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Abstract the propositional cad¢Revesz 1993; Liberatore & Schaerf

1998; Baralet al. 1992; Konieczny & Pino Pérez 2002a;
This paper deals with propositional belief merging. The key  Meyer, Pozos Parra, & Perrussel 2005), and to the study
problem in this setting is to define the beliefs/goals of aigro of their properties w.r.t. different criteria, mainly log-
of agents from a profile of bases, gathering the beliefsggoal ical properties, strategy-proofness, complexity. See for
of each member of the group. To this aim, a well-studied fam- instance (Koni'eczny 2 Pino P'erezy 2002a" Re\./esz 1997:

ily of merging operators consists of distance-based omes: t . . . .
models of the merged base are the closest interpretations to ~ Liberatore & Schaerf 1998; Konieczny, Lang, & Marquis

the given profile. Many operators from this family are based 2004) for postulates characterizing propositional meggin
on the Hamming distance between interpretations, which can ~ operators, (Everaere, Konieczny, & Marquis 2007) for an
be viewed as a degree of conflict between them. In this pa-  investigation of strategy-proofness issues, and (Komigcz

per, we introduce a more general family of merging oper- Lang, & Marquis 2004; Everaere, Konieczny, & Marquis
ators, based on a more primitive concept, namely the con-  2007) for computational complexity results.
flict between interpretations itself. We show that this figmi The two main families of belief merging operators gather

of conflict-based merging operators includes many opesator

from the literature, both model-based ones and syntaxdbase on the one hand the so-called *syntax-based” operators and

ones. We present a number of comparison relations on con- on the other hand, the “model-based” ones. In a nutfshell,
flict vectors characterizing operators from this familydan syntax-based operators select subsets of formulas in the
study the logical properties of conflict-based merging eper union of all bases. Typically, only these subsets which do
ators. not conflict with the given integrity constraints are setekt
Some further selection (“preference”) criteria can be wesed
] well (they aim at preserving as much information as possi-
Introduction ble).

Reasoning under inconsistency is a major challenge in arti- _ Model-based operators basically select the models of the
ficial intelligence. Its importance is reflected by the numbe ~ 9iVen integrity constraints which are as close as possible t

of approaches considered so far for dealing with inconsiste  the profile of the group. Closeness is defined via a notion
pieces of information. Among them are a number of para- ©f Profile assignment which maps each profile to a binary
consistent logics, argumentative logics, belief revisionl relation over interpretations, expressing that some pnéer

belief merging operators, knowledge integration techeigu tations are at least as close to the profile than some oth-

and so on, described in an abundant literature. Most of these €S- Very often, model-based operators are defined from a
approaches have in common to be anchored ootéon of distance between interpretations, which intuitively cades

conflict In the propositional case, such conflicts can be de- NoW conflicting they are. This distance between interpre-

fined on the pieces of evidence themselves (i.e., reprasente @tions induce a "distance” between an interpretation and a
by formulas or sets of formulas) or on the corresponding base, which indicates the degree of conflict between them.

possible worlds (i.e., the interpretations of such forrajla Once such distances are computed, an aggregation function

Now, those approaches to reasoning under inconsistency 'S Used to define the overall "distance” of each model (of the
can be discriminated by focusing on their objective and integrity constraints) to the p_roflle. Semantically, thedno
the inputs they require. Thus, belief/goal merging aims at els (.)f the result of the merging are the C'OSQSt ones to the
defining the beliefs/goals of a group of agents/sources from Profile, i.e., the models of the integrity constraints whech

the individual belief/goal bases of the agents, gatherted in In some sense the less conflicting ones with the profile.
a profile, plus some integrity constraints (encoding laws In order to define model-based merging operators, a com-

of Nature, norms, etc.), which has to be satisfied. Much monly used distance between interppretations is the Ham-

work has been devoted to the definition of such operators in

There are also works on merging in richer logical settings, s
Copyright(©) 2008, Association for the Advancement of Artificial ~ for instance (Meyer 2001; Benferhat al. 2002; Chopra, Ghose,
Intelligence (www.aaai.org). All rights reserved. & Meyer 2002).



ming distance. The first use of this distance for defining be- P to {0, 1}, denoted by a bit vector whenever a strict to-
lief change operators can be traced back to the revision oper tal order onP is specified. The set of all interpretations
ator defined by Dalal (Dalal 1988). The Hamming distance is noted)V. An interpretationv is a model of a formula
between two interpretations is the number of propositional ¢ € £ if and only if it makes it true in the usual truth func-
variables the two interpretations disagree on. The amdunt o tional way. [¢] denotes the set of models of formulai.e.,
conflict between two interpretations is thus assessed as the[¢] = {w € W | w = ¢}. = denotes logical entailment and
number of atoms whose truth values must be flipped in one = denotes logical equivalence.

interpretation in order to make it identical to the secone.on Let < be any relationy ~ y is a notation forr < y and
The major problem with such distance-based merging op- y < x, andx < y is a notation forr < y andy £ .
erators is that evaluating the closeness of interpretatsn A baseK denotes the set of beliefs/goals of an agent, it

a number can lead to lose too many information. In partic- is a finite and consistent set of propositional formulagrint
ular, the conflicting variables themselves (and not only how preted conjunctively. Unless stated otherwise, we identif
many they are) can prove significant. Especially, when vari- K with the conjunction of its elements.
ables express real-world properties, it may happenthaesom A profile E denotes the group of agents that is involved
variables are more important than others, or that some vari- in the merging process. It is a vector of belief/goal bases
ables are logically connected. In these cases, distanees ar £ = (K3, ..., K,,) (observe that two agents are allowed to
not fully satisfactory. exhibit identical bases). We denote ByE the conjunction

