speed and
0.66 for the safety times, with a minimal value of respectively
0.55 and 0.49).

For this evaluation, we defined three different Settings. To
avoid the influence of behavioral irregularities on the results, we
set their global determinism criteria to zero (s¼ 0). The first
Setting, Sdefault, includes only one restrictive Behavioral Pattern

Bdefault. In Bdefault, every Parameter is defined as a singleton, and
irregularities are forbidden. The Parameters use the default values
attributed by the scenario editor: vmax ¼ 130 km=h, ts ¼ 2 s, ro ¼ 0,
rs ¼ 1, op ¼ true, os ¼ true. Using such a behavioral pattern has the
same effect as deactivating the model: each vehicle is created
with the same parameter values. This Setting is our reference in
that evaluation: the parameter values resulting from this config-
uration are similar to former hand-designed scenarios.

The second Setting, Snormal_only, also includes only one Beha-

vioral Pattern. This Behavioral Pattern, Bnormal_only, is an adaptation
of the pattern Bnormal presented in Section 10.3, where the
maximal speed definition domain is [100, 140] km/h instead of
[110, 130] km/h. All other Parameters remain unchanged. During
the simulations, the traffic generators create 100% of the vehicles
using the Behavioral Pattern Bnormal_only.

Finally, the third Setting, Sall_patterns, is based on the three
Behavioral Patterns Bcautious, Bnormal and Baggressive defined in
Section 10.3. During the simulation, the traffic generators create
10% of the vehicles using the Behavioral Pattern Bcautious, 80% using
Bnormal and 10% using Baggressive.

In this work, we chose to observe different quantitative criteria
to assess the validity of the approach. Indeed, the usual approach,
i.e. leading a user study using questionnaires, is highly subjective
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and sensible to the context. In our case, the software and the
proposed model are used in various countries, from China to
England. Instead of proving the approach on a specific setting that
would not be extensible to other contexts, we therefore chose to
propose a first set of quantitative criteria to assess the validity of a
setting. However, as we state in Section 12, this work would
certainly benefit from a complementary user study.

10.4.2. Evaluation of the behaviors variety

We first evaluated the influence of the behavioral patterns on
the behaviors variety. The Fig. 6 represents the vehicles speed
distribution recorded by the detector 2. The data recorded by the
other detectors are similar. When no pattern is used (setting
Sdefault), the recorded speeds are either low, between 70 and
90 km/h (46% of the vehicles), or high, around 130 km/h (40% of
the vehicles): the curve presents a ‘‘camel back’’ shape. Vehicle
behaviors are too similar to adapt to small variations in the traffic
flow: the left lane remains slow, the right one quick. Very few
vehicles change lane or overtake, which explains the shape of the
distribution.

When a behavioral pattern is introduced, using the setting
Snormal_only, the speed distribution is more balanced: 60% of the
vehicles adopt a speed between 90 and 115 km/h, and 30%
between 115 and 140 km/h. The curve shape is similar to a
Gaussian centered on 110 km/h. Vehicles behavior is more
dynamic, involving lane changes and overtakings. Moreover, the
vehicles average speed reaches 100.4 km/h, against 91.5 km/h for
Sdefault. That increase shows that the behaviors variety improves
vehicles use of the road network.

In the third case, with the setting Sall_patterns, the speed
distribution also presents a Gaussian shape. Vehicles average
speed increases to reach 103.7 km/h: again, an increased beha-
vioral variety improves the vehicles speeds. The introduction of
additional behavioral pattern produces two ‘‘bounces’’ in the
curve, at 70 and 150 km/h, showing that more extreme and less
predictable behaviors have been successfully introduced. These
elements illustrate how behavioral patterns allow to increase the
heterogeneity of the created population, as characteristics of the
subpopulations – here the cautious and aggressive drivers –
appear in the global population.

Finally, we analyzed the vehicles travel time through the
whole section. The introduction of a behavioral pattern reduces
that time by 11.6%, from 5 min 35 s to 4 min 56 s. This matches
our observations on the speed: more variety allows vehicles to
better use the road network and travel faster. However, if more
extreme behaviors are introduced using Sall_patterns, the travel time
does not decrease, but increases: þ6.1%, from 4 min 56 s with
Snormal_only to 5 min 14 s with Sall_patterns. Simultaneously, the
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Fig. 6. Speed distributions depending on the Behavioral Pattern set used in the

simulation. The Setting Sdefault induces a ‘‘camel back’’ curve shape, denoting the

limited dynamics of the traffic, when Snormal_only and Sall_patterns present more

reality-like Gaussian shapes.
average speed increases: þ3.3% at detector 2, from 100.4 km/h
to 103.7 km/h. This counter-intuitive result can be explained by
the presence of slow vehicles, which limit the average progression
of the traffic, even if some vehicles drive at higher speeds.
10.4.3. Representativeness of the behaviors

Another element we aimed to evaluate was the representa-
tiveness of the behaviors produced by the model. Fig. 7 presents
the vehicles repartition between the left and right lanes of the
highway, depending on their reference behavioral pattern. Data
have been recorded at detector 2, with the setting Sall_patterns. Most
of the aggressive drivers are on the left lane (on average, 71%),
when most of the cautious ones stay on the right lane (82%).
Normal drivers repartition is more balanced, with 72% of drivers
on the right lane, and 28% on the left one.

