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Abstract

This paper deals with propositional belief merging. The key
problem in this setting is to define the beliefs/goals of a group
of agents from a profile of bases, gathering the beliefs/goals
of each member of the group. To this aim, a well-studied fam-
ily of merging operators consists of distance-based ones: the
models of the merged base are the closest interpretations to
the given profile. Many operators from this family are based
on the Hamming distance between interpretations, which can
be viewed as a degree of conflict between them. In this pa-
per, we introduce a more general family of merging oper-
ators, based on a more primitive concept, namely the con-
flict between interpretations itself. We show that this family
of conflict-based merging operators includes many operators
from the literature, both model-based ones and syntax-based
ones. We present a number of comparison relations on con-
flict vectors characterizing operators from this family, and
study the logical properties of conflict-based merging oper-
ators.

Introduction
Reasoning under inconsistency is a major challenge in arti-
ficial intelligence. Its importance is reflected by the number
of approaches considered so far for dealing with inconsistent
pieces of information. Among them are a number of para-
consistent logics, argumentative logics, belief revisionand
belief merging operators, knowledge integration techniques,
and so on, described in an abundant literature. Most of these
approaches have in common to be anchored on anotion of
conflict. In the propositional case, such conflicts can be de-
fined on the pieces of evidence themselves (i.e., represented
by formulas or sets of formulas) or on the corresponding
possible worlds (i.e., the interpretations of such formulas).

Now, those approaches to reasoning under inconsistency
can be discriminated by focusing on their objective and
the inputs they require. Thus, belief/goal merging aims at
defining the beliefs/goals of a group of agents/sources from
the individual belief/goal bases of the agents, gathered into
a profile, plus some integrity constraints (encoding laws
of Nature, norms, etc.), which has to be satisfied. Much
work has been devoted to the definition of such operators in
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the propositional case1 (Revesz 1993; Liberatore & Schaerf
1998; Baralet al. 1992; Konieczny & Pino Pérez 2002a;
Meyer, Pozos Parra, & Perrussel 2005), and to the study
of their properties w.r.t. different criteria, mainly log-
ical properties, strategy-proofness, complexity. See for
instance (Konieczny & Pino Pérez 2002a; Revesz 1997;
Liberatore & Schaerf 1998; Konieczny, Lang, & Marquis
2004) for postulates characterizing propositional merging
operators, (Everaere, Konieczny, & Marquis 2007) for an
investigation of strategy-proofness issues, and (Konieczny,
Lang, & Marquis 2004; Everaere, Konieczny, & Marquis
2007) for computational complexity results.

The two main families of belief merging operators gather
on the one hand the so-called “syntax-based” operators and
on the other hand, the “model-based” ones. In a nutshell,
syntax-based operators select subsets of formulas in the
union of all bases. Typically, only these subsets which do
not conflict with the given integrity constraints are selected.
Some further selection (“preference”) criteria can be usedas
well (they aim at preserving as much information as possi-
ble).

Model-based operators basically select the models of the
given integrity constraints which are as close as possible to
the profile of the group. Closeness is defined via a notion
of profile assignment which maps each profile to a binary
relation over interpretations, expressing that some interpre-
tations are at least as close to the profile than some oth-
ers. Very often, model-based operators are defined from a
distance between interpretations, which intuitively indicates
how conflicting they are. This distance between interpre-
tations induce a ”distance” between an interpretation and a
base, which indicates the degree of conflict between them.
Once such distances are computed, an aggregation function
is used to define the overall ”distance” of each model (of the
integrity constraints) to the profile. Semantically, the mod-
els of the result of the merging are the closest ones to the
profile, i.e., the models of the integrity constraints whichare
in some sense the less conflicting ones with the profile.

In order to define model-based merging operators, a com-
monly used distance between interppretations is the Ham-

1There are also works on merging in richer logical settings, see
for instance (Meyer 2001; Benferhatet al. 2002; Chopra, Ghose,
& Meyer 2002).



ming distance. The first use of this distance for defining be-
lief change operators can be traced back to the revision oper-
ator defined by Dalal (Dalal 1988). The Hamming distance
between two interpretations is the number of propositional
variables the two interpretations disagree on. The amount of
conflict between two interpretations is thus assessed as the
number of atoms whose truth values must be flipped in one
interpretation in order to make it identical to the second one.

The major problem with such distance-based merging op-
erators is that evaluating the closeness of interpretations as
a number can lead to lose too many information. In partic-
ular, the conflicting variables themselves (and not only how
many they are) can prove significant. Especially, when vari-
ables express real-world properties, it may happen that some
variables are more important than others, or that some vari-
ables are logically connected. In these cases, distances are
not fully satisfactory.

In the belief revision/update literature an interesting mea-
sure used to evaluate the closeness of two interpretations is
diff, the symmetrical difference between the two interpreta-
tions (see e.g., (Katsuno & Mendelzon 1991b; 1991a; Dalal
1988; Weber 1986; Satoh 1988; Borgida 1985; Winslett
1988)). Instead of evaluating the degree of conflict between
two interpretations as the number of variables on which they
differ (as it is the case with the Hamming distance), thediff
measure assesses it as the set of such variables. Stated oth-
erwise, instead of measuring the degree of conflict between
interpretations as the size of the conflict (which does not pre-
serve all the available information about the conflict since,
e.g., two distinct conflicts may easily have the same size),
such approaches use the conflict itself.

In this paper, we introduce and study the family of
conflict-based propositional merging operators, i.e., the
merging operators based on thediff measure. We show how
conflict-based operators are parameterized by a comparison
relation on conflict vectors. We present several such com-
parison relations, and define the corresponding merging op-
erators. Our contribution mainly is three fold. We show that
many merging operators from the literature (both syntax-
based ones and model-based ones) can be easily captured
in our framework. We explain how one can easily define
new merging operators by combining comparison relations
on conflict vectors (especially, through their lexicographic
product). Finally, we investigate the connections between
the properties of preference relations and the logical prop-
erties of the induced merging operators. Especially, we pro-
vide new conditions on profile assignments which prove suf-
ficient to ensure the corresponding merging operators to sat-
isfy some IC rationality postulates. Such conditions are then
used to determine the logical properties satisfied by conflict-
based merging operators, in the general case and in some
specific cases (depending on the associated comparison re-
lation on conflict vectors).