In the belief revision/update literature an interestingame  of bases o = (K1,..., K,),i.e, AE =K A...NK,.
sure used to evaluate the closeness of two interpretaons i A profile E is said to be consistent if and only j§ E is
diff, the symmetrical difference between the two interpreta- consistent. We say that two profilés= (K;,..., K,) and
tions (see e.g., (Katsuno & Mendelzon 1991b; 1991a; Dalal E’' = (K7, ..., K) are equivalent, notef; = E,, if there
1988; Weber 1986; Satoh 1988; Borgida 1985; Winslett exists a permutation from {1,...,n} to {1,...,n} such
1988)). Instead of evaluating the degree of conflict between that for everyi € {1,...,n}, K; and K;(i) are logically
two interpretations as the number of variables on which they equivalent. ProfileZ = (K7, ..., K,,) is also often viewed

differ (as it is the case with the Hamming distance), difé as the corresponding multi-sgk; , . . ., K,,} (when itis the
measure assesses it as the set of such variables. Stated othcase, an anonymity assumption on the merging is implicitly

erwise, instead of measuring the degree of conflict between gone: two equivalent profiles must lead to the same merged
interpretations as the size of the conflict (which does netpr  pase (up to logical equivalence)).

serve all the available information about the conflict sjnce A merging operator is a mappiny : (E, 1) — A, (E),
e.g., two distinct conflicts may eaSIly have the same S|Ze), which associates a pr0f|E and a basa’ the |ntegr|ty con-

such approaches use the conflict itself. staints, to anerged base
In this paper, we introduce and study the family of  nmodel-based merging operators are typically character-
conflict-based propositional merging operatorse., the ized by a distance between interpretations and an aggrega-

merging operators based on i measure. We show how  tion function. Two widely used distances between interpre-
conflict-based operators are parameterized by a comparisontations are Dalal distance (Dalal 1988), denafgd that is
relation on conflict vectors. We present several such com- the Hamming distance between interpretations (the number
parison relations, and define the corresponding merging op- of propositional variables on which the two interpretation
erators. Our contribution mainly is three fold. We show that  gitfer); and the drastic distance, denotgg, that is the sim-
many merging operators from the literature (both syntax- plest distance one can define: it givei§ the two interpreta-

based ones and model-based ones) can be easily capturegions are the same one, ahdtherwise. And an aggregation
in our framework. We explain how one can easily define fynction is:

new merging operators by combining comparison relations

on conflict vectors (especially, through their lexicogriaph i : -
(esp y 9 gnap associating a honnegative real number to every finite tuple

product). Finally, we investigate the connections between f . | b tf
the properties of preference relations and the logical prop o' NONNegalive real nUMbErs s.L. for any, ..., Tn, 1, €

erties of the induced merging operators. Especially, we pro .
vide new conditions on profile assignments which prove suf- e if z <y, then

Definition 1 An aggregation functiorf is a total function

ficient to ensure the corresponding merging operatorsto sat ~ f(21,..-,2,...,2,) < f(z1,...,9, ..., Tn).

isfy some IC rationality postulates. Such conditions aemth (non-decreasingness)
used to determine the logical properties satisfied by canflic e f(z1,...,z,) =0ifandonlyifz; =... =z, =0.
based merging operators, in the general case and in some (minimality)
specific cases (depending on the associated comparison re- f(z) =z. (identity)

lation on conflict vectors). Finally, the following properties for propositional merg-

Formal Preliminaries ing operators have been pointed out in (Konieczny & Pino
. . _ ! Pérez 2002a). In these properties, profiles are considesred

We consider a propositional languagedefined from a fi- multi-sets of bases anddenotes multi-set union.

nite set of propositional variablég® and the usual connec-

tives. For any subset of P, |c| denotes the cardinality (IC0) Au(E) | p
of c. An interpretation (or world) is a total function from  (IC1) If u is consistent, thei\ ,(E) is consistent.



(IC2) If A\ Eis consistent withe, thenA,(E) = A E A p.
(|C3) If Ey FEs and 1 = o, then AH] (El) =
Altz (EQ)
(|C4) If Ky ': uanng ): Iy thenAM({Kl,Kg})/\Kl is
consistentif and only i, ({ K1, K2 })AK is consistent.
(IC5) AL(EL) AAL(E2) = AL(EL U E,).
(IC6) If A, (E1) A AL(E-2) is consistent,
thenA#(El (] EQ) ': A#(El) AN AH(EQ)
(IC7) Au(E) A pa = Dpyaps (E).
(IC8) If A, (E) A peo is consistent,
thenA s (B) E Ay, (B).

A is an IC merging operator if and only if it satisfies the
postulategICO) to (IC8).

Conflict-Based Merging Operators

As evoked in the introduction, conflict-based merging oper-
ators rely on the notion of conflict between interpretations
The conflict between two interpretationsandw’ is defined

as follows:

diff(w,w’) = {p € P |w(p) # ' (p)}.