According to their behavioral pattern, aggressive drivers adopt
high speeds and small security margins. They often overtake, and
we naturally observe them on the left lane. On the contrary,
cautious drivers stay on the right lane, as their behavioral
characteristics drive them to do. The model introduces the
behaviors we desired to observe.
10.4.4. Behavioral patterns inference

Finally, to evaluate the monitoring part of the model, we based
our experimentations on data recorded from a simulation. Experi-
mentations with real world data will be considered in the
future works.

The data were recorded at detector 2 during 2h30, using the
setting Sall_patterns. About 3159 different vehicle recordings were
produced. Using the method presented in Section 8, we inferred a
set of nine behavioral patterns involving two behavioral para-
meters, the maximal speed and the security distance, based on
the recorded vehicles speeds and safety times.

Fig. 8 represents the sample data set, as well as the inferred
behavioral patterns. Each Behavioral Pattern is represented by a
diamond-shape drew the coordinates of the default values of its
Parameters (i.e. ðvdvmax

, vdts
Þ). Then, for each behavioral pattern, a

rectangle represents the definition domain of each parameters of
this behavioral pattern (i.e. Dvmax on the x-axis, Dts on the y-axis).

Each behavioral pattern is also associated to a probability
factor that represents the probability that it will be used to
generate a vehicle. Here, this probability is built using the number
of vehicles belonging to the behavioral pattern (i.e. matching the
corresponding neuron in the Kohonen network) over the total
number of recorded vehicles. Table 3 presents the values obtained
for the three behavioral patterns of higher occurrence probability.
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Table 3
Parameter values of three of the nine inferred behavioral patterns (the three

presented behavioral patterns are those of higher probability).

Pattern ðvdvmax
, vdts
Þ Dvmax Dts p

1 ð103:1, 134:7Þ ½114:8, 1:2� ½1:7, 1:5� 0.22

2 ð77:9, 103:1Þ ½90:8, 1:2� ½1:7, 1:5� 0.14

3 ð83:5, 123:9Þ ½106:3, 0:5� ½1:3, 1:1� 0.13

90 100 110 120 130 140 150

1

2
..

.
.

.
.

.
.
.

.

.

. .

..
.

.

.

.

. .

.
.

.
.

.

.

.
.

.

.

.

.
.

.
.

.

.
.

.

..

.

...

..

.
. .. .

.
.

.

.

.
.

. ..

.

..
. ..

. . .

.

.. .

.

.

. ..
..

..

..
.

.
.

.
..

..

..
.

..

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.
.

.
.

.

.

. ..
.

.
.

.

..

.

.

.

. .

.

..
.

.
.

.

.

.

.
.

.. ..

..
..

..
..

...
.

.
.

.
.

.

.
..

.
.

.

.

..
.

.

.

.
.

.

..

.
.

.

.

.

..
.

.

.
.

. .
.

.

.

.

..
. .

.

..
.. .

.
.

.
.

..
.

.

.

.

..
.

.

. .

.
.

.
.. ..

.

. .
.

.

.

..
.

.
.

.

.

. ..

.
.

.

. .
. .

.
.

.

.
.
.

.

.

.
.

.
..

.

.

.

.
.

.
...

.
.

. ..
.

. .
.

.
.

.
.

.

.

..

.

.

.
.

..
.

.
.

.
.

.

.
.

..
.

. ..
.

. .

.

.

. ..
.

.

.
. .

.

.

.

.. ..

.
.

.
.

..

.

.

.

.

..

.

. ..

.

..
.

.
.

..
.

. .
.

.

.
.

...

.

.
.

.

.

.
.

.

.

. ..
.

. .... .
..

.
.

.
.

.

.

.
.

. .
.

.
.

.

.

..

.
.

.
. .. .

. .
.

.

.

.. .. .

.

.

.
.

. .

.

.... .
.

.
.

.
.

.
.

.

. ...

.

.

.
.

. .

...

.

.
.

.

....

...
.

.
.

.

.

.
...

.

.

.
.

.

.
.. .

.

.
.

.
.

.

.
..

..
.

..
. .

.
.

.

.

.
.. ......

..
.

.
.

.

.
.

.

.
. ..

..
.

. .
.

.

.

.

.
.

.

..

.

.
.

.

..

.
. .
. .
. .. .

.
.

.
...

.

.
.
.

.
.

.

..

..
.. ....

.

.
.

.
.

. .. ..
.

.

.

.. . .. .

.
.

. . . .
.

.. .. .
.

.

..

.

.

.

.

.
.

.
.

.

..
.

. .
.

.
. .

.

.
.

.
. .

. ..

.
..

.
.

.

.

.
..
.

..
.

.
.

.
..

.

..
.

.

.

.

..

.

. .
.

.
. .

.

.

...... .

. ..
.

.

.
.

..

.
... .

.

.
.

.
.

.

.

.

.
.

.

.

.
.

.

.. .
.

.
. .

.
.

.

.
.

..
.

.
.

.

.

.

.
. .

.

...

.
.

.

.
. .

.
.

.

. ..
. ..

.
.

.

.

.

.

..
.

.
.

. .
. .

.
..

.
.

.
.

.. ..
.

.
.. .
.

.. ..

.

.

.

.

.

..
.

..
.

.

.

. ....

.

.

.

.

... .

.
.

.

.

.. .
.

.
.

..
.

.
....
.

.

..
.

.

..

.
...

.. .

.

...

. ..
..

..

..

.

.

.

.
..

.

.

.

.

.

.

.

.

.. .

..

..
.

.

. .
.

.

.
.

.

..

.
.

.

.

.
.

.
. .

.
..

.

.

....
.

.

.
.

..

.

. .
..

.

.

.

.
.

.

.

.