Formal Preliminaries
We consider a propositional languageL defined from a fi-
nite set of propositional variablesP and the usual connec-
tives. For any subsetc of P , |c| denotes the cardinality
of c. An interpretation (or world) is a total function from

P to {0, 1}, denoted by a bit vector whenever a strict to-
tal order onP is specified. The set of all interpretations
is notedW . An interpretationω is a model of a formula
φ ∈ L if and only if it makes it true in the usual truth func-
tional way. [φ] denotes the set of models of formulaφ, i.e.,
[φ] = {ω ∈ W | ω |= φ}. |= denotes logical entailment and
≡ denotes logical equivalence.

Let≤ be any relation;x ≃ y is a notation forx ≤ y and
y ≤ x, andx < y is a notation forx ≤ y andy 6≤ x.

A baseK denotes the set of beliefs/goals of an agent, it
is a finite and consistent set of propositional formulas, inter-
preted conjunctively. Unless stated otherwise, we identify
K with the conjunction of its elements.

A profile E denotes the group of agents that is involved
in the merging process. It is a vector of belief/goal bases
E = 〈K1, . . . , Kn〉 (observe that two agents are allowed to
exhibit identical bases). We denote by

∧

E the conjunction
of bases ofE = 〈K1, . . . , Kn〉, i.e.,

∧

E = K1 ∧ . . .∧Kn.
A profile E is said to be consistent if and only if

∧

E is
consistent. We say that two profilesE = 〈K1, . . . , Kn〉 and
E′ = 〈K ′

1, . . . , K
′
n〉 are equivalent, notedE1 ≡ E2, if there

exists a permutationπ from {1, . . . , n} to {1, . . . , n} such
that for everyi ∈ {1, . . . , n}, Ki andK ′

π(i) are logically
equivalent. ProfileE = 〈K1, . . . , Kn〉 is also often viewed
as the corresponding multi-set{K1, . . . , Kn} (when it is the
case, an anonymity assumption on the merging is implicitly
done: two equivalent profiles must lead to the same merged
base (up to logical equivalence)).

A merging operator is a mapping∆ : (E, µ) 7→ ∆µ(E),
which associates a profileE and a baseµ, the integrity con-
staints, to amerged base.

Model-based merging operators are typically character-
ized by a distance between interpretations and an aggrega-
tion function. Two widely used distances between interpre-
tations are Dalal distance (Dalal 1988), denoteddH , that is
the Hamming distance between interpretations (the number
of propositional variables on which the two interpretations
differ); and the drastic distance, denoteddD, that is the sim-
plest distance one can define: it gives0 if the two interpreta-
tions are the same one, and1 otherwise. And an aggregation
function is:

Definition 1 An aggregation functionf is a total function
associating a nonnegative real number to every finite tuple
of nonnegative real numbers s.t. for anyx1, . . . , xn, x, y ∈
R+:

• if x ≤ y, then
f(x1, . . . , x, . . . , xn) ≤ f(x1, . . . , y, . . . , xn).

(non-decreasingness)
• f(x1, . . . , xn) = 0 if and only ifx1 = . . . = xn = 0.

(minimality)
• f(x) = x. (identity)

Finally, the following properties for propositional merg-
ing operators have been pointed out in (Konieczny & Pino
Pérez 2002a). In these properties, profiles are consideredas
multi-sets of bases and⊔ denotes multi-set union.

(IC0) △µ(E) |= µ.

(IC1) If µ is consistent, then△µ(E) is consistent.



(IC2) If
∧

E is consistent withµ, then△µ(E) ≡
∧

E ∧ µ.

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then△µ1
(E1) ≡

△µ2
(E2).

(IC4) If K1 |= µ andK2 |= µ, then△µ({K1, K2})∧K1 is
consistent if and only if△µ({K1, K2})∧K2 is consistent.

(IC5) △µ(E1) ∧△µ(E2) |= △µ(E1 ⊔ E2).

(IC6) If △µ(E1) ∧△µ(E2) is consistent,
then△µ(E1 ⊔ E2) |= △µ(E1) ∧△µ(E2).

(IC7) △µ1
(E) ∧ µ2 |= △µ1∧µ2

(E).

(IC8) If △µ1
(E) ∧ µ2 is consistent,

then△µ1∧µ2
(E) |= △µ1

(E).

△ is an IC merging operator if and only if it satisfies the
postulates(IC0) to (IC8).

Conflict-Based Merging Operators
As evoked in the introduction, conflict-based merging oper-
ators rely on the notion of conflict between interpretations.
The conflict between two interpretationsω andω′ is defined
as follows:

diff(ω, ω′) = {p ∈ P | ω(p) 6= ω′(p)}.

As when standard distances are considered, we can
straightforwardly define adiff -based notion of closeness be-
tween an interpretation and a base, as the minimum close-
ness between the interpretation and the models of the base.
Of course, sincediff gives as output a set of variables in-
stead of a number, set-inclusion has to be considered as a
minimality criterion:

diff(ω, K) = min({diff(ω, ω′) | ω′ |= K},⊆).

So the closeness between an interpretation and a base is
measured as the set of the minimal sets (for set inclusion)
of propositional variables which differ between the interpre-
tation and the (models of the) base.

This notion of closeness can be extended to any profile
E = 〈K1, . . . , Kn〉 as follows:

diff(ω, E) = {〈cω
1 , cω

2 , . . . , cω
n〉 | c

ω
i ∈ diff(ω, Ki)}.

diff(ω, E) is thus a set of vectors of sets of propositional
variables; each such vector is referred to as a conflict vec-
tor. It has the same dimension asE. By construction, if
〈cω

1 , cω
2 , . . . , cω

n〉 belongs todiff(ω, E), thenω is a model of
the profile obtained fromE by forgetting in eachKi all the
variables fromcω

i (Lang, Liberatore, & Marquis 2003).
In order to define the merging of a profileE under in-

tegrity constraintsµ in a model-theoretic way, a standard
approach consists in selecting the models ofµ which are as
close as possible toE, through a binary relation≤E

R over in-
terpretations, whereω ≤E

R ω′ is interpreted as “ω is at least
as close toE asω′”. In the following, we show that many
such relations≤E

R can be derived fromdiff(ω, E). This is
achieved in two steps:

• We start with a relation�R which compares conflicts vec-
tors, so that we can check whether

〈c1, . . . , cn〉 �R 〈c
′
1, . . . , c

′
n〉.

• We lift the relation�R to sets of conflict vectors so as to
derive a corresponding relation over interpretations≤E

R.

