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Abstract
Merging operators aim at defining the beliefs (resp. the goal)
of a group of agents from a profile of bases, gathering the be-
liefs (resp. the goals) of each member of the group. In the
propositional setting, a well-studied family of merging oper-
ators are distance-based ones: the models of the merged base
are the closest interpretations to the given profile. Closeness
is, in this context, measured as a number resulting from the
aggregation of the distances to each base of the profile. In
this work we define a new kind of propositional merging op-
erators, close to such distance-based merging operators, but
relying on a set-theoretic definition of closeness, already at
work in several revision/update operators from the literature.
We study a specific merging operator of this family, obtained
by considering set-product as the aggregation function.

Introduction
Information merging is a very important task in artificial
intelligence: the issue is to determine the beliefs, or the
goals, of a group of agents from their individual points of
view. Much work has been devoted to the definition of
merging operators in the propositional case (Revesz 1997;
Liberatore & Schaerf 1998; Baral et al. 1992; Konieczny &
Pino Pérez 2002a; Meyer, Pozos Parra, & Perrussel 2005),
and to the study of their properties with respect to different
criteria, mainly logical properties, strategy-proofness, com-
plexity. See for instance (Konieczny & Pino Pérez 2002a;
Revesz 1997; Liberatore & Schaerf 1998; Konieczny, Lang,
& Marquis 2004) for logic-based characterizations, (Ever-
aere, Konieczny, & Marquis 2007) for an investigation of
strategy-proofness issues, and (Konieczny, Lang, & Mar-
quis 2004; Everaere, Konieczny, & Marquis 2007) for com-
putational complexity results. There exist also works on
merging in richer logical settings than propositional logic,
see for instance (Meyer 2001; Benferhat et al. 2002;
Chopra, Ghose, & Meyer 2006; Benferhat, Lagrue, & Rossit
2007).

In (Konieczny & Pino Pérez 2002a) a set of postulates is
proposed to characterize different families of merging oper-
ators, and several families of operators satisfying these pos-
tulates are defined. Such operators are called model-based
merging operators because basically they select the models
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of a given integrity constraint (i.e., a formula encoding laws,
norms, etc., used for constraining the result of the merging)
that are the closest ones to the given profile of belief/goal
bases of the group. Often, these operators are defined from
a distance between interpretations.This distance between in-
terpretations induce a distance between an interpretation and
a base, which indicates how plausible/satisfactory the inter-
pretation is with respect to the base. Once such distances
are computed, an aggregation function is used to define the
overall distance of each model (of the integrity constraints)
to the profile. The models of the result of the merging are
the closest models of the integrity constraints to the profile.

A commonly-used distance between interpretations is the
Hamming distance (also called Dalal distance (Dalal 1988)).
The Hamming distance between two interpretations is the
number of propositional variables the two interpretations
disagree on. The closeness between two interpretations is
thus assessed as the number of atoms whose truth values
must be flipped in one interpretation in order to make it iden-
tical to the second one. Such a distance is meaningful when
no extra-information on the epistemic states of the agents are
available.

The major problem with distance-based merging opera-
tors is that evaluating the closeness between two interpre-
tations as a number may lead to lose too much information.
Thus, the conflicting variables themselves (and not only how
many they are) can prove significant. Especially, when vari-
ables express real-world properties, it can be the case that
some variables are more important than others, or that some
variables are logically connected. In these cases, distances
are not mandatory.

As an alternative to distance, an interesting measure used
to evaluate the closeness of two interpretations is diff, the sy-
metrical difference between them. Instead of evaluating the
degree of conflict between two interpretations as the number
of variables on which they differ (as it is the case with the
Hamming distance), the diff measure assesses it as the set of
such variables.

In this paper, we consider the family of propositional
merging operators based on the diff measure. We specifi-
cally focus on the operator ∆diff,⊕ from this family obtained
by considering set-product as the aggregation function. We
evaluate it with respect to three criteria: logical properties,
strategy-proofness and complexity. Other operators from



this family are presented in (Everaere, Konieczny, & Mar-
quis 2008).