.
.

.
. ..

.

.
. .

.

.
.

.

.
.

.

.

.

.

. .

.

. .

.. .

..

.

.

.

.

.
..

.. .
.

.
.

..

..
.

.

.
.
.

.

. ..

. .. .
.

.

..

..

.

.
.

..
.

.

..
.

..
.

.
.

.
.

.

. .

.

.
.

.. .
.

..

.

.

.
.

.
.

.

.
.

.
.

.

.

..

.

.
.

.
.

.

. .

. .

.
.

.

.

.

.

.

..

..
.

.
.

.

.

.

.
.

..

.

.

.

. .
.

.. .

...

..

.

.

.

.
.

.

.
.

...
..

.

....
.. ..

..

.

.
.

. ..

.
. .. .
.

.
.

.

.

..
.

.

.

..

.
.

...
. ..

.

.

.
.

.
.

.

.

.

...
.

.

.

.

.
.

.
..

.
. ..

.
.

.

.

.

.

.. .. .
. .. .

. .

.
.

.

.
...

....
. .. ..

.

.
.

.

.

.. .
.

..

.

.

.

.

.
. .

.
.

.
.

.

..

.

.
.

.
.

.

.
. .

.
.

..
. ..

...
. ..

.

.
.

.
.

.

.

.
.

.

.

.

.

.

.

.

.
.

..

.
. .

. .. .
.

.
.

..

.
.

..

.
.

.
.

.

.

.

. .
.

.
.

..
.

. ..
.

.
.

.

..
.

. ..
...

.

..
.

... .

.
.

..

.
..

.

.

.
..

.

.
.
.
.

.

.
.

. .. .
..

.
.

. ..
.... . ..... .. .

.
.. .. .... .

.

...

.

.

.
..

.
.

.
.

..

..

.
..... .

.
.

...
.

.

.
.

.

. .. .. .. ..
.

. ..
.

. ..

.

.

.
.

..

..

....

.
.

.
. .

.

.

.
.

.
..

.

. .

...

.

. .

.

.
.

..

.

. ...
...

..
.

. .
.

..
..

..
.

.

....
..

.
.

.
.

.

.

.

.
.

. .

.

.

.
..

.
.

.

.

.

.
.. ..

.

.
.

....

.

.

.

..
.

. .. .
.

.
.

..
.

.

.

.

..
.

.

.

.

.
. .

.

.

.

.

.
.

. ..

.
.

.

. .

.

.

.

.
.

.
..

. .. ....

..
.

.
.

.

..

..

.. .

.

.

.

.

.

.

.

.

.
.

.

.
.

.
.

.

. .
..

.

.

.

.

.

.
.

.

.
..

.

.

..
.. .

.

.
.

.
.

.
.

.

.
.......

.

.

.

.

.

. ..

..
.

. .
. ..

...

.

.

.
.

...

...

.

.
.

.

.

.

.
.

.
.

...

.

.
.. .. .

. .
. .

. .
.

. .

.

. ..
. .

.
.

.

.. ..
....

.

. .

.. .
.

.. .

.

.

.
.

. .. ..
.. .. .

. .
...

..
.... .

.

.

.
.

.
.

. .

.

.. ....

.
.

..
..

.
.

.

.

.
.

.
.

.
. .

. .

.
.

.

..
.

.
.

.

.
.

. .
.

.

.

.

.

.

...

.

..
.

.
.

.

.. .. .
.

..

.

.

.... .
.

.

. .

.
..

..

.
.

.

.
.

.
.

.
.

.

.

.

.

.
. .

.

.

....

..
.

.
.

.
.

. .

.

.

.
.

..

. .
..

.

.

.

.
.

.
.

.
.

.

. .

.

..
.

..
..

. ..
.

.
.

. ..
.

.
.

. .
. .

.
.

.
..

.
.

..
..

.

.
..

..

.. .

. .
. .

.

.
.

. ..
.

.
.

..

.
. .

.
.

. .

..
..

. ..

.

.
.

.

.
.

.
.

.

.

.

.
.

. .

.
.

..
. .

.

.
. ..

.

.
.

.

..

.

.
.

.

.

.

..

.
.

..
...

.

.
.

.

. ..
.

.

..

.

.

..

.

.

.

.
.

.

..

.
. .

.
.

..

.

.
.

.
. .

.

.
.

.
.

.

..

.

.

.

.
.

..

..

.
.

.

. .
.

.

.
.

. .

.

.
..

.

..
.

.

.

.
..

..

.
.

..
..

..
..

..
.

.

.
.

.

...
.

. .
.

.

.
..

.

.
.

. ..
.

..
. .. .

.
.

.

.

. .
.

.....
.

.. .
.

..

..

.
.

.. .
..

. .

.
.. .

.

.
.

..
.

.

..
.

.

.
.

.
..

.
.

.
.

. .
.

..

.

.

.
.

...
.

...
.

..
.

.
..

.

.

.. .
.

..
.

.
.

.
.

. .
.

.
.

.. .
... ..

..
.

.

.
..

.

. ....

.
.

.

.

.
.

..

.

.

. ..

.

..

. ...
.

.
.

..
.

.
..

.

.

.

.

.
.

.
.

.

.
.. .

..
.

.

.

.
.

.
.

.
.

..

.
. .

.

.

.

.

.

.

.
..

.

...
.

.

.

.
.

.
.

. .

.

.

.

.
.

.
. .

.

.

.

...

.
.

.
..

.

.
..

.
.

.. ..

.

.
.

.
.

. .. .

.

.