As when standard distances are considered, we can

straightforwardly define diff-based notion of closeness be-

tween an interpretation and a base, as the minimum close-

o We lift the relation=<y to sets of conflict vectors so as to
derive a corresponding relation over interpretatigris

We first present a number of comparison relatiehen
vectors of subsets of the propositional variabsigswhere
¢ = ¢ intuitively means that the conflict vectoeiis as much
as significant as the conflict vectdr

Definition 2 Let ¢ (c1,¢2,...,¢,) and ¢
(¢}, ch,...,cl) be two conflict vectors of dimension let

r n

f be ann-ary aggregation function. We consider permuta-
tions7: {1,...,n} — {1,...,n}. We consider the follow-
ing relations:

e c=cdeVie{l,...,n},¢; Cd.

e c2c, d & ¢ Cd;), wherer is a permutation

c=Xpcd &Vie{l,...,n},if =0, thenc; = (.

c =g, ¢ &ifc; =0, thenc,;) = 0, wherer is a
permutation

c=2ud e Ul UL, d.

o cXy ¢ < Uiz i [T Uiy < -

c=pc e f(lal- - lel)) < f{Al - )

czz e f({llells - lleall)) < Fllllealls -5 llenl)))
where||0|| = 0 and||c|| = 1 if ¢ # 0.

Let us illustrate some of these relations on an example:

Example 1 Let ¢ {{a,b},{c},{b,c},0) and ¢

ness between the interpretation and the models of the base.({4}, {5, ¢}, {c},0). We have:¢ =c_ ¢, ¢ =<y ¢ and

Of course, sincdliff gives as output a set of variables in-

stead of a number, set-inclusion has to be considered as ar((|

minimality criterion:
diff(w, K) = min({diff(w,’) | o' E K}, Q).

So the closeness between an interpretation and a base i
measured as the set of the minimal sets (for set inclusion)
of propositional variables which differ between the interp
tation and the (models of the) base.
This notion of closeness can be extended to any profile
E = (Ky,...,K,) as follows:
diff(w, E) = {{c{,c%,...,c%) | ¢ € diff(w, K;)}.

r n

diff(w, E) is thus a set of vectors of sets of propositional
variables; each such vector is referred to as a conflict vec-
tor. It has the same dimension & By construction, if
(¢7,¢%,...,¢2) belongs tddiff (w, E), thenw is a model of

the profile obtained fronk by forgetting in eachs’; all the
variables fromy’ (Lang, Liberatore, & Marquis 2003).

In order to define the merging of a profilé under in-
tegrity constraintg: in a model-theoretic way, a standard
approach consists in selecting the modelg @fhich are as
close as possible t&, through a binary relatior £ over in-
terpretations, where <£ o/ is interpreted asd is at least
as close taF asw’”. In the following, we show that many
such relations<£ can be derived frondiff(w, E). This is
achieved in two steps:

o We start with a relatiors p which compares conflicts vec-
tors, so that we can check whether

(e1,...,cn) 2R (c),. .., ch).

S

d =Xp c,c 2y dandd =y ¢ for f = 3, we have

Pab} LT et ] b.c} L0 1) =525 £ {a} |
(.} e 110 ) = 4.

All these relations have in common to privilege conflict
vectors reflecting as few conflict as possible in some sense
(this will be make precise later on, cf. Proposition 12).

Interestingly, one can figure out many other comparison
relations obtained by combining such relatiotig on con-
flict vectors. There are several ways to do it. One of them is
based on the lexicographic product of relations:

Definition 3 Let <z and <g be two binary relations over
a setE. The lexicographic produckg s==<pg . <g is the
binary relation overE given by:

r Xpyandy Agrx
or

ZCjR.Sy@{
r=2rY,y 2rrandxr <gy

Once a comparison relatiofy is chosen, it has be lifted
to sets of conflict vectors, in order to obta;ﬁﬁ. On way to
doitis as follows:

Definition 4 LetFE = (K4,..., K,) be aprofileand lek
be a relation on conflict vectors of dimensian We define
the relation<Z overwv byw <& v’ & 3¢ € diff(w, E) s.t.
Ve e diff (', E), we have < ¢’

For space reasons, we focus on this unique lifting prin-
ciple in this paper. Other lifting principles could have hee
considered, using other alternations of quantifiers in Defin
tion 4. Our investigation of these additional principles ha
shown that the one used heréY) achieves a quite good



compromise, in the sense that it leads to merging operators
satisfying valuable properties (unlike for instafice), with-
out being too restrictive (lik& v, which leads to merging
operators with weak inferential power —i.e., almost all mod
els of u can be kept).

Now that<Z is given, the corresponding conflict-based

c=<grc’,andas a consequencegg w’. The remain-
ing caser’ <g c enables to conclude in a similar way
thatw’ < w. Finally, we get the expected conclusion:
w §§ w'orw’ §§ w.

O

merging operator can be defined as usual as the selection of

the models ofu which are as close as possible fow.r.t.
<E.

—R"

Definition 5 Let E = (K3,..., K,) be a profile,u some
integrity constraints and lex z be a relation on conflict vec-
tors of dimensiom. We define

[AYTH(E)] = min([u], <F).

As one may expect, the properties satisfiecyhave an
impact on the properties satisfied iy™*; this concerns
both the inferential power of the merging operator and its
logical behaviour (as we will see in a forthcoming section).

We now explain how imposing some properties €@
ensures some valuable logical properties for the correspon
ing conflict-based merging operataf-?. We start with
properties linking=< r to <£:

Proposition 1 LetF = (K3, ..., K,,) be a profile:

If <R is a transitive relation on conflict vectors of dimen-
sionn, then the corresponding lifted relationZ on in-
terpretations is transitive.

If <g is a total preorder (i.e., a reflexive and transitive
relation) on conflict vectors of dimensian then the cor-
responding lifted relation<Z on interpretations is a total
preorder.

Proof:

o If <y is a transitive relation on conflict vectors of dimen-
sionn, then the corresponding lifted relatieff; on inter-
pretations is transitive.