The rest of the paper is as follows. In the following sec-
tion, we give some formal preliminaries. Then, we define
the family of model-based merging operators based on the
diff measure of closeness, and make precise the specific op-
erator ∆diff,⊕ we focus on. In the next section, we report on
the logical properties of ∆diff,⊕ and we discuss the strategy-
proofness issues for it. The computational complexity of
∆diff,⊕ is given after, just before a discussion about some
related work. The paper ends with some perspectives.

Preliminaries
We consider a propositional languageL defined from a finite
set of propositional variables P and the usual connectives.

An interpretation (or world) is a total function from P to
{0, 1}, denoted by a bit vector whenever a strict total order
on P is specified. The set of all interpretations is noted W .
An interpretation ω is a model of a formula φ ∈ L if and
only if it makes it true in the usual truth functional way. [φ]
denotes the set of models of formula φ, i.e., [φ] = {ω ∈
W | ω |= φ}.

A base K denotes the set of beliefs or goals of an agent, it
is a finite and consistent set of propositional formulas, inter-
preted conjunctively. Unless stated otherwise, we identify
K with the conjunction of its elements.

A profile E denotes the group of agents involved in the
merging process. It is a multi-set (bag) of belief/goal bases
E = {K1, . . . ,Kn} (hence two agents are allowed to ex-
hibit identical bases). We note " the union of multi-sets.
We denote by

∧
E the conjunction of bases of E, i.e.,∧

E = K1 ∧ . . . ∧Kn. A profile E is said to be consistent
if and only if

∧
E is consistent. We say that two profiles

are equivalent, noted E1 ≡ E2, if there exists a bijection f
from E1 to E2 such that for every φ ∈ E1, φ and f(φ) are
logically equivalent.

The result of the merging of the bases of a profile E, un-
der the integrity constraints µ, is the merged base denoted
∆µ(E). The integrity constraints consist of a formula the
merged base has to satisfy.

Diff-Based Merging Operators
As a gentle introduction to diff-based merging operators, let
us first recall how distance-based merging operators are de-
fined. This calls for a notion of (pseudo-)distance between
interpretations and a notion of aggregation function.

Definition 1 A (pseudo-)distance between interpretations is
a total function d from W ×W to IN such that for every ω1,
ω2 ∈W :
• d(ω1,ω2) = d(ω2,ω1), and
• d(ω1,ω2) = 0 if and only if ω1 = ω2.
Any distance between interpretations d induces a ”dis-
tance” between an interpretation ω and a base K defined
by d(ω, K) = minω′|=K d(ω, ω′).

Definition 2 An aggregation function is a total function f
associating a non-negative integer to every finite tuple of

non-negative integers and verifying (non-decreasingness),
(minimality) and (identity).
• if x ≤ y, then f(x1, . . . , x, . . . , xn) ≤

f(x1, . . . , y, . . . , xn).
(non-decreasingness)

• f(x1, . . . , xn) = 0 if and only if x1 = . . . = xn = 0.
(minimality)

• for every non-negative integer x, f(x) = x. (identity)
We can now define distance-based merging operators:

Definition 3 Let d be a distance and f be an aggregation
function. The distance-based merging operator induced by d
and f is defined by: for any profile E = {K1, . . . ,Kn} and
any integrity constraint µ,

[∆d,f
µ (E)] =

{ω |= µ | f(d(ω, K1), . . . , d(ω, Kn)) is minimal}.

Such operators have been extensively studied, and many
”standard” merging operators belong to this class (Revesz
1997; Liberatore & Schaerf 1998). Their logical properties
are stated in (Konieczny & Pino Pérez 2002a), their strategy-
proofness is studied in (Everaere, Konieczny, & Marquis
2007), and their computational complexity in (Konieczny,
Lang, & Marquis 2004).