We first present a number of comparison relations� on
vectors of subsets of the propositional variablesP , where
c � c′ intuitively means that the conflict vectorc is as much
as significant as the conflict vectorc′.

Definition 2 Let c = 〈c1, c2, . . . , cn〉 and c′ =
〈c′1, c

′
2, . . . , c

′
n〉 be two conflict vectors of dimensionn; let

f be ann-ary aggregation function. We consider permuta-
tionsπ : {1, . . . , n} → {1, . . . , n}. We consider the follow-
ing relations:

• c �⊆ c′ ⇔ ∀i ∈ {1, . . . , n}, ci ⊆ c′i.
• c �⊆π

c′ ⇔ ci ⊆ c′π(i), whereπ is a permutation

• c �∅ c′ ⇔ ∀i ∈ {1, . . . , n}, if c′i = ∅, thenci = ∅.
• c �∅π

c′ ⇔ if c′i = ∅, then cπ(i) = ∅, whereπ is a
permutation

• c �∪ c′ ⇔
⋃n

i=1 ci ⊆
⋃n

i=1 c′i.

• c �|∪| c′ ⇔|
⋃n

i=1 ci |≤|
⋃n

i=1 c′i |.

• c �f c′ ⇔ f(〈|c1|, . . . , |cn|〉) ≤ f(〈|c′1|, . . . , |c
′
n|〉).

• c �
f

c′ ⇔ f(〈||c1||, . . . , ||cn||〉) ≤ f(〈||c′1||, . . . , ||c
′
n||〉)

where||∅|| = 0 and||c|| = 1 if c 6= ∅.

Let us illustrate some of these relations on an example:

Example 1 Let c = 〈{a, b}, {c}, {b, c}, ∅〉 and c′ =
〈{a}, {b, c}, {c}, ∅〉. We have: c′ �⊆π

c, c �∅ c′ and
c′ �∅ c, c �∪ c′ and c′ �∪ c, for f = Σ, we have
f(〈| {a, b} |, | {c} |, | {b, c} |, | ∅ |〉) = 5 �Σ f(〈| {a} |, |
{b, c} |, | {c} |, | ∅ |〉) = 4.

All these relations have in common to privilege conflict
vectors reflecting as few conflict as possible in some sense
(this will be make precise later on, cf. Proposition 12).

Interestingly, one can figure out many other comparison
relations obtained by combining such relations�R on con-
flict vectors. There are several ways to do it. One of them is
based on the lexicographic product of relations:

Definition 3 Let�R and�S be two binary relations over
a setE. The lexicographic product�R.S=�R . �S is the
binary relation overE given by:

x �R.S y ⇔

{

x �R y andy 6�R x
or
x �R y, y �R x andx �S y

Once a comparison relation�R is chosen, it has be lifted
to sets of conflict vectors, in order to obtain≤E

R. On way to
do it is as follows:

Definition 4 LetE = 〈K1, . . . , Kn〉 be a profile and let�R

be a relation on conflict vectors of dimensionn. We define
the relation≤E

R overW byω ≤E
R ω′ ⇔ ∃c ∈ diff(ω, E) s.t.

∀c′ ∈ diff(ω′, E), we havec �R c′.

For space reasons, we focus on this unique lifting prin-
ciple in this paper. Other lifting principles could have been
considered, using other alternations of quantifiers in Defini-
tion 4. Our investigation of these additional principles has
shown that the one used here (∃ ∀) achieves a quite good



compromise, in the sense that it leads to merging operators
satisfying valuable properties (unlike for instance∃ ∃), with-
out being too restrictive (like∀ ∀, which leads to merging
operators with weak inferential power – i.e., almost all mod-
els ofµ can be kept).

Now that≤E
R is given, the corresponding conflict-based

merging operator can be defined as usual as the selection of
the models ofµ which are as close as possible toE w.r.t.
≤E

R:

Definition 5 Let E = 〈K1, . . . , Kn〉 be a profile,µ some
integrity constraints and let�R be a relation on conflict vec-
tors of dimensionn. We define

[∆diff,R
µ (E)] = min([µ],≤E

R).

As one may expect, the properties satisfied by�R have an
impact on the properties satisfied by∆diff,R

µ ; this concerns
both the inferential power of the merging operator and its
logical behaviour (as we will see in a forthcoming section).

We now explain how imposing some properties on�R

ensures some valuable logical properties for the correspond-
ing conflict-based merging operator∆diff,R. We start with
properties linking�R to≤E

R:

Proposition 1 LetE = 〈K1, . . . , Kn〉 be a profile:

• If �R is a transitive relation on conflict vectors of dimen-
sionn, then the corresponding lifted relation≤E

R on in-
terpretations is transitive.
• If �R is a total preorder (i.e., a reflexive and transitive

relation) on conflict vectors of dimensionn, then the cor-
responding lifted relation≤E

R on interpretations is a total
preorder.

Proof:

• If �R is a transitive relation on conflict vectors of dimen-
sionn, then the corresponding lifted relation≤E

R on inter-
pretations is transitive.

Transitivity: Suppose thatω ≤E
R ω1 andω1 ≤E

R ω2.
Then∃c ∈ diff(ω, E), ∀c′ ∈ diff(ω1, E), c �R c′.
We also have∃c1 ∈ diff(ω1, E), ∀c′ ∈ diff(ω2, E),
c1 �R c′. Sincec1 ∈ diff(ω1, E), we havec �R c1

andc1 �R c′. By transitivity of�R, we havec �R c′

∀c′ ∈ diff(ω2, E). Soω ≤E
R ω2.

• If �R is a total preorder on conflict vectors of dimension
n, then the corresponding lifted relation≤E

R on interpre-
tations is a total preorder.

Reflexivity: Letω be an interpretation. Sincediff(ω, E)
is finite and�R is a total preorder, there is at least one
least vectorc ∈ diff(ω, E) w.r.t. �R, so we have∃c ∈
diff(ω, E), ∀c′ ∈ diff(ω, E), c �R c′ andω ≤E

R ω.
Transitivity: See above.
Completeness: Letω andω′ be two interpretations. Let
c (resp. c′) be a least element ofdiff(ω, E) (resp.
diff(ω′, E)) w.r.t.�R. Since�R is total, we havec �R

c′ or c′ �R c. Assume thatc �R c′. Sincec′ is a least
element ofdiff(ω′, E), we have that∀c′′ ∈ diff(ω′, E),
c′ �R c′′. By transitivity of�R, we get thatc �R c′′.
Hence we have that∃c ∈ diff(ω, E), ∀c” ∈ diff(ω′, E),

c �R c”, and as a consequence,ω ≤E
R ω′. The remain-

ing casec′ �R c enables to conclude in a similar way
thatω′ ≤E

R ω. Finally, we get the expected conclusion:
ω ≤E

R ω′ or ω′ ≤E
R ω.