.
.. .

.
.

. ....

.

.
.

.

.

..

.
..

.

. .

.

.
.

..
.

...
.

.
.

.
.

.

.

. .
. .
.

.

.

.

... ..
.

.
.. .

.
.

. .

.

.

.

.

.

.. .
..

..
.

.. .

..
..

.
.

.

.
.

.

.
.

.
..

.

.
.

.

.

.

.
.

.. .
. .

.
.

...

.

.
..

.

.

.

. .
.

.

.

.
. .

. . .
.

. .
.

.. ..
.

.
.. . .

.
.

.
.

.
. .

.

.

.

.

....
.

.
. .
.

..
.

.
..

.

.

.
.

.
.

.

.

.

.

.

..

.
.

.
.

.

. .
.

.

.. .
...

..
.

.

.

.

.
.

.

.

. .

.

..
.

.

.
.

. . ..
.

.

.
..

.

.
.

.

.
. .

.

.
.

.

.

..
.

. .
.

...

. .

.
.. ..

.

.

.

.

.

.
..

.
. .

.

.

.

..
.

.

. ... .

.

.
..

.
.

. .
. ..

.

.

.

.

.
.

.

. .
..

.

.
. .

.
..

.

. .
.

.

.

..

.

.
..

.

. .
.

.. ..
..

.

.
.

..
.

.
.

.
.

.

.
.

. .
.

.

.
. .

.

.

.. .
.

.

.

.
. .

.

..
.

.
.

.

.
.

.

.
..

.

.

.

.
. .

.
.

.

.
.

.
.. .

.
.

.

..
.

.

.

.

.
.

.
.

.

.

...
.

.
.

.

. . .
. .

.

.

.
.

..
.

..

.

..
.

.

.
.

.
.

.
.

.

...
.

.

.
.

.
...

.

.
.

.
.

.

.
.

.

. ...

.

.. .
.

.

.
.

.
..

.
.

.

.
.

..

.

. .

.

.

.
.

..

.. .. ..
..

.

.
..

.

. ..

.

...
.

.

.
.

.
. .

.

. .

.

.

.

..
.

..
.

.
..

.
. .

. ..

.

.
.

.

.

.
.

.

.
.

..

.
. .

.
..

..
.

...

.

..
. .

. .

.

.

.

.
. .

...
.

.
.

.
..

.

.
..

.
. .

.
.

.
.

.

.
.

..
.

.

.
.

..
.

.
.

.

.

.

..
.

. .
..

.

.

.

.
.

..

.
.

.
.

.

.
.

.

.

.

.

.
.

. .
.

..

..

.
. .

.

.

.

.
.

.
..

. ..

.

.

.

.

.

.

...

.
.

.
.

. .

.

..
.

. .
.

..
.

.
.

.
.

.
.

..

. .
.

.

.
..

.

.
.

.
.

.
. .. ...
.

.

.. .

. .

.

.
.

..
.

.

.

. ..

.

...

.
..

. .
.

.

..

.
..

.. .

.

.. .

.

..

.
.

.
.

.
.

.

.
.

.

.. .
.

.
. .

. .
. .

.

.

.

.. ..

.

.
.

.
.

.

.
.

.
. .

.
. .

..
..

.

. .. .

.

..

..
....

.
.

.

.
.

.

.
.

.

.
.. .

.

.
.

.
. .

.
.

.

.

.

.

.
.. .

.
.

.

.

.

.

.
..

..
..

.

.
.

. .
.

.
...

.

.
.

.

.

. .

.

.

.

.

.
.
.

.
.

..
...

. ..
.
.

.
.

.. ..

.

.

..
.

. .

.
.. .

.

..

.

.
.

.
. .

.

. .

.

..
.

..
.

.
.

.
.

. .
. .

.. .

.

.
. .

. .

.
.

. .
.

.

.
..

.
..

.
..

..
.. ..

.
. .

.

.
.

.
.

.

. .
.

.
. .

.
.. .

.
.

. .. .

.

.

.
..

.

.
..

..
.

.

..

. .

.
. .

.
.

.
.

. .
.

.. ..
.

.

.
.

.

..

.

.
.
.

. ..
..

..
.

.

..
.

. ..
.

....

.

..
.

.

.
.

.
. .
...

.
. .

..

.

.
.

..

.
.

.

.

.
.

.

.
.

.
.

.
.

. .

.

.

.. .
..

.

. .
.

.

.
.

.

..
.

.
..

..
..
.

.

.

. .

speed (km/h)

sa
fe

ty
tim

e
(s

ec
on

d
s) . sample vehicle data

90 100 110 120 130 140 150

1

2

..

..

..
.

.
...

.

.. ..
...

.
. .

..
. .

.
.

.

..
... ... ... . .

.

. .

.

.

.
.

..
. .

..
. .

. ..

. .. .

.

.

.
.

.

..
.

..
. .

.
..

.
...

.
..

..

.
.

...

..

.
.

.

..
..

...

. .

.. .
.

. .
.

.
..

..

.

.
..

.

.
.

.

.

.

.

.
..

.
. .

.

.

.

.

.

.

. . .. .

.

.

.
..

.

.

.

.

.
..

.
.

.
.

.

.
...

...
. .. .

.
..

.
.

.
.

.
.. .

.

.
.

.
.

. .
.

.

.
..
.

. .

.

..

. .
. .

.
.

.
.

.

..
.

.

..

..
. .

.

. . ..
. . . .

.

. . ..
.. ..

.

.
.

..

.

. .

.

. .. . .
.

.