Let us now turn to diff-based merging operators. Basi-
cally, the idea consists in evaluating closeness between two
interpretations ω and ω′ as the set of variables on which they
differ:

diff(ω, ω′) = {p ∈ P | ω(p) '= ω′(p)}.
This definition has already been used in the belief revi-

sion/update literature in order to define a number of opera-
tors (Katsuno & Mendelzon 1991; Weber 1986; Satoh 1988;
Borgida 1985; Winslett 1988).

As for distances, we can straightforwardly define, using
diff, a notion of closeness between an interpretation and a
base, as the minimum closeness between the interpretation
and the models of the base. Of course, since diff gives as
output a set instead of a number, set-inclusion has to be con-
sidered as minimality criterion:

diff(ω, K) = min({diff(ω, ω′) | ω′ |= K},⊆).

So the closeness between an interpretation ω and a base K
is measured as the set of all minimal sets (for set inclusion)
of propositional variables which have to be flipped in ω to
make it a model of K.

Now, we need to aggregate these measures in order to de-
fine a global notion of closeness between an interpretation
and a profile. This is the aim of the aggregation functions.
Of course, usual functions at work for distance-based oper-
ators cannot be used here simply because we do not work
with numbers, but with sets.

Several aggregation functions can be considered in our
setting. We focus on a single one in this paper. We consider
set-product ⊕ as aggregation function: for two sets of sets
E and E′, E ⊕ E′ = {c ∪ c′ | c ∈ E and c′ ∈ E′}.



ω diff(ω, K1) diff(ω, K2) diff(ω, {K1,K2})
0000 {{p, q, r}} {{p, s}} {{p, q, r, s}}
0001 {{p, q, r}} {{p}} {{p, q, r}}
0010 {{p, q}} {{p, s}} {{p, q, s}}
0011 {{p, q}} {{p}} {{p, q}}
0100 {{p, r}} {{p, q, s}} {{p, q, r, s}}
0101 {{p, r}} {{p, q}} {{p, q, r}}
0110 {{p}} {{p, q, s}} {{p, q, s}}
0111 {{p}} {{p, q}} {{p, q}}
1000 {{q, r}} {{s}} {{q, r, s}}
1001 {{q, r}} ∅ {{q, r}}
1010 {{q}} {{s}} {{q, s}}
1011 {{q}} ∅ {{q}}
1100 {{r}} {{q, s}} {{q, r, s}}
1101 {{r}} {{q}} {{q, r}}
1110 ∅ {{q, s}} {{q, s}}
1111 ∅ {{q}} {{q}}

Table 1: Computation of ∆diff,⊕
# (E)

Definition 4 Let E = {K1, . . . ,Kn} be a profile and ω an
interpretation. The closeness between ω and E is given by:

diff(ω, E) = min({⊕Ki∈E diff(ω, Ki)},⊆).

By construction, each element of diff(ω, E) is a minimal
set c of variables (a conflict set) such that for each base Ki,
ω can be transformed into a model of Ki by flipping in ω the
variables of c.

Finally, we define a merging operator ∆diff,⊕ which picks
up the models of the integrity constraints whose closeness to
the profile E contains at least one of the minimal (w.r.t. ⊆)
conflict set:

Definition 5 Let E = {K1,K2, . . . ,Kn} be a profile, µ an
integrity constraint. Then:

diffµ(E) = min({diff(ω, E) | ω |= µ},⊆)

and

[∆diff,⊕
µ (E)] = {ω |= µ | ∃c ∈ diff(ω, E) s.t. c ∈ diffµ(E)}.

Example 1 We consider a profile E = {K1,K2}
with K1 = {p ∧ q ∧ r} and K2 = {p ∧ ¬q ∧
s}, there is no integrity constraint (i.e., µ ≡ -).
diffµ(E) = min({{p, q, r, s}, {p, q, r}, {p, q, s}, {p, q},
{q, r, s}, {q, r}, {q, s}, {q}},⊆) = {{q}}. [∆diff,⊕

# (E)] =
{1111, 1011} so ∆diff,⊕

# (E) ≡ p ∧ r ∧ s (see Table 1).

Just as many IC merging operators can be considered as
generalizations of AGM revision operators (Konieczny &
Pino Pérez 2002a), one can easily show that ∆diff,⊕ can be
viewed as a generalization of the well-known Satoh’s revi-
sion operator (Satoh 1988), denoted ◦S :

Proposition 1 Let K be a base and µ an integrity con-
straint. We have:

∆diff,⊕
µ ({K}) ≡ K ◦S µ.