�

Observe that requiring�R to be reflexive is not enough
in general to ensure that the corresponding≤E

R is reflexive.
Contrastingly, as the previous proposition shows it, if�R is
a total preorder, then≤E

R is reflexive.
As to inferential power, it is now easy to show that:

Proposition 2 Let E = 〈K1, . . . , Kn〉 be a profile,µ an
integrity constraint and let�R,�S be two relations on con-
flict vectors of dimensionn. If �R ⊆ �S and�R is a total
preorder, then we have∆diff,R

µ (E) |= ∆diff,S
µ (E).

Proof: Towards a contradiction assume that there exists
a modelω of ∆diff,R

µ (E) which does not satisfy∆diff,S
µ (E).

Hence there exists a modelω′ of ∆diff,S
µ (E) such that

ω′ <E
S ω, so we must haveω 6�E

S ω′. From this and
Definition 4, we get that∀c ∈ diff(ω, E) ∃c′ ∈ diff(ω′, E),
c 6�S c′. Since�R ⊆ �S , we have thatc 6�R c′. Since
this holds for everyc ∈ diff(ω, E), we have thatω 6�E

R ω′.
Since�R is a total preorder, from Proposition 1, we know
that �E

R also is a total preorder. Sinceω is a model of
∆diff,R

µ (E), ω must be a least model ofµ w.r.t. �E
R: it

must be the case thatω �E
R ω′ for every modelω′ of µ, a

contradiction. �

This proposition explains why it is important to determine
which relations among the ones listed in Definition 2 are
total preorders, and how they are related w.r.t. set-inclusion.
We obtained the following easy proposition:

Proposition 3 All the relations listed in Definition 2 are
preorders, and�∅π

, �|∪|, �f , �
f

(for any aggregation

functionf ), are total ones.

Proof: The results come straightforwardly from the
fact that⊆ and≤ are orders, the latter one being total,
plus the fact that the composition of two permutations is a
permutation. �

As to the way they relate w.r.t. set-inclusion, we get:

Proposition 4 Let f by any aggregation function. The
inclusions between relations are stated in the Hasse dia-
gram depicted on Figure 1, where each arrow�A←�B

means that�A⊆�B, i.e. thatx �A y implies x �B y
(as usual with Hasse diagrams, for the sake of readibility,
arrows stemming from reflexivity and transitivity of⊆ are
not drawn).

Proof:

• �⊆:

�⊆⊆�⊆π
. Obvious.

�⊆⊆�f for any aggregation functionf . Suppose that
c �⊆ c′. Then,∀i ∈ {1, . . . , n}, ci ⊆ c′i. As a conse-
quence,∀i ∈ {1, . . . , n}, | ci |≤| c′i |. Sincef is not



�⊆π
�∪ �|∪|

�⊆ �f

�
f

�∅ �∅π

Figure 1: Inclusion of relations

decreasing, we havef(〈| c1 |, | c2 |, . . . , | cn |〉) ≤
f(〈| c′1 |, | c

′
2 |, . . . , | c

′
n |〉) andc �f c′.

�⊆⊆�
f

for any aggregation functionf . Suppose that

c �⊆ c′. Then,∀i ∈ {1, . . . , n}, ci ⊆ c′i. As a con-
sequence,∀i ∈ {1, . . . , n}, if c′i = ∅ thenci = ∅. So
∀i ∈ {1, . . . , n}, || ci ||≤|| c′i ||. Sincef is not de-
creasing, we havef(〈|| c1 ||, || c2 ||, . . . , || cn ||〉) ≤
f(〈|| c′1 ||, || c

′
2 ||, . . . , || c

′
n ||〉) andc �

f
c′.

• �⊆π
:

�⊆π
⊆�∪. Suppose thatc �⊆π

c′. Then, ∀i ∈
{1, . . . , n}, ci ⊆ c′i, and

⋃n
i=1 ci ⊆

⋃n
i=1 c′i soc �∪ c′.

• �∪:

�∪⊆�|∪|. Obvious.

• �∅:

�∅⊆�∅π
. Obvious.

�∅⊆�f
for any aggregation functionf . Suppose that

c �∅ c′. Then∀i ∈ {1, . . . , n}, if c′i = ∅, thenci = ∅.
So ∀i ∈ {1, . . . , n}, || ci ||≤|| c′i ||. Sincef is not
decreasing, we havef(〈|| c1 ||, || c2 ||, . . . , || cn ||〉) ≤
f(〈|| c′1 ||, || c

′
2 ||, . . . , || c

′
n ||〉) andc �

f
c′.

�

No other inclusion relation is satisfied by the preorders
given in Definition 2. Especially,�∅ and�⊆ cannot be
compared w.r.t.⊆, as well as�∅ and�∪.

Many Merging Operators
are Conflict-Based Ones

Let us now show that many merging operators from the lit-
erature are conflict-based ones. Our purpose is not to be ex-
haustive here but to show that a variety of operators, includ-
ing both model-based ones and syntax-based ones, can be
recovered as conflict-based operators. We first show that all
the model-based merging operators based on the Hamming
distance or the drastic distance are conflict-based ones:

Proposition 5 For any aggregation functionf , we have
∆dH ,f = ∆diff,f .

Proof: The proof is based on the fact that for any in-
terpretationω and any baseKi, we have: dH(ω, Ki) =

minci∈diff(ω,Ki)(| ci |,≤). Since an aggregation function
is not decreasing, we have:

dH(ω, {K1, K2, . . . , Kn}) =

minci∈diff(ω,Ki),1≤i≤n(f(〈| c1 |, | c2 |, . . . , | cn |〉),≤).

We have:

ω ≤E

f
ω′ ⇔ ∃c(ω, E) ∈ diff(ω, E), s.t.

∀c(ω′, E) ∈ diff(ω′, E), c(ω, E) �f c(ω′, E).

This is equivalent to:

ω ≤E
f

ω′ ⇔ ∃c(ω, E) ∈ diff(ω, E), s.t.