Transitivity: Suppose that <% w; andw; <% w,.
Then3c € diff(w, E), V¢ € diff(wy, E), ¢ <p .
We also havede; € diff(wy, E), V¢ € diff(wg, E),
1 <g ¢. Sincec; € diff(wy, E), we havec <g ¢
andc; =g ¢. By transitivity of <y, we haver <p ¢/
Ve € diff(we, E). Sow <E w,.

e If <R is atotal preorder on conflict vectors of dimension
n, then the corresponding lifted relatier on interpre-
tations is a total preorder.

Reflexivity: Letw be an interpretation. Sinekff(w, F)
is finite and=<p, is a total preorder, there is at least one
least vector € diff(w, E') w.r.t. <g, S0 we havélc €
diff(w, E), V¢’ € diff(w, E), ¢ < ¢ andw <& w.
Transitivity: See above.

Completeness: Let andw’ be two interpretations. Let
¢ (resp. ¢) be a least element dfiff(w, E) (resp.
diff(w’, E)) w.r.t. <. Since=p, is total, we have <y
¢ orc <gr c. Assume that < . Sincec is a least
element oldiff (w’, E), we have that'c” e diff(w’, E),
¢ =g c’. By transitivity of <y, we get that <y .
Hence we have thak € diff(w, E), V¢’ € diff(w, E),

Observe that requiringg g to be reflexive is not enough
in general to ensure that the correspondirfg is reflexive.
Contrastingly, as the previous proposition shows i jf is
a total preorder, thegg is reflexive.

As to inferential power, it is now easy to show that:

Proposition2 Let F = (K3,...,K,) be a profile,u an
integrity constraint and leK r, < be two relations on con-
flict vectors of dimension. If <p C <5 and=<p is a total
preorder, then we havAS™-7(E) = AST5S(E).

Proof:  Towards a contradiction assume that there exists
a modeko of A%f-%(E) which does not satishA4™-5(E).

Hence there exists a model of AS™-5(E) such that

w' <& w, so we must haves 2% «’. From this and
Definition 4, we get thaltc € diff(w, E) 3¢’ € diff(w’, E),

¢ As . Since=xg C =g, we have that Ar . Since
this holds for every: € diff(w, E), we have thaty A% o'
Since=<p is a total preorder, from Proposition 1, we know
that <% also is a total preorder. Since is a model of
ASTE(E), w must be a least model of w.rt. <%: it
must be the case that <£ «’ for every model’ of p, a
contradiction.

This proposition explains why it is important to determine
which relations among the ones listed in Definition 2 are
total preorders, and how they are related w.r.t. set-inmfus
We obtained the following easy proposition:

Proposition 3 All the relations listed in Definition 2 are
preorders, and=y_, Xy, =7 j? (for any aggregation

_‘fl
functionf), are total ones.

Proof; The results come straightforwardly from the
fact that C and < are orders, the latter one being total,
plus the fact that the composition of two permutations is a
permutation. O

As to the way they relate w.r.t. set-inclusion, we get:

Proposition4 Let f by any aggregation function. The
inclusions between relations are stated in the Hasse dia-
gram depicted on Figure 1, where each arrof«—=<p
means thatx 4C=<p, i.e. thatzx <, y impliesz <p y

(as usual with Hasse diagrams, for the sake of readibility,
arrows stemming from reflexivity and transitivity ©f are

not drawn).

Proof:

[ jg
=<cC=c,. Obvious.
2cC=F for any aggregation functiofi. Suppose that
¢ 2c . ThenVi € {1,...,n},¢; C ¢}. As a conse-

quenceyi € {1,...,n},| ¢; |<| ¢, |. Sincef is not



¢, «—— Sy — 2y Mine, edifi(w, i) (| ¢ |, <). Since an aggregation function

— is not decreasing, we have:
2 2 =7 d K, K K,}) =
\ H(w7{ 1y 832500y n})
m MiNe, ediff(w, k), 1<i<n (f({| €1 [ e2 [, 5 en 1)), <)
We have:
=0 =0 w §%E W' & Je(w, F) € diff(w, E), s.t.
Figure 1: Inclusion of relations Ve(W', E) € diff(w, E), c(w, E) =5 c(w', E).

This is equivalent to:
w < W & 3c(w, B) € diff(w, E), s.t.

decreasing, we havg((| ¢1 |,] c2 |,.--,] en ) < f
FU el leals s e ) ande <5 ¢ Ve(w', E) € diff(w', E),
=== for any aggregation functioyi. Suppose that Fleallealoden D)< FUE Ly sl ey ).
¢ 2c . ThenVi € {1,...,n},¢; C ¢}. As acon- o o
sequenceyi € {1,...,n}, if ¢, = 0 thene; = 0. So Hence, the models qf that are minimal w.r.t. <4/ are
Vi e {L,....,n} || ¢ |I<|| ¢ ||. Sincef is not de- exactly the models of minimal w.r.t. <7 .
creasing, we have (| ¢ ||, ez ... [| e |1) < O
fllealllealls- -5 1l e 1)) ande <5 ¢

o =c.: Proposition 6 For any aggregation functioif, we have

B dp.f _ Adiff.T
=c,C=u. Suppose that <c_  ¢. Then,Vi € AdeS = AGTS,

{1,...,n},¢; C c,and;_, ¢; € Ui, ¢} soc <y . Proof:  For any interpretation, we havedp (w, K;) =
mincied;ff(w_’Ki)(H C; ||)7 S) Then we have:

dD(w7 {KlaKQa s aKn}) =

o =<u:

=uC=y- Obvious.