Logical Properties
Since we aim at investigating the logical properties of the
merging operator ∆diff,⊕, a set of properties must first be
considered as a base line. The following set of postulates
was proposed in (Konieczny & Pino Pérez 2002a):

Definition 6 / is an IC merging operator if and only if it
satisfies the following postulates:
(IC0) /µ(E) |= µ
(IC1) If µ is consistent, then /µ(E) is consistent
(IC2) If

∧
E is consistent with µ, then /µ(E) ≡

∧
E ∧ µ

(IC3) If E1 ≡ E2 and µ1 ≡ µ2, then/µ1(E1) ≡ /µ2(E2)
(IC4) If K1 |= µ and K2 |= µ, then/µ({K1,K2})∧K1 is

consistent if and only if/µ({K1,K2})∧K2 is consistent
(IC5) /µ(E1) ∧/µ(E2) |= /µ(E1 " E2)
(IC6) If /µ(E1) ∧/µ(E2) is consistent,

then /µ(E1 " E2) |= /µ(E1) ∧/µ(E2)
(IC7) /µ1(E) ∧ µ2 |= /µ1∧µ2(E)
(IC8) If /µ1(E) ∧ µ2 is consistent, then /µ1∧µ2(E) |=
/µ1(E)

For explanations on these postulates see (Konieczny &
Pino Pérez 2002a).

Proposition 2 ∆diff,⊕ satisfies (IC0), (IC1), (IC2), (IC3),
(IC4) and (IC7). It does not satisfy (IC5), (IC6) and (IC8).

The reason why ∆diff,⊕ does not satisfies (IC8) is that
this property requires a total criterion (i.e., the correspond-
ing syncretic assignment (Konieczny & Pino Pérez 2002b)
must associates a total pre-order to each profile, so that any
two interpretations can always be compared), whereas diff
gives rise only to partial relations.

∆diff,⊕ also does not satisfy (IC5) and (IC6), which are
postulates capturing aggregation properties. This is not
surprising since, unlike distance-based operators (as the
ones based on Hamming distance), ∆diff,⊕ keeps a justi-
fication of the minimality of an interpretation (as a con-
flict set). So, when joining two groups, it may happen
that the justifications needed to motivate this choice be-
come too weak. As an example, assume that two pro-
files E1 and E2 select independently as the result of the
merging a formula with only two models ω and ω′ (i.e.,
[∆diff,⊕

µ (E1)] = [∆diff,⊕
µ (E2)] = {ω, ω′}), and suppose that

the conflict sets between the models and the profiles are the
following ones: diff(ω, E1) = diff(ω′, E1) = diff(ω, E2) =
{{a, b}}, and diff(ω′, E2) = {{a, c}}. Then, if we join
the two groups we obtain diff(ω, E1 " E2) = {{a, b}} and
diff(ω′, E1 " E2) = {{a, b, c}}. The conflict set associated
to ω′ is not minimal anymore. Since diff(ω, E1 " E2) ⊂
diff(ω′, E1 "E2), we have ω′ '|= ∆diff,⊕

µ (E1 "E2), whereas
ω′ |= ∆diff,⊕

µ (E1) ∧∆diff,⊕
µ (E2), which contradicts (IC6).

On the following example, we illustrate how ∆diff,⊕ can
prove better than usual distance-based merging operators:

Example 2 Consider four bases [K1] = {0010, 0100},
[K2] = {0001, 0100}, [K3] = {0111, 0100}, and [K4] =
{1011, 0100}. E = {K1,K2,K3,K4}. The only possible
worlds are [µ] = {0011, 0000}.