..
.

.

.
.

.. .

.
.

.

.

..
.

..

.
. ...

.
..

..

.

...
..

.

.

.
. .

.

.
. .

. .
..

.

.

..
. .

.
. ..

.

.
.

.
.

.
.

.

.

.
..

.

. ..

.

.

.

.

.
.

.

.

.

..

.

.

.

.

.
.

. .

.

.

.

.

..
.

.
..

.

.
.

..
.

.

.
.

.

. . .
.. .

. .
. .

.

..
.

.
.

.

.

..

..
.

.
.

.
.

.

.

...
. ....

.
.

.

. .

.
. ..

.

.
.

.
.

..
.

..

.

.

.
.

.

.
..

.
.

. .
.

.

.
. .

..

.

.

...
.

.
..

...
.

..
.

.

.
.

.
.

.
.

.
.

.

.

.
..

..
.

.

.

.
.

.
.

.
.

.

... . . .
..

.

.
. ....

.
.

...
..

.
. .. .

.

.
.

.
..

.
...

.

.
..

..

.
. .

.

. .

.

.

.

. .
.

.
.

.
.

.

.
.

.
..

.
. .

.

.
.

.
.

.
.

.

.
.

. .
.

. .
.

.

.

.

.
..

.

.
.

..

...
. .

.

.

.

.

... ..

.
.

. .
.

.

.

.
.

.
.

.
. .

. . ..
.

.
..

. .
..

...

.
.. ..

.. . .

.

.

..
.

.

.

.

.

..
.

.
.

.
.

.

...
..

.

.
. ..

..

.
.

.

.

.
. .

.

..
..

..
.

.
. .

.
.

.

. .
..

.

.
.

.

.
.

.
.

.
.

.

.
..

.

.

.
.... .

.

.

.
.

.
.

.

.

..
..

.
.

..
..

.
.

.

.
. ..

. .

.

.

.

.

.

..

.

..
.

..
.

.

.
.

.

. . ..
.

. .
...
.

.
.

.

.
.

.
.

. .
.

.

.. .
.

..

.

.

.

.

.

.

. ..
.

..

.
.

. .
.

..

.
.

.
.

..

.

.

. .

. .
.

. ..

.

.

.

.

.
.. .

.
.

.
...

.
. .

. .
.

.

.

.. . .
.

.
.. .

.

. . .

.
.

.

.

.

.

.
. ..

.

.

.

.

.

.
.. . .

.
.

..

.

.
.

.

.
.

..

.

.
.

.

.
.

..

.

.

.

.
.

.

.
.

.

.

..
..

.

.
..

.
.

.

.. ..
.

.

.
.. ..

.

.
.

..

.

.

.

.

.
. . . .

.

.

...

.
.

.

.
.

..
.

.

...

....
.

.

.
.

.

.
..

.

.

.

.

.
.

. .

..
.

.

.
.

.

.

.

.

.

.

.. . .

.

.
.

.
.

. ..
.

.

.

.

.
.

.

.
.

.

.
.

.
.

.

.
. .

. .
. .

.

.

.

..
.

.

.

.

.
.. ...

...
.

..
..

..
.

.
.

..
. .

..
.

.

.
..

.
.

..
.

..

.
. .

.

.
.

..
.

. . .

.

.

.

. .

. ..
...

...

.
...

.
.

.
..

.
. . .

.
.

..
.

.

..

.

.
..

.
. .

.

. ..
.

.

.
.

.

.
.

.
. .

.. .
.

.

..
.. .

.
.

..
.

.

. .

.

.

. .

.

.
.

..

.

.

.

..
..

.
..

..

.

..
.

..
. .....
. . ..

..
. . ..

...

.

.

.

.
. .

.
. .

.
.

.

.

.

. .
.

.

..
.

.
. .

.
...

.

.
..

.

.

.

.

.

.
.

.
.

.
.

.

..
.

..
.

.
.. .

.

.
.

.
.

.

.

. ..

.

.

.

.

.
. . .

.

.
.

.

.

.
.

. ..
.

.

.
.

.

.
.. .

.

.

.
.

. ..
.

.

.

.
.

.
.

.
.

.

.
...

.
.

.

. .

.

.

.
.

.
. .

.

.
...

..

.

.
.

.
.

.

.
. . .

.

..
..

.
.

.

.
.

.
.

.
.

.
.

...

.

.

.

. .

. .

.
.

.

..
.

.
. .

..
.

.

.

.

.
........ ..

.

.

.
.

.
.

.
.

.
....

.

.

.

.
.

.
.

. ..
.

.

.. .
..

..

.

..
.

.
.

. .
.

. .
..

.

.
..

.
.
.

.
.

...
.

.
..

.

.
. .

.

.

. ..
.

.
.

..
.

.

.

.

.

.

.
.

..
.

.
..

.

...
.

.
.

... .
. .

.

. .
.

.
.

.

. ....

.
.

.

.

.

.

.
. .

.

.

.
.

...

.

.
..

.
. ....

.
.. .

.

.

.

.

.
.

..
.

..

..

.
. ..

..
.

.

.

. .

.
.

.

.

.

.

.

.

.

... .. ...
.

.

...
.

..
. .

.
.

..
.

.

.
.

.
.

.

.

..
.

.
.

... .

.
.

.
. ..

.

.

.. .. .

.
..

.

.

.

.

. ... ... .

.
.

.
.

..

.

.

.
.

.
.. .

. .

. ..
. ..

...
.
.

.
.

.

.
.

.
. .

..
.

. .
.

.