. <®: minciedifl’(w,Ki),1§i§n(f(<|| C1 ||)a|| C2 ||77|| Cn ||>)7§)
<yC=y. . Obvious. Hence, the models ofi that are minimal w.r.t. gjj:? are
20C=5 for any aggregation functioffi. Suppose that  exactly the models gf minimal w.r.t. <% . O

c =g . ThenVi € {1,...,n},if ¢, = 0, thenc; = 0. _
SoVi € {1,...,n}, || ¢ ||| ¢ ||. Sincef is not Syntax-based operators can be also easily recovered. Let
decreasing, we havg((|| c1 ||, || c; llen ) < us show now how to define in the conflict-based framework
FULE LT -1 €y 1)) ande <= ¢ - the operator\“* and A““ considered in (Baral, Kraus, &
" —f Minker 1991; Barakt al. 1992; Konieczny 2000):
O Proposition 7 A¢1 = Adiff.0,

Proof: ~ We know thatA$" = \/{M € MAXCONS(
Urk,er Kisp)} MAXCONS(Ug, cp Ki, p) is the set of
all maximal (for inclusion) consistent subsets of formulas
of Ug,ep Ki Up. Any M € MAXCONS(Ug,cp Ki,
: u) corresponds to a conflict vector containing a maximum
Many Mer,gmg Operators (w.r.t. pointwise inclusion) of coordinates equalftoSo the
are Conflict-Based Ones models ofA$" are exactly the models af4iff-0, O
Let us now show that many merging operators from the lit-
(ra]ratut(e a{]e cogﬂitctt-ba;]sed tc;]n?s. Our ;t)urpfmse istnot to b(le 3X'Proposition 8 ACs — Adiff,0r
austive here but to show that a variety of operators, irclu ) C.  _
ing both model-based ones and syntax-based ones, can b oof: We know that At = V{M ¢
recovered as conflict-based operators. We first show that all M AXCONScara( Uk, ep Kis p)}. MAXCONScard(
the model-based merging operators based on the HammingU g,z Ki, 1) is the set of all maximal (for cardinality)
distance or the drastic distance are conflict-based ones: consistent subsets of formulas pfy ., K; U p.  Any
M € MAXCONSCMd(UKieE K;, ) corresponds to a
conflict vector containing a maximum (w.r.t. cardinality) o
coordinates equal tf. So the models 0&54 are exactly

Proof: The proof is based on the fact that for any in- the models o4O~ O
terpretationw and any basdy;, we have: dy(w, K;) =

No other inclusion relation is satisfied by the preorders
given in Definition 2. Especially<y and <c cannot be
compared w.r.tC, as well as<y and=.

Proposition 5 For any aggregation functioif, we have
Admf — Adiff,?.



w diff(w, K1) | diff(w, K2) | Gmaz({Jc1 [,[e2]) | Je1Ucea |
000 | {{a},{b,c}} {0} (1,0) 1
111 {0} {{a}} (1,0) 1

Table 1:AG™Cm1Y ()

w diff(w, K1) | diff(w, K3) | Gmaz({Jc1 [,[es]) | Je1iUes |
000 | {{a},{b,c}} {0} (1,0) 1
S I () to) (,0) T

Table Z:Affff’m"ul(EQ)

w diff(w, K1) | diff(w, K2) | diff(w, K1) | diff(w, K3) | Gmaz({{ ¢ ) | |Uc |
000 | {{a},{b,c}} 0 {{a}, {b,c}} {0} (1,1,0,0) 1
111 {0} {{a}} {0} {{o}} (1,1,0,0) 2

Table 3:A4MCmazVl gy | B,)
Generating New Merging Operators =(0,...,0)

As evoked in a previous section, one can easily generate new
conflict-based operators by combining comparison relation
=g on conflict vectors using lexicographic product.

Obviously enough, the lexicographic product6f;, by
=g leads to a relation<g.s = g . =g refining <g: .
<r.s € =g. As shown by Proposition 2, iKg ¢ is a to-
tal preorder (which is ensured whenever beth and <g *
are total preorders), then more information is typicallg-pr
served by the conflict-based merging based<gngs in the
sense that™ - %(E) = AGTF(E) for any E andp.

One of tﬁe main motlvatlons for introducing conflict-
based merging operators is that they include new merg-
ing operators, refining existing ones. Thus using the lex-
icographic product, one can define new operators based
on usual model-based operators (Konieczny & Pino Pérez
2002b), likeAdu Gmaz  Adu,X etc, so that the new opera-
tors have a stronger inferential power.

The gain of inferential power achieved by such refine-
ments may easily lead to get rid of some logical properties,
i.e., Adf.E-S does not always satisfy all the postulates sat-
isfied by AS™ %, For the sake of illustration let us consider
g}fr,m.\w

the conflict-based merging operator givends
(Zgmaz - =|u| is atotal preorder.

Gmax *

Proposition 9 Adiff.Gmaz.[Ul satisfieg(1C0), (IC1), (IC2),
(IC3), (IC4), (IC7), (IC8). It does not satisf{IC5) or
(IC6).

Proof:

e (IC0), (IC1), (IC7) and (IC8) come from Proposition 11.

e (IC2): If A EApis consistent, then any modebf A EA
1 satisfies:

[ en ), <)

2Remind that whery is an aggregation functiorf, denotes the
aggregation of the cardinalities of the input sets. See Digfin2.

MiNe, ediff(w,K,),1<i<n(GMmaz({| c1 |, ...,

andmin,, caif(w,x,) | Uiz ¢i [= 0

So the models oA%™ ™21Vl (£) are exactly the models
of AE A p.

(IC3): Obvious.