ω 0011 0000
diff(ω, K1) dH(ω, K1) {{d}} 1 {{b}, {c}} 1
diff(ω, K2) dH(ω, K2) {{c}} 1 {{b}, {d}} 1
diff(ω, K3) dH(ω, K3) {{b}} 1 {{b}} 1
diff(ω, K4) dH(ω, K4) {{a}, {b, c, d}} 1 {{b}, {a, c, d}} 1
diff(ω, E) dH,Σ(ω, E) {{b, c, d}} 4 {{b}} 4

Table 2: Computations of ∆diff,⊕
µ (E) and ∆dH ,Σ

µ (E)

Computations of the merged bases for operators ∆diff,⊕ and
∆dH ,Σ

µ are summed up in Table 2 (∆dH ,Σ
µ is the distance-

based merging operator relying on the Hamming distance
and using sum as an aggregation function (Revesz 1997;
Konieczny & Pino Pérez 2002a)).
We get [∆diff,⊕

µ (E)] = {0000}, while [∆dH ,Σ
µ (E)] =

{0011, 0000}.
Clearly the Hamming distance dH does not discriminate be-
tween the two possible worlds, which can be problematic.
Here all the agents agree on what they disagree with 0000
(i.e., the conflict is on b), while this is not the case for 0011.
Operators based on the Hamming distance cannot make this
distinction. As one can check in Table 2 the Hamming dis-
tances of the interpretations to the bases are all identical
and equal to 1, whereas the diff distance exhibits the fact
that there is less conflict on 0000 than on 0011 (while flip-
ping the variable b in 0000 is enough to obtain a model of
all the bases, it is not the case with 0011).

Beyond the IC postulates, ∆diff,⊕ satisfies also an inter-
esting additional logical property:

Definition 7 A merging operator ∆ satisfies the temperance
property iff for every profile {K1, . . . ,Kn}:

∆#({K1, . . . ,Kn}) is consistent with each Ki

(temperance)

Proposition 3 ∆diff,⊕ satisfies (temperance).

This proposition shows that the merged base obtained us-
ing ∆diff,⊕ is consistent with every base of the profile (when
there is no integrity constraint). This proposition also gives
an additional explanation to the fact that ∆diff,⊕ does not
satisfy (IC6), since temperance is not compatible with this
postulate.

Proposition 4 There is no merging operator satisfying all
of (IC2), (IC6), and (temperance).

It is worth noting that the temperance property is not satis-
fied by many merging operators. In particular, as implied by
the previous proposition, none of the IC merging operators
satisfies temperance. Interestingly, the temperance property
shows that ∆diff,⊕ can be viewed as a kind of negotiation op-
erator, which can be used for determining the most consen-
sual parts of the bases of all agents. This can prove useful for
defining new negotiation operators, as studied for instance in
(Zhang et al. 2004; Meyer et al. 2004b; 2004a; Booth 2001;
2006; Konieczny 2004).

Strategy-Proofness
Let us now investigate how robust ∆diff,⊕ is with respect
to manipulation. Intuitively, a merging operator is strategy-
proof if and only if, given the beliefs/goals of the other
agents, reporting untruthful beliefs/goals does not enable an
agent to improve her satisfaction. A formal counterpart of
this idea is given in (Everaere, Konieczny, & Marquis 2004;
2007):

Definition 8 Let i be a satisfaction index, i.e., a total func-
tion from L ×L to IR. A merging operator ∆ is strategy-
proof for i if and only if there is no integrity constraint µ, no
profile E = {K1, . . . ,Kn}, no base K and no base K ′ such
that

i(K, ∆µ(E " {K ′})) > i(K, ∆µ(E " {K})).
Clearly, there are numerous different ways to define

the satisfaction of an agent given a merged base. While
many ad hoc definitions can be considered, the following
three indexes are meaningful when no additional informa-
tion are available (Everaere, Konieczny, & Marquis 2004;
2007):

Definition 9

• idw(K, K∆) =
{

1 if K ∧K∆ is consistent,
0 otherwise.