..

.
..

.
.

.

.
. .

..
... ..

.

..

..

.

..

.

.. .
.

.
.

.

.

.
.. .

.

..

. .
.

.

.

.

.
.

.
.

.

.
.

..
.

..
.

..
... ..

...
.

.

.

.

.

.

.

. .. .
. .

.
.

.
.

.

.

.

.

...
.

...

.

. .

.
.

. .

.

.

.

.
. . .

.

. .. .

.

.
. .

.
.. ... ...

..
.

.

.
. .

. .

.

..
.

.. .

.

.

.

.
...

.

.

.

.
.

..

.

.
...

.

. .. .

..

.

.
.

.
.

.

.
.

.
...

.
.

.

..

.
.

.
.

.

..

.

.
. .

.
.

..
. ...

.
...

.. .. .

.

.

.

.

.
.

.

.

. .
.

.. .
.

..

.

.
. .

.

.

.
..

.
. ..

.
.

.
.

....

.

..
.

. .

.

.

.
.

.

.

.

.
..

.

.

.

.

. ..
.

.

. .

.

.

.

.

. .
. .

.

. ... .
. .. . .

.
..

.
.

.

.

.
.

.

..

.

. .
.

. .
.

.

.

.

.
.

. . ..
. . .

.
.

..

.

.

. .
.

.

.

..

.

..

.

. ..
.

.
.

.
.

.

..
.

.
. .

.

.

..
..

.
. ..

. ..
.

.

.

. ..

.
.

.

..

. .
.

.
...

. . .

..

..
.

.

..
.

.
.

..

..

.

.
..

.

.
.

.

..
.

.

.
.

.

. .

.
.

. .
.

.

.

.

. .
.

.

.

.

. .
.. .

.

.

.
.. .

.
.

.

.

.

.

.

.

.

.
.

.

.

. . .
. .

. .
.

.
...

.

.
. .

.....

..

.

.
.

.

. .

.

.
.

.
.

.
.

.. .

.

.

.

.

.

. .

.

.

.

.

.
.

.
.

.

.

..
.

.
.

.
.

.
.

.

. .
...

.

.
.

...
.

..
.

.

.

.
.

.

.

.
. .

.
.

.

.

.
..

..

.
. .

.

.

.
.. .

.

.

.

.

.

.

..

.

.

.

.

.
.

.

.
.

. .
.

.

.

.. . .

.

.
.

.

. .

.
.

.
.

.

.
..

.

..
.

.

.
.

.
...

..
.

.
..

.
...

.
.

.

.
.

.

.
.

.

...

.

.

.
.

..

.

.

. .
.

.
.

.

.
.

.
.

.

.

.
.

. .

.
.

..

.
..

.
.

.
.

.
.

.
...

.

.

.

.
.

.
..

.

.
.

.

.
.. .

.
.

.

.
.

.. .
.

.

.

.

.

. .

. .

. .

.
..

.
.

..
.

.

.

...
. ..

.

.
.

.
.

. .

.

.

.
.

.

.

.
. .
.

.

.

.
.

.
.

. ..
..

.
.

.
.

.

.
..

.
.

.

.
..

...
.

.
. .

. .
.

.. .
.

.

.

.
.. . . ..

.

. .

..
.

.

.
..

.
. .

..
.

.

.
.

.

..

. . .
.

.
.. .

.

.
. .

. . ..
.

..
...

.

. .

.
.

...
..

.

.
..

..

.

.
.

.

.
.

.

.

.

.

.
.

.
.

..
.

...
..

...
. .

.
.

.
.

. ..
.

.

..

.
.

.

. .
.

.
.

.

.

.

.
. ...

.

..
.

.

.

.

.
.

.
.

.

.
.

.
. .

.

.

.

.

. .
.

.

.

. ..

.
. .

.

.

.
.

..

...
.

..

.

. . .
.

.
.

.
.

.
.. .

.

.

.
.

. . .
.

.
.

.
..

.

.
.

.. .

. .
.

.

.

.

.
.

. .
...

.

.. .
. .

.

..
.

.

.

.

.

..
.

.

..
.

.

..
. ..

.
.

.

.

.

.
. ..

.
.

.

.

.

.

.
..

. .
.

. .

.

.

.

. .

.

.
.

.
.

.

.

. .

.
..

.

.

.
.

.

.
..

. .
.

.

.

..

.

.

.
.

.
.

.
.

.
..

.
. .

.

.
.

.

.

.
.

.
.. . .

.
.

.

.
.

.
.

. . .

.

.

.

.

.
.

.

.
..

. .
.

.

.

. .

.

. .
.

..
..

.

.

.

..

.

..

.
. . ..

.
. .

..

.

. ..
. .

.

.

.

.
. ...

.

.

.

.

.

..
. .

.

.
.

.
. .

.
.

.

.
.

.

.
..

...

.

.

.

.
.

.
.

.

.
.

.

.

. .

.

.
.

.
.

.

.. .
.

.
.

..
.. .

.

. .

.
.

. .
.

.
.. .

.

.

.
.

...

.

.

.
.

.
.

.

.

.
.

.. .

.

....

. .
...
. .

.

.
.. .

.

.

.
.

. .

.
.

.
.

.

.

.
..

.

.
..

.
..

.

.

..

.

.

.
. . ..

...

.

.
.

.
.

.

.
.

. .

.

.

.

.

.
.

.

.
.

..
..

. .
.

..
.

.

..
.

. .
.. .

.
.

.

...
.

.

.
..

.

...
.

.
.

...

.

.