∀c(ω′, E) ∈ diff(ω′, E),

f(〈| c1 |, | c2 |, . . . , | cn |〉) ≤ f(〈| c′1 |, | c
′
2 |, . . . , | c

′
n |〉).

Hence, the models ofµ that are minimal w.r.t.≤diff,f
µ are

exactly the models ofµ minimal w.r.t.≤E
dH

.

�

Proposition 6 For any aggregation functionf , we have

∆dD,f = ∆diff,f .

Proof: For any interpretationω, we havedD(ω, Ki) =
minci∈diff(ω,Ki)(|| ci ||),≤). Then we have:

dD(ω, {K1, K2, . . . , Kn}) =

minci∈diff(ω,Ki),1≤i≤n(f(〈|| c1 ||), || c2 ||, . . . , || cn ||〉),≤).

Hence, the models ofµ that are minimal w.r.t. ≤E

f
are

exactly the models ofµ minimal w.r.t.≤E
dD

. �

Syntax-based operators can be also easily recovered. Let
us show now how to define in the conflict-based framework
the operators∆C1 and∆C4 considered in (Baral, Kraus, &
Minker 1991; Baralet al. 1992; Konieczny 2000):

Proposition 7 ∆C1 = ∆diff,∅.

Proof: We know that∆C1

µ ≡
∨

{M ∈ MAXCONS(
⋃

Ki∈E Ki, µ)}. MAXCONS(
⋃

Ki∈E Ki, µ) is the set of
all maximal (for inclusion) consistent subsets of formulas
of

⋃

Ki∈E Ki ∪ µ. Any M ∈ MAXCONS(
⋃

Ki∈E Ki,
µ) corresponds to a conflict vector containing a maximum
(w.r.t. pointwise inclusion) of coordinates equal to∅. So the
models of∆C1

µ are exactly the models of∆diff,∅
µ . �

Proposition 8 ∆C4 = ∆diff,∅π .

Proof: We know that ∆C4

µ ≡
∨

{M ∈
MAXCONScard(

⋃

Ki∈E Ki, µ)}. MAXCONScard(
⋃

Ki∈E Ki, µ) is the set of all maximal (for cardinality)
consistent subsets of formulas of

⋃

Ki∈E Ki ∪ µ. Any
M ∈ MAXCONScard(

⋃

Ki∈E Ki, µ) corresponds to a
conflict vector containing a maximum (w.r.t. cardinality) of
coordinates equal to∅. So the models of∆C4

µ are exactly
the models of∆diff,∅π

µ . �



ω diff(ω, K1) diff(ω, K2) Gmax(〈| c1 |, | c2 |〉) | c1 ∪ c2 |
000 {{a}, {b, c}} {∅} (1, 0) 1
111 {∅} {{a}} (1, 0) 1

Table 1:∆diff,Gmax.|∪|
µ (E1)

ω diff(ω, K1) diff(ω, K3) Gmax(〈| c1 |, | c3 |〉) | c1 ∪ c3 |
000 {{a}, {b, c}} {∅} (1, 0) 1
111 {∅} {{b}} (1, 0) 1

Table 2:∆diff,Gmax.|∪|
µ (E2)

ω diff(ω, K1) diff(ω, K2) diff(ω, K1) diff(ω, K3) Gmax(〈| ci |〉) |
⋃

ci |
000 {{a}, {b, c}} {∅} {{a}, {b, c}} {∅} (1, 1, 0, 0) 1
111 {∅} {{a}} {∅} {{b}} (1, 1, 0, 0) 2

Table 3:∆diff,Gmax.|∪|
µ (E1 ⊔ E2)

Generating New Merging Operators
As evoked in a previous section, one can easily generate new
conflict-based operators by combining comparison relations
�R on conflict vectors using lexicographic product.

Obviously enough, the lexicographic product of�R by
�S leads to a relation�R.S = �R . �S refining �R:
�R.S ⊆ �R. As shown by Proposition 2, if�R.S is a to-
tal preorder (which is ensured whenever both�R and≺S

are total preorders), then more information is typically pre-
served by the conflict-based merging based on�R.S in the
sense that∆diff,R.S

µ (E) |= ∆diff,R
µ (E) for anyE andµ.

One of the main motivations for introducing conflict-
based merging operators is that they include new merg-
ing operators, refining existing ones. Thus using the lex-
icographic product, one can define new operators based
on usual model-based operators (Konieczny & Pino Pérez
2002b), like∆dH ,Gmax, ∆dH ,Σ, etc. so that the new opera-
tors have a stronger inferential power.

The gain of inferential power achieved by such refine-
ments may easily lead to get rid of some logical properties,
i.e., ∆diff,R.S does not always satisfy all the postulates sat-
isfied by∆diff,R

µ . For the sake of illustration let us consider

the conflict-based merging operator given by∆
diff,Gmax.|∪|
µ

(�Gmax . �|∪| is a total preorder).2

Proposition 9 ∆diff,Gmax.|∪| satisfies(IC0), (IC1), (IC2),
(IC3), (IC4), (IC7), (IC8). It does not satisfy(IC5) or
(IC6).

Proof:

• (IC0), (IC1), (IC7) and (IC8) come from Proposition 11.

• (IC2): If
∧

E∧µ is consistent, then any modelω of
∧

E∧
µ satisfies:

minci∈diff(ω,Ki),1≤i≤n(Gmax(〈| c1 |, . . . , | cn |〉),≤)

2Remind that whenf is an aggregation function,f denotes the
aggregation of the cardinalities of the input sets. See Definition 2.

= (0, . . . , 0)

andminci∈diff(ω,Ki) |
⋃n

i=1 ci |= 0.

So the models of∆diff,Gmax.|∪|
µ (E) are exactly the models

of
∧

E ∧ µ.

• (IC3): Obvious.

• (IC4): ∆diff,Gmax satisfies(IC4). We have to show
that its refinement by| ∪ | preserves this prop-
erty. Suppose thatK1 |= µ, K2 |= µ and that

∆
diff,Gmax.|∪|
µ ({K1, K2}) ∧K1 is consistent.

Let ω be a model of∆diff,Gmax.|∪|
µ ({K1, K2}) ∧ K1

and let c be the minimal vector ofdiff(ω, {K1, K2})
w.r.t. �Gmax.|∪|. Let ω2 be the model ofK2

such that c = diff(ω, {K1, {ω2}}) = 〈∅, c2〉.
Then 〈∅, c2〉 ∈ diff(ω2, {K1, K2}). Since 〈∅, c2〉
is minimal for �Gmax.|∪|, 〈c2, ∅〉 is minimal as

well. So ω2 |= ∆
diff,Gmax.|∪|
µ ({K1, K2}) and

∆
diff,Gmax.|∪|
µ ({K1, K2}) ∧K2 is consistent.