(IC4): Adiff.Gmaz gatisfies(IC4). We have to show
that its refinement by] U | preserves this prop-
erty. Suppose that; = u, Ko = p and that

AGRGmar Ul (g 1001 A K is consistent.
Let w be a model ofAS" ™ IVl((K) Ko1) A K,

and letc be the minimal vector ofliff(w, { K7, K2})
wrt. = Let wy be the model of K,

SGmaz.|Ul"
such that c :U diff(w, {K1,{w2}}) = (0,co).
Then (0,co) € diff(we, {K1, K2}). Since (0, ca)

is minimal for =z7-= . (c2,0) is minimal as

well.  So wy | ASTREmenlLle ko) and
AdiFGmaz- 0l (e K1) A K is consistent,

(IC5): We consider the bases; = (a A =b A —¢) V

(anbAc), Ko = (maNbAc)V (ma A —bA —c),

K3 = (aN—=bAc)V(-aA-bA—c), and two profiles
E, = {K1,K>} and E; = {K;,Ks3}. The integrity
constraint isy = (a A b Ac)V (ma A —=bA —e).

Details of computations are in Tables 1, 2 and
3. We have [ASTCme= V(B = {000,111},
[A;’;“"Gm"f"u'(EQ)] = {000,111}.
have [A;:ltlfF,Gmam.\w(El L EQ)] _

Ai{fF,GmamJU\ (El) A
AilfF,Gmam.|U\(E1 L EQ)
(IC6): We consider the basds; = (—a A —b A —¢) V
(aNnbAec), Ky = (aANbA-e)V (aANbA c),
Ks = (ma AN =bA-=c)V (-ma AN -bAc), and

We also
) {000}, and
AilfF,Gmaw.|U\(E2) l}é



w diff(w, K1) | diff(w, K2) | Gmaz({Je1 [,[e2]) | [e1Uca |
100 | {{a},{b,c}} | {{b}} (1,1) 2
011 [ {{a}, {b,c}} | {{a}} (L1 1
Table 4:A4™ ™Y ()
w | diff(w, K3) diff(w, K4) Gmaz({[es |, ] ca])) | [esUeq |
100 | {{a}} [ {{{b}.{a,c}}} (1,1) 2
011 | {{{o3}; [ {{b}.{a,c}} (1,1) 1
Table 5:diff&i"-Cmaz IVl )
w | diff(w, K7) | diff(w, K3) | diff(w, K3) diff(w, Ky) Gmaz({Jc; ) | TUei |
100 | {{a},{b,c}} [ {{b}} {{a}} [ {{b}{ac}}} [ (LI, LT) 2
011 | {{a} {b,ci} | {Haj} {{forrr | {{b}.{a,ch} (1,1,1,1) 2
Table G:Afjﬁ’m'lu‘ (E1 U Es)

Ky = (aNbA =)V (maA—bAc). We consider
also two profilesF; = {K;, K>} andEy = {K3, K4}.
The integrity constraintis = (aA—bA—¢)V (—aAbAc).
Details of computations are in Tables 4, 5 and

6. We have [AJTCMiE)] = fo11},
[AGTCme Vi) = {011}.  We also have
[AgtemerVlg 1y By = {100,011}, and
Affff’m"ul(El U By B Aiiff,m.|u\(El) A
A;ﬂtifF,Gmam.\w(EQ)'

0

Compared toA4#-Gmex (IC5) and (IC6) are lost by

Adiff.Gmaz [Vl - This s the price to be paid for a more ac-
curate conflict evaluation in some scenarios.

Nonetheless, some examples show that, although such re-

fined operators do not satisfy all the expected logical prop-
erties for merging, they can prove more adequate than usual

From Properties on <p to Logical Properties
on AdifF,R

The price to be paid by the generality of the family of
conflict-based merging operators is that only few logical
postulates can be guaranteed if no conditions are imposed
on the underlying preference relation. Especially none of
(IC4), (IC5), and(IC6) can be guaranteed in the general
case sincé\“s does not satisfy them, while it is a conflict-
based merging operator (cf. Proposition 8). Contrastingly
as a direct consequence of Propositions 5 and 6, the family
of conflict-based merging operators also includes a number
of “fully rational” merging operators (i.e., IC merging asje

Let us now present the logical properties satisfied by
conflict-based merging operators. (Konieczny & Pino Pérez
2002a) give a representation theorem allowing to define IC
merging operators from assignments which associate a pre-
order on interpretations to each profile. For the representa
tion theorem to hold, the assignment has to satisfy a set of
properties that are not satisfied by all conflict-based merg-
ing operators. So it is interesting to determine the progert
which are guaranteed by conflict-based operators. To this

model-based operators in some cases. For instance, let usPurpose, it is useful to recall first the representationtéeo

consider the following profil& = (K, K, K3, K4) where

K, are reported in Table 7 and the constrairis such that

[1] = {w1,w2}. Clearly the Hamming distaneg; does not
discriminate between the two possible worlds, which can be
problematic. Fow, all the agents agree on what they dis-
agree (i.e., the conflict is ag), while this is not the case for
ws. Operators based on the Hamming distance cannot make
this distinction. Although the Hamming distances of the two
interpretations to the bases are all identical and equa] to
thediff distance exhibits the fact that there is less conflict on
w1 than onwy (while flipping the variable: in w; is enough

to obtain a model of all the bases, it is not the case with

We believe that this kind of examples opens the way for dis-

cussions on the scenarios where this behaviour is necessary(5)-

and on the logical characterization of this behaviour.

from (Konieczny & Pino Pérez 2002a). It is based on the
notion of syncretic assignment:

Definition 6 A profile assignmeni a functionp mapping
each profileE to a relation<pg over interpretations. let us
consider the following properties on such assignments, for
anyw,w’ € W:

0). <g is atotal preorder.