.
. .

.

.
..

.

.

.

. .

. .
.

..
..

..
..

.. .
. ..

.
.

.

.

..

. .
..

.

..

.

.
.

.

..
.

.

. .
.

.

.

.
.

.

.
.

.
.

.

.

..
.

.
..

.. ..
..

..
.

..
.

..

.

.

... ...

.
.

. .
.

.
..

.

. .
. .

.

.
...

.
. .

.
. .

.

.
.

....
.

..

.

.
.

.
..

.
...

.

. . .
..

.

.
.

.
.

.

.
.

.

.

..

.

.

.
.

.
.

.

. .

.

.

.
.

.
..

.

.
.

.
.

.
.

..

.
. ..

.

..
.

. .. . .
.

.

.

.

.

.
.

.

.

..

.
.

.

.
..

.

. .
.

..
.

.
... ..

.
.

.
.

.

.

.

.
.

.

.
.. .

.

.
.

.

.
.

.
..
..

.

.
.. .

... .

.

.

.
.

.
.

.

.

.. .

.

.
. .

. .

.

.
....

.
.

.
.

.
.

. .

.

.
.

.
.

.
.

.

..

.

.

.

.

.

.
.

..
..

.
.

.

.

.

. .
.

.
.

..
.

.

.

.
.

.
...

.

.

.

.
.

.

.
.

.

.

.
.

.

.

.

.

.
.

.
..

..

.
.

.

. .
.

.

.

.
.

.
.

.

.
.

.

.
.

.

.
.

.

.
.

.
. .

.
.

..
..

.

.
.

.
.. .

...

.
.

.

.
.

.

.

.

.

speed (km/h)

sa
fe

ty
tim

e
(s

ec
on

d
s) . sample vehicle data

Fig. 9. First, the results obtained with the intermediate approach, and second

those obtained using Behavioral Patterns and the setting Sall_patterns. The inter-

mediate approach creates vehicles presenting inconsistent behaviors regarding

the specifications – high speeds and high safety time for instance – when the

Behavioral Patterns only produce consistent behaviors.
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Fig. 8. Recorded safety times over the maximal speeds of the vehicles, and the

behavioral patterns inferred from these sample data. The diamond-shape repre-

sent the default values of the behavioral pattern parameters, and the rectangles

their definitions domains. Using the behavioral pattern occurrence probability, a

population statistically close to the recorded one can then be created with the

generation algorithm.
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Using these inferred behavioral pattern parameters and the
generation algorithm, a population statistically close to the
recorded one is produced by using each behavioral pattern
function of its occurrence probability. The inferred behavioral
patterns represent accurately the space of recorded data, which is
promising for the use of this technique with real data sets.
10.4.5. Comparison with an intermediate solution

To further illustrate the interest of the approach, we compared
the results obtained using Behavioral Patterns with an intermedi-
ate solution. Indeed, another solution to introduce variety in the
simulation could be to select the parameters we want the
population to differ in, before applying simple statistical distribu-
tions to these parameters.

We created a population using this method and the same
distributions and proportions as those used in the setting
Sall_patterns. The maximal speed parameter of the vehicles were
therefore generated using either the probability distribution of
vmax,normal – a normal distribution of mean value m¼ 120 and
variance s¼ 10, see Table 2 – vmax,cautious or vmax,aggressive, used with
a respectively 80%, 10% and 10% probability. Similarly, the safety
time of the vehicles were generated using ts,normal, ts,cautious and
ts,aggressive, used with the same 80%, 10% and 10% respective
probabilities.

Fig. 9 presents the obtained results. Although the population
created with the intermediate solution presents a satisfying
variety of behaviors, some of those behaviors do not respect our
consistency criteria. Indeed, we observe vehicles having a high
maximal speed and high safety time, or low maximal speed and
low safety time. On the contrary, the use of Behavioral Patterns

guaranties that only behaviors consistent with the specified
behaviors appear: here, cautious drivers – low maximal speed
and high safety time –, normal and aggressive ones.

The consistency criteria, which was one of the objectives of the
proposed approach, can therefore not be tackled easily with a
simplified approach, when Behavioral Patterns successfully take
this issue into account.
10.5. Conclusion on the application to traffic simulation

Using behavioral patterns in scanerTM successfully introduces
driving styles in the simulation. The behavioral variety is increased,
and representative behaviors are created, which contributes to the
users’ immersion.

Furthermore, the designers’ work is simplified by the intro-
duction of the model. Vehicles parameter values are automati-
cally created, and definition domains can be easily adapted to the
context. The manual modification of vehicle parameters is there-
fore reduced, and the automation of scenario design increased.
Due to these contributions, the model has already been intro-
duced in the commercial version of the application.

However, this evaluation would benefit from a complementary
study in urban environments. Introducing deviant behaviors in
this context remains an open issue, as complex intersections
already require specific traffic models (Doniec et al., 2008). The
scanerTM traffic model is currently under improvement to be able
to successfully tackle this issue.

Considering future works on this application to traffic in
driving simulators, a very promizing perspective is the integration
of this approach with dedicated traffic simulation softwares.
Punzo and Ciuffo (2011) for instance associated scanerTM with a
traffic simulator to produce results that would be valid at the
macroscopic level, while allowing realistic vehicles behaviors in
the vicinity of the human driver. It would be very interesting to
evaluate if similar results could be obtained using the population
construction model, using for instance behavioral patterns
learned from real data or a traffic simulation software.
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11. Illustration of the genericity of the approach

The proposed tool can be used for different applications. For
instance, the introduction of variety in crowds simulation presented
in Section 2 is based on the variation of texture colors, accessories
and body shapes. In each of those cases, the method rests on the
random selection of values in constrained definition domains. Using
our approach, all those criteria can be included in Behavioral Patterns,
which would improve maintenance and flexibility of the solution.