• (IC5): We consider the basesK1 = (a ∧ ¬b ∧ ¬c) ∨
(a ∧ b ∧ c), K2 = (¬a ∧ b ∧ c) ∨ (¬a ∧ ¬b ∧ ¬c),
K3 = (a ∧ ¬b ∧ c) ∨ (¬a ∧ ¬b ∧ ¬c), and two profiles
E1 = {K1, K2} and E2 = {K1, K3}. The integrity
constraint isµ = (a ∧ b ∧ c) ∨ (¬a ∧ ¬b ∧ ¬c).
Details of computations are in Tables 1, 2 and

3. We have [∆
diff,Gmax.|∪|
µ (E1)] = {000, 111},

[∆
diff,Gmax.|∪|
µ (E2)] = {000, 111}. We also

have [∆
diff,Gmax.|∪|
µ (E1 ⊔ E2)] = {000}, and

∆
diff,Gmax.|∪|
µ (E1) ∧ ∆

diff,Gmax.|∪|
µ (E2) 6|=

∆
diff,Gmax.|∪|
µ (E1 ⊔ E2).

• (IC6): We consider the basesK1 = (¬a ∧ ¬b ∧ ¬c) ∨
(a ∧ b ∧ c), K2 = (a ∧ b ∧ ¬c) ∨ (a ∧ b ∧ c),
K3 = (¬a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c), and



ω diff(ω, K1) diff(ω, K2) Gmax(〈| c1 |, | c2 |〉) | c1 ∪ c2 |
100 {{a}, {b, c}} {{b}} (1, 1) 2
011 {{a}, {b, c}} {{a}} (1, 1) 1

Table 4:∆diff,Gmax.|∪|
µ (E1)

ω diff(ω, K3) diff(ω, K4) Gmax(〈| c3 |, | c4 |〉) | c3 ∪ c4 |
100 {{a}} {{{b}, {a, c}}} (1, 1) 2
011 {{{b}}} {{b}, {a, c}} (1, 1) 1

Table 5:diff
diff,Gmax.|∪|
µ (E2)

ω diff(ω, K1) diff(ω, K2) diff(ω, K3) diff(ω, K4) Gmax(〈| ci |〉) |
⋃

ci |
100 {{a}, {b, c}} {{b}} {{a}} {{{b}, {a, c}}} (1, 1, 1, 1) 2
011 {{a}, {b, c}} {{a}} {{{b}}} {{b}, {a, c}} (1, 1, 1, 1) 2

Table 6:∆diff,Gmax.|∪|
µ (E1 ⊔ E2)

K4 = (a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c). We consider
also two profilesE1 = {K1, K2} andE2 = {K3, K4}.
The integrity constraint isµ = (a∧¬b∧¬c)∨(¬a∧b∧c).
Details of computations are in Tables 4, 5 and

6. We have [∆
diff,Gmax.|∪|
µ (E1)] = {011},

[∆
diff,Gmax.|∪|
µ (E2)] = {011}. We also have

[∆
diff,Gmax.|∪|
µ (E1 ⊔ E2)] = {100, 011}, and

∆
diff,Gmax.|∪|
µ (E1 ⊔ E2) 6|= ∆

diff,Gmax.|∪|
µ (E1) ∧

∆
diff,Gmax.|∪|
µ (E2).

�

Compared to∆dH ,Gmax (IC5) and (IC6) are lost by
∆diff,Gmax.|∪|. This is the price to be paid for a more ac-
curate conflict evaluation in some scenarios.

Nonetheless, some examples show that, although such re-
fined operators do not satisfy all the expected logical prop-
erties for merging, they can prove more adequate than usual
model-based operators in some cases. For instance, let us
consider the following profileE = 〈K1, K2, K3, K4〉where
Ki are reported in Table 7 and the constraintµ is such that
[µ] = {ω1, ω2}. Clearly the Hamming distancedH does not
discriminate between the two possible worlds, which can be
problematic. Forω1, all the agents agree on what they dis-
agree (i.e., the conflict is ona), while this is not the case for
ω2. Operators based on the Hamming distance cannot make
this distinction. Although the Hamming distances of the two
interpretations to the bases are all identical and equal to1,
thediff distance exhibits the fact that there is less conflict on
ω1 than onω2 (while flipping the variablea in ω1 is enough
to obtain a model of all the bases, it is not the case withω2).
We believe that this kind of examples opens the way for dis-
cussions on the scenarios where this behaviour is necessary,
and on the logical characterization of this behaviour.

From Properties on�R to Logical Properties
on ∆

diff,R

The price to be paid by the generality of the family of
conflict-based merging operators is that only few logical
postulates can be guaranteed if no conditions are imposed
on the underlying preference relation. Especially none of
(IC4), (IC5), and (IC6) can be guaranteed in the general
case since∆C4 does not satisfy them, while it is a conflict-
based merging operator (cf. Proposition 8). Contrastingly,
as a direct consequence of Propositions 5 and 6, the family
of conflict-based merging operators also includes a number
of “fully rational” merging operators (i.e., IC merging ones).

Let us now present the logical properties satisfied by
conflict-based merging operators. (Konieczny & Pino Pérez
2002a) give a representation theorem allowing to define IC
merging operators from assignments which associate a pre-
order on interpretations to each profile. For the representa-
tion theorem to hold, the assignment has to satisfy a set of
properties that are not satisfied by all conflict-based merg-
ing operators. So it is interesting to determine the properties
which are guaranteed by conflict-based operators. To this
purpose, it is useful to recall first the representation theorem
from (Konieczny & Pino Pérez 2002a). It is based on the
notion of syncretic assignment:

Definition 6 A profile assignmentis a functionϕ mapping
each profileE to a relation≤E over interpretations. let us
consider the following properties on such assignments, for
anyω, ω′ ∈ W :

(0). ≤E is a total preorder.
(1). If ω |=

∧

E andω′ |=
∧

E, thenω ≃E ω′.
(2). If ω |=

∧

E andω′ 6|=
∧

E, thenω <E ω′.
(3). If E1 ≡ E2, then≤E1

=≤E2
.