(1). fwE AFandw’ E A E, thenw ~p o'

(2). fwE AEandw’ - A E, thenw <g w'.

(3) If F, = Es, then§E1:§E2.

4). Vo KW' E K W <k r} w.

Ifw <p, W andw <g, ', thenw <g, g, «'

fw <p, v andw <g, W', thenw <g,uE, W'

(6).



diff (w, K1) | diff(w, K3) | diff(w, K3) | diff(w, K4)
wi | {{a}} {{a}} {{a}} {{a}}
wa | {{a}} {01} {{c}} {d}}

Table 7: How to discriminate between andw,?

A syncretic assignmerig a profile assignment which satis-
fies properties (0-6).

(IC4): Assume that{ = p, K’ |= p, andA,({K, K'}) A
K} 1, we want to show that\,({K, K'}) A K" [= L.
Considerw = A,({K,K'}) A K. Theniw' E u st
W' <yk,x} w. Butfrom condition (4)3n’ = K’ s.t.
W' <k x1y w. Sincew’ = p, this means that' ~x xy
w. Sow’ € min([u], <(x k). Hencew' = A, ({K, K'})
and therefore\ ,({ K, K'}) A K’ = L.

(IC5): g w k= AL(E) ANAL(E2) thenw € min([u], <g,)
. and soflw’ | u s.t. W' <g, w. We have in the same way
(Bu(E)] = min(l, <5). B L s S rr 7S we hawe thahr ot

Note that the conditions required on the assignment by «’ <zum, w (otherwise by condition (5') a contradiction
this theorem are numerous, in particular it asks the relatio ~ would follow). Sow € min([u], <g,um,). So by definition
given by the syncretic assignments to be total preorders. w = Ay (B U E»). _ _

The problem is that some comparison relations at work in  (IC6): Assume thath,(E,) A A, (E2) is consistent. We
in Definition 2, and used in Definitions 4 lead to relations Want to show thath, (Ey U Ez) = Lu(B1) A Ay(Ez)
which are not total preorders. So a key issue is to determine holds. Takev |= A, (B U E»), s0fw’ | ps.t.w’ <p,uE,
the properties ensured when this assumption on syncretic as - Suppose towards a contradiction that~ A, (E1) A
signments is relaxed. The following proposition addresses 2u(E2). Sow (= Ay (Er) orw = Ay (Ez). Suppose that

The representation theorem states that:

Proposition 10 (Konieczny & Pino Ferez 2002a)A is an

IC merging operator if and only if there exists a syncretic
assignment which maps each profileto a total preorder
<g such that

it:
Proposition 11 Let ¢ be a profile assignment which as-
sociates to each profilds a relation <g on interpreta-

tions. LetA be the merging operator given g ,(E)] =
min([u], <g). ThenA satisfies:

e (IC0), (IC1), (IC7), and(IC8).

e (IC2) if o satisfies conditions (1) and (2).

e (IC3) if o satisfies condition (3).

e (IC4) if o satisfies condition (4).

e (IC5) if ¢ satisfies condition (5): ifv <g,E, ', then
w<p worw<g, w.

e (IC6) if o satisfies conditions (0) and (6).

Proof:

(IC0): By definition[A,(E)] C [u].

(IC1): If u is consistent, thefiy] # 0 and, as there is a
finite number of interpretations, there is no infinite desken
ing chains of strict inequalities, soin([u]|, <g) # (. Then
A, (E) is consistent.

(IC2): Assume thaf\ E A u is consistent. We want to show
thatmin([u], <g) = [\ F A p]. First note that ifv = F
then from conditions (1) and (2)y € min([u], <g). So
min([u], <g) 2 [\ E A p]. For the other inclusion consider
w € min([y], <g).
w = E A p. Sow = E, by condition (2) we know that
Yo' = EAp (A E A pis consistent by assumption) < g
w. Sow ¢ min([u], <g). Contradiction.

(IC3): Direct from condition (3) and the definition &f.

3Note that for assignments satisfying condition (0), like-sy
cretic assignments, conditions (5) and (5’) are equivalent

Suppose towards a contradiction that

w = AL (Eh) (the other case is symmetrical). So’ = ¢
st w <g w (¥). As AL(Eq1) A AL(E2) is consistent
J" E Au(E) A AL(E). Sodw E pstw <p, W
andfw’ = u st o' <g, w”. By condition (0) the two
last inequalities are equivalent to respectivély = u s.t.
W <p, W andVw’ = p st w” <g, «’. Then by (*) and
transitivity (from condition (0)) we have that” <p, w.
And by condition (6) we obtain” <g, g, w. Contradic-
tion.

(IC7): Letus takew = A, (E) A p2. We havelw’ = i1y
st w <pw. SO = gy Ape st W <p w,SOw =
Altl/\uz (E)

(IC8): Assume that\,, (E) A o is consistent, s@w’ =
Ay, (E) A pe. Considew = Ay, 4, (E) and suppose that
wE AL (E). Sow' <p w. Butw’ |= 1 A po thenw ¢
min([p1 A p2l], <g). Thusw = Ay A, (E). Contradiction.

O

As a consequence, we easily get that:

Proposition 12 Conflict-based merging operatordiff.?
satisfy(IC0), (IC1), (IC7), (IC8).