All we have to do is to describe the pedestrians’ parameters
using the proposed semantics, and define associated behavioral
patterns. For instance, lets create Parameters for the color elements
(for example the shade Parameter shade, with Dshade ¼ ½20, 250� and
vdshade

¼ 135), Parameters for each accessory category (for example
the ‘‘men’s bag’’ Parameter bmen, with Dbmen

¼ fnone, briefcaseg and
vdbmen

¼ none), and a Parameter for the body shape (shape, with
Dshape ¼ ½30, 130� and vdshape

¼ 50). Then, we define a Behavioral

Pattern Bman, with PBman
¼ fshade, bmen, shapeg. The generation algo-

rithm naturally introduces variety using these values. Furthermore,
using this out-of-the-agent design, the configuration is available to
users who do not have any graphical expertise, when these
elements were previously hard-coded in the graphic models.
12. General discussion

The objective of this work was to improve the agents’ behavioral
realism in the simulation. The proposed approach focuses on the
behavioral variety and consistency, and is based on the use of the
agents’ configuration parameters. Whether or not these parameters
can be considered as representing the agents’ behavior determines
the relevance of the approach. As our work shows, the parameters
provide an easy and intuitive way to influence the agents’ behavior,
which addresses our issues. Moreover, using these parameters
allow the final users to intuitively implement the model contribu-
tions. We think this is one of the key strength of the model, as it
facilitates its use in industrial applications.

Another element to be considered is the validation of the model
contributions. Section 10 shows how the model introduces variety
in the simulation, and that the generated behaviors are conform to
the users’ expectations. However, the current evaluation should be
completed with a simulators user study. This study would prove
the validity of the approach on a limited set of settings, and allow to
improve the automated validation with complementary informa-
tions on the most significant parameters. We note that it remains
difficult, though, to demonstrate the model contributions without
any application frame: it would be very interesting to introduce
criteria enabling such a quantification.

Finally, behavioral patterns inference let appear one of the limits
of the approach. Punctual data that are used to infer behavioral
patterns do not accurately capture behaviors, because they do not
include a temporal dimension. The inferred behavioral patterns only
enable to reproduce the agents’ behaviors at the time of recording,
but not their behaviors over the time. These behavioral patterns
thus reflect the situation at a specific time step, but the situation will
probably quickly adopt a different course. In order to address this
issue, we plan to add a time-dependent analysis of the behaviors.
For instance, the agents’ behaviors could be recorded continuously,
and these profiles used to infer the behavioral patterns.
13. Future works

Some of the functionalities provided by the model have not been
fully used in the presented applications. Among them, behavioral
pattern properties and behavioral irregularities present fruitful
perspectives. Behavioral pattern properties enable the introduction
of context-specific patterns, which could be activated and deactivated
depending on the situation. For instance, a specific set of behavioral
patterns could be used for urban traffic, and another one for highway
traffic. The model would then switch automatically at runtime
depending on the vehicle position. As for behavioral irregularities,
they can be used to introduce unspecified behaviors in the simulation.
These different possibilities have to be explored in future applications.

Finally, a very promising development is the automation of
behavioral patterns creation. Indeed, one of the current limits of
the approach is the behaviors description, which is only based on
the agents’ parameters. Extending the model by automatically
creating a higher level system would provide interesting proper-
ties. The objective is to induce the behavioral patterns formal
definitions from the pattern implementation, with a bottom-up
approach. Indeed, our users know their application field: they
would define parameters and definition domains as they are now
used to, and, from these elements, patterns would be automati-
cally created. This work represents the next step in the automa-
tion and simplification of the process, which follows the
automation of patterns configuration presented in Section 8.
14. Conclusion

In this work, we proposed a formalization of the construction of
population for agent-based simulations. Our objective was to pro-
pose a solution improving the simulation realism, by simultaneously
taking into account the variety and consistency of the agents’
behaviors, and to provide a tool for scenario designers, to ease the
conception tasks. The proposed model involves three main dimen-
sions. The behaviors are described using behavioral patterns, based
on the agents’ behavioral parameters. This allows to specify beha-
viors during the conception of simulation scenario, and to control
this specification at runtime. A specific algorithm then instantiates
the parameter values from the behavioral patterns. This algorithm
provides two levels of randomness control: a global criteria and a
parameter based criteria. Finally, the third part of the model presents
an automated method for the construction of behavioral patterns
from sample data, based on automatic learning techniques.

These elements introduce variety in the simulation, using the
behavioral patterns definition capabilities, the properties of the
generation process, and the behavioral irregularities. Behaviors
consistency is ensured by the enforcement of a root behavioral
pattern and user defined parameters characterizing behaviors
variability. The model provides a generic approach and non-
intrusive solution, and allows an out-of-the-agent design.

We applied the model to traffic simulation in driving simula-
tors, using the software used at Renault, scanerTM . The objective
was to introduce the model contributions in the simulation, and
to ease scenario designers works. Experimental results showed
that the model increased the variety and produced representative
behaviors. These contributions as well as the flexibility of the
approach led to the integration of the model in the commercial
version of the application.

Finally, future works will address one of the limits of that
approach, the choice of a parameter based control of the beha-
viors. We will also pursue promising perspectives leading to fully
automate the model.
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