(4). ∀ω |= K ∃ω′ |= K ′ ω′ ≤{K,K′} ω.

(5). If ω ≤E1
ω′ andω ≤E2

ω′, thenω ≤E1⊔E2
ω′.

(6). If ω <E1
ω′ andω ≤E2

ω′, thenω <E1⊔E2
ω′.



diff(ω, K1) diff(ω, K2) diff(ω, K3) diff(ω, K4)
ω1 {{a}} {{a}} {{a}} {{a}}
ω2 {{a}} {{b}} {{c}} {{d}}

Table 7: How to discriminate betweenω1 andω2?

A syncretic assignmentis a profile assignment which satis-
fies properties (0-6).

The representation theorem states that:

Proposition 10 (Konieczny & Pino Ṕerez 2002a)△ is an
IC merging operator if and only if there exists a syncretic
assignment which maps each profileE to a total preorder
≤E such that

[△µ(E)] = min([µ],≤E).

Note that the conditions required on the assignment by
this theorem are numerous, in particular it asks the relations
given by the syncretic assignments to be total preorders.

The problem is that some comparison relations at work in
in Definition 2, and used in Definitions 4 lead to relations
which are not total preorders. So a key issue is to determine
the properties ensured when this assumption on syncretic as-
signments is relaxed. The following proposition addresses
it:

Proposition 11 Let ϕ be a profile assignment which as-
sociates to each profileE a relation ≤E on interpreta-
tions. Let△ be the merging operator given by[△µ(E)] =
min([µ],≤E). Then△ satisfies:

• (IC0), (IC1), (IC7), and(IC8).
• (IC2) if ϕ satisfies conditions (1) and (2).
• (IC3) if ϕ satisfies condition (3).
• (IC4) if ϕ satisfies condition (4).
• (IC5) if ϕ satisfies condition (5’): ifω <E1⊔E2

ω′, then
ω <E1

ω′ or ω <E2
ω′.3

• (IC6) if ϕ satisfies conditions (0) and (6).

Proof:

(IC0): By definition[△µ(E)] ⊆ [µ].
(IC1): If µ is consistent, then[µ] 6= ∅ and, as there is a
finite number of interpretations, there is no infinite descend-
ing chains of strict inequalities, somin([µ],≤E) 6= ∅ . Then
△µ(E) is consistent.
(IC2): Assume that

∧

E ∧µ is consistent. We want to show
thatmin([µ],≤E) = [

∧

E ∧ µ]. First note that ifω |= E
then from conditions (1) and (2),ω ∈ min([µ],≤E). So
min([µ],≤E) ⊇ [

∧

E ∧µ]. For the other inclusion consider
ω ∈ min([µ],≤E). Suppose towards a contradiction that
ω 6|= E ∧ µ. So ω 6|= E, by condition (2) we know that
∀ω′ |= E ∧ µ (

∧

E ∧ µ is consistent by assumption)ω′ <E

ω. Soω /∈ min([µ],≤E). Contradiction.
(IC3): Direct from condition (3) and the definition of△.

3Note that for assignments satisfying condition (0), like syn-
cretic assignments, conditions (5) and (5’) are equivalent.

(IC4): Assume thatK |= µ, K ′ |= µ, and△µ({K, K ′}) ∧
K 6|= ⊥, we want to show that△µ({K, K ′}) ∧ K ′ 6|= ⊥.
Considerω |= △µ({K, K ′}) ∧ K. Then ∄ω′ |= µ s.t.
ω′ <{K,K′} ω. But from condition (4)∃ω′ |= K ′ s.t.
ω′ ≤{K,K′} ω. Sinceω′ |= µ, this means thatω′ ≃{K,K′}

ω. Soω′ ∈ min([µ],≤{K,K′}). Henceω′ |= △µ({K, K ′})
and therefore△µ({K, K ′}) ∧K ′ 6|= ⊥.
(IC5): If ω |= △µ(E1) ∧ △µ(E2) thenω ∈ min([µ],≤E1

)
and so∄ω′ |= µ s.t. ω′ <E1

ω. We have in the same way
∄ω′ |= µ s.t. ω′ <E2

ω. So we have that∄ω′ |= µ s.t.
ω′ <E1⊔E2

ω (otherwise by condition (5’) a contradiction
would follow). Soω ∈ min([µ],≤E1⊔E2

). So by definition
ω |= △µ(E1 ⊔E2).
(IC6): Assume that△µ(E1) ∧ △µ(E2) is consistent. We
want to show that△µ(E1 ⊔ E2) |= △µ(E1) ∧ △µ(E2)
holds. Takeω |= △µ(E1 ⊔E2), so∄ω′ |= µ s.t.ω′ <E1⊔E2

ω. Suppose towards a contradiction thatω 6|= △µ(E1) ∧
△µ(E2). Soω 6|= △µ(E1) or ω 6|= △µ(E2). Suppose that
ω 6|= △µ(E1) (the other case is symmetrical). So∃ω′ |= µ
s.t. ω′ <E1

ω (*). As △µ(E1) ∧ △µ(E2) is consistent
∃ω′′ |= △µ(E1) ∧ △µ(E2). So∄ω′ |= µ s.t. ω′ <E1

ω′′

and∄ω′ |= µ s.t. ω′ <E2
ω′′. By condition (0) the two

last inequalities are equivalent to respectively∀ω′ |= µ s.t.
ω′′ ≤E1

ω′ and∀ω′ |= µ s.t. ω′′ ≤E2
ω′. Then by (*) and

transitivity (from condition (0)) we have thatω′′ <E1
ω.

And by condition (6) we obtainω′′ <E1⊔E2
ω. Contradic-

tion.
(IC7): Let us takeω |= △µ1

(E) ∧ µ2. We have∄ω′ |= µ1

s.t. ω′ <E ω. So∄ω′ |= µ1 ∧ µ2 s.t. ω′ <E ω, soω |=
△µ1∧µ2

(E).
(IC8): Assume that△µ1

(E) ∧ µ2 is consistent, so∃ω′ |=
△µ1

(E) ∧ µ2. Considerω |= △µ1∧µ2
(E) and suppose that

ω 6|= △µ1
(E). Soω′ <E ω. But ω′ |= µ1 ∧ µ2 thenω /∈

min([µ1∧µ2],≤E). Thusω 6|= △µ1∧µ2
(E). Contradiction.