Furthermore let us consider the two following properties on
the relation=<g:

e foranyn > 0, (0,...,0) is the uniqgue minimal element
w.r.t. < g of the set of all conflict vectors of dimension
(minimality of empties)

o for any conflict vectorg and ¢’ of dimensiom we have
¢ ~r ¢ when there exists a permutatian: {1,...,n}
—{1,...,n} such thatforeveryc 1...n, ¢, = cr(,

(permutation irrelevance)

Then:



o If <p satisfies minimality of empties thexti.? satisfies w | diff(w, K7) | diff(w, K>) | diff(w, £1 U E»)
(IC2). 0000 {a}} {{a,b}} ({a},{a,b})

e If < satisfies permutation irrelevance tha-? satis- 0100 | {{a,b}} {{a}} ({a,b},{a})
fies(IC3). 1110 [ {{b,c}} Held ({0, ct. {ch)

Since it is easy to show that all the relations listed in Def-
inition 2 satisfy minimality of empties, we obtained that
the corresponding conflict-based merging operators gatisf
(IC2). Similarly, it is easy to prove that all the relations
listed in Definition 2, exceptc, <y, and= or =5 when O

f is not symmetric in any argument, satisfy premutation ir-
relevance; hence the corresponding conflict-based merging .
operators satisfiC3). Conclusion

More specifically, we have studied the logical properties | this paper we introduced conflict-based merging opera-
of many conflict-based operators relying on preorders given (o5 These operators are similar to usual model-based op-
in Definition 2. In the following, we refrain from consid-  erators, in the sense that they select in the set of models
ering A0 Adiff.f - or A,/ since such operators are  of the integrity constraints, the models that are the clos-
equivalent to operators already considered in the liteeatu  est ones to the profile under consideration. However, while
(and such an investigation has already been achieved for usual model-based operators definition relies on a definitio
them), and just report the results for two operators: of distance between interpretations (very often the Ham-
Proposition 13 ¢ A%f.Cr satisfies(IC0), (IC1), (IC2), ming distance), conflict-based merging operators take into

(IC3), (IC4), (IC7) and (IC8). It does not satisfyIC5) account the conflict itself, through tli#f measure, instead

or (IC6). of its size.

o AU satisfieg1C0), (IC1), (IC2). (IC3), (IC4), (IC7 T_h!s diff measure has been exploited previously for
and(IC8). It dj(es nz)t(satigf(/gCS))oﬁ(lczs).( ). (IC7) defining revision/update operators (Katsuno & Mendelzon

1991b; 1991a; Weber 1986; Satoh 1988; Borgida 1985;

_ The proof of Proposition 13 is mainly based on results \ying|ett 1988), but as far as we know, it has not been con-
induced by Propositions 11 and 12, and on counterexamples sijered before for defining merging operators.

to (IC5) and(IC6). Since the rest of the proof is easy, we Our framework for conflict-based merging operators ap-

just give the counterexamples(i€5) and(IC6) below. pears as a very general setting for defining merging opera-
Proof: tors; especially, many merging operators from the litegatu
can be recovered in this framework. Furthermore, the pos-
sibility to combine comparison relations allows to define re
finements (with respect to inference) of many well-known
operators.

We have shown that such refinements may satisfy less log-
ical properties for merging than their original countetpar

Table 9:AYf.S~ does not satisfylC6)

o Adiff,.Cx

(IC5): We consider the basds; = a A —=b A —¢ and
K5 = —a A —b A c. The profiles areb; = {K;} and
E; = {K3}. The integrity constraint iz, = (a A b A
¢) V (ma A =b A —c). Details of computations are in

Table 8. But we have also shown that they allow to discriminate con-
w [ diff(w, K7) | diff(w, K3) | diff(w, By U Ey) flicts in a subtle way, not achievable by distance-based op-
000 {{a}} {{c}} {a}, {ch) erators. At a first glance, it looks that such distinctiore ar
11| {{b,c}} H{a,b}} {b, ¢y, {a, b)) incompatible with postulatedC5) and (IC6). It is a per-

spective for further research to determine whether there ex
ist conflict-based merging operators enabling a fine-gdhine
discrimination of conflicts and satisfyi¢C5) and(IC6).

One interesting issue for further work would be to deter-
mine a representation theorem, in order to fully charaoteri
the set of conflict-based merging operators from a logical
point of view. Propositions 11 and 12 already state some of
the properties they satisfy, but do not characterize theanin
accurate way. Though interesting, it seems to be a difficult
task, since today there is no such representation theonem fo
any family of merging operators. Especially, while model-
based merging operators (definable from a distance and an
aggregation function) are often taken as examples to illus-
trate the representation theorem of (Konieczny & Pino Pére
2002b) for characterizing IC merging operators in terms of
syncretic assignements, determining whether the set of IC
merging operators is exactly the set of model-based merging
operators is still an open issue.

Table 8:A%f.S~ does not satisfyIC5)

We have [AdfS(E))] = {000,111},
[ASTEx (By)] = {OOQ, 111}, but [Af;ffvgﬂ(El ]
Eg)] = {000}, and Ai‘ﬂr’g"(El) /\Aftlff’g"(Eg) l#
Aiiff’g" (El L EQ)

(IC6): We consider the basds; = a A =b A =¢ A —d

andKs = aAbA—cA—d. The profiles ard’; = {K;}
and B> = {K,}. The integrity constraintis. = (a A
bAcA—d)V(—aA-cA-d). Details of computations
arein Table 9.
We have [ASTS(E,)] = {0000, 1110},
(AT (Br)] = {0100,1110}, but [AGTS (Ey U
E,)] = {0000,0100, 1110}, and A4S (Ey L Ey) -
ASEr (B ) AASTE (Ey).
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