�

As a consequence, we easily get that:

Proposition 12 Conflict-based merging operators∆diff,R

satisfy(IC0), (IC1), (IC7), (IC8).
Furthermore let us consider the two following properties on
the relation�R:

• for anyn > 0, 〈∅, . . . , ∅〉 is the unique minimal element
w.r.t.�R of the set of all conflict vectors of dimensionn,

(minimality of empties)

• for any conflict vectorsc andc′ of dimensionn we have
c ≃R c′ when there exists a permutationπ : {1, . . . , n}
→ {1, . . . , n} such that for everyi ∈ 1 . . . n, c′i = cπ(i),

(permutation irrelevance)

Then:



• If �R satisfies minimality of empties then∆diff,R satisfies
(IC2).
• If �R satisfies permutation irrelevance then∆diff,R satis-

fies(IC3).
Since it is easy to show that all the relations listed in Def-

inition 2 satisfy minimality of empties, we obtained that
the corresponding conflict-based merging operators satisfy
(IC2). Similarly, it is easy to prove that all the relations
listed in Definition 2, except�⊆, �∅, and�f or �

f
when

f is not symmetric in any argument, satisfy premutation ir-
relevance; hence the corresponding conflict-based merging
operators satisfy(IC3).

More specifically, we have studied the logical properties
of many conflict-based operators relying on preorders given
in Definition 2. In the following, we refrain from consid-

ering ∆diff,∅π , ∆diff,f , or ∆diff,f since such operators are
equivalent to operators already considered in the literature
(and such an investigation has already been achieved for
them), and just report the results for two operators:

Proposition 13 • ∆diff,⊆π satisfies(IC0), (IC1), (IC2),
(IC3), (IC4), (IC7) and (IC8). It does not satisfy(IC5)
or (IC6).
• ∆diff,∪ satisfies(IC0), (IC1), (IC2), (IC3), (IC4), (IC7)

and(IC8). It does not satisfy(IC5) or (IC6).
The proof of Proposition 13 is mainly based on results

induced by Propositions 11 and 12, and on counterexamples
to (IC5) and(IC6). Since the rest of the proof is easy, we
just give the counterexamples to(IC5) and(IC6) below.
Proof:

• ∆diff,⊆π

(IC5): We consider the basesK1 = a ∧ ¬b ∧ ¬c and
K2 = ¬a ∧ ¬b ∧ c. The profiles areE1 = {K1} and
E2 = {K2}. The integrity constraint isµ = (a ∧ b ∧
c) ∨ (¬a ∧ ¬b ∧ ¬c). Details of computations are in
Table 8.

ω diff(ω, K1) diff(ω, K2) diff(ω, E1 ⊔ E2)
000 {{a}} {{c}} 〈{a}, {c}〉
111 {{b, c}} {{a, b}} 〈{b, c}, {a, b}〉

Table 8:∆diff,⊆π does not satisfy(IC5)

We have [∆diff,⊆π

µ (E1)] = {000, 111},
[∆diff,⊆π

µ (E2)] = {000, 111}, but [∆diff,⊆π

µ (E1 ⊔

E2)] = {000}, and ∆diff,⊆π

µ (E1) ∧∆diff,⊆π

µ (E2) 6|=

∆diff,⊆π

µ (E1 ⊔ E2).
(IC6): We consider the basesK1 = a ∧ ¬b ∧ ¬c ∧ ¬d
andK2 = a∧b∧¬c∧¬d. The profiles areE1 = {K1}
andE2 = {K2}. The integrity constraint isµ = (a ∧
b∧ c∧¬d)∨ (¬a∧¬c∧¬d). Details of computations
are in Table 9.
We have [∆diff,⊆π

µ (E1)] = {0000, 1110},
[∆diff,⊆π

µ (E2)] = {0100, 1110}, but [∆diff,⊆π

µ (E1 ⊔

E2)] = {0000, 0100, 1110}, and∆diff,⊆π

µ (E1 ⊔E2) 6|=

∆diff,⊆π

µ (E1) ∧∆diff,⊆π

µ (E2).

ω diff(ω, K1) diff(ω, K2) diff(ω, E1 ⊔ E2)
0000 {{a}} {{a, b}} 〈{a}, {a, b}〉
0100 {{a, b}} {{a}} 〈{a, b}, {a}〉
1110 {{b, c}} {{c}} 〈{b, c}, {c}〉

Table 9:∆diff,⊆π does not satisfy(IC6)

�

Conclusion
In this paper we introduced conflict-based merging opera-
tors. These operators are similar to usual model-based op-
erators, in the sense that they select in the set of models
of the integrity constraints, the models that are the clos-
est ones to the profile under consideration. However, while
usual model-based operators definition relies on a definition
of distance between interpretations (very often the Ham-
ming distance), conflict-based merging operators take into
account the conflict itself, through thediff measure, instead
of its size.

This diff measure has been exploited previously for
defining revision/update operators (Katsuno & Mendelzon
1991b; 1991a; Weber 1986; Satoh 1988; Borgida 1985;
Winslett 1988), but as far as we know, it has not been con-
sidered before for defining merging operators.

Our framework for conflict-based merging operators ap-
pears as a very general setting for defining merging opera-
tors; especially, many merging operators from the literature
can be recovered in this framework. Furthermore, the pos-
sibility to combine comparison relations allows to define re-
finements (with respect to inference) of many well-known
operators.

We have shown that such refinements may satisfy less log-
ical properties for merging than their original counterparts.
But we have also shown that they allow to discriminate con-
flicts in a subtle way, not achievable by distance-based op-
erators. At a first glance, it looks that such distinctions are
incompatible with postulates(IC5) and (IC6). It is a per-
spective for further research to determine whether there ex-
ist conflict-based merging operators enabling a fine-grained
discrimination of conflicts and satisfying(IC5) and(IC6).

One interesting issue for further work would be to deter-
mine a representation theorem, in order to fully characterize
the set of conflict-based merging operators from a logical
point of view. Propositions 11 and 12 already state some of
the properties they satisfy, but do not characterize them inan
accurate way. Though interesting, it seems to be a difficult
task, since today there is no such representation theorem for
any family of merging operators. Especially, while model-
based merging operators (definable from a distance and an
aggregation function) are often taken as examples to illus-
trate the representation theorem of (Konieczny & Pino Pérez
2002b) for characterizing IC merging operators in terms of
syncretic assignements, determining whether the set of IC
merging operators is exactly the set of model-based merging
operators is still an open issue.
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