• ids(K, K∆) =
{

1 if K∆ |= K,
0 otherwise.

• ip(K, K∆) =
{ #([K]∩[K∆])

#([K∆]) if #([K∆]) '= 0,
0 otherwise.

For the weak drastic index (idw ), the agent is considered
satisfied as soon as its beliefs/goals are consistent with the
merged base. For the strong drastic index (ids ), in order
to be satisfied, the agent must impose her beliefs/goals to
the whole group. The last index (“probabilistic index” ip)
is not a Boolean one, leading to a more gradual notion of
satisfaction. The more compatible the merged base with the
agent’s base the more satisfied the agent. The compatibility
degree of K with K∆ is the (normalized) number of models
of K that are models of K∆ as well.

Proposition 5 In the general case ∆diff,⊕ is not strategy-
proof for any of the three indexes idw , ids and ip. When there
is no integrity constraint (i.e., µ ≡ -), ∆diff,⊕ is strategy-
proof for idw , but still not strategy-proof for ids or ip.

Most of the model-based operators are not strategy-proof,
even in very restricted situations (Everaere, Konieczny, &
Marquis 2007). For example, ∆dH ,Σ or ∆dH ,Gmin, which



are the best model-based operators with respect to strategy-
proofness, are not strategy-proof for idw , even if µ ≡ -.
∆diff,⊕ performs slightly better than any of them with this
respect.

Complexity Issues
Let us consider now the complexity issue for the inference
problem from a ∆diff,⊕-merged base. We assume the reader
acquainted with basics of complexity theory (see (Papadim-
itriou 1994)).

Formally, let us consider the following decision problem
MERGE(∆diff,⊕):

• Input: A triple 〈E,µ,α〉 where E = {K1, . . . ,Kn} is a
profile, µ ∈ L is a formula, and α ∈ L is a formula.

• Question: Does ∆diff,⊕
µ (E) |= α hold?

Proposition 6 MERGE(∆diff,⊕) is Πp
2-complete.

This result shows that ∆diff,⊕ is computationally harder
than usual distance-based operators, but is at the same com-
plexity level as many formula-based operators (Konieczny,
Lang, & Marquis 2004), and as complex as the correspond-
ing revision operator (see Proposition 1) (Eiter & Gottlob
1992).

Related Work: Consistency-Based Operators
In (Delgrande & Schaub 2007) two consistency-based merg-
ing operators, based on a default inference relation, are pro-
posed. The idea is to use a specific language for each of
the bases (disjoint from all other), so as to make their union
consistent, and then to add as much default equivalence as
possible in order to identify the corresponding variables of
the different languages.

At a first glance, these operators seem very close to
∆diff,⊕, since they try to maximise the agreement between
the bases at the variable level, whereas ∆diff,⊕ tries to min-
imize the conflict. Furthermore, these two operators satisfy
also the temperance property. However one can show that all
three operators are actually distinct (and even incomparable
as to their inferential power).

Let us first give a brief refresher on Delgrande and
Schaub’s operators. A i-renaming of a language L is the
language Li, built from the set of propositional variables
Pi = {pi | p ∈ P}, where for each α ∈ L, αi is the re-
sult of replacing in α each propositional variable p ∈ P by
the corresponding propositional variable pi ∈ Pi. Given a
base K, the i-renaming of (the formulas of) K, is denoted
Ki.

Definition 10 Let E = {K1,K2, . . . ,Kn} be a profile.
• Let EQ be a maximal (w.r.t ⊆) subset of {pk ⇔ pl | p ∈
L and k, l ∈ {1 . . . n}} such that (

∧
Ki∈E Ki

i ) ∧ EQ is
consistent.
Then {α | ∀j ∈ {1 . . . n} (

∧
Ki∈E Ki

i ) ∧ EQ |= αj} is a
consistent symmetric belief change extension of E.
The skeptical merging ∆s(E) of E is the intersection of
all the consistent symmetric belief change extensions of
E.

ω diff(ω, K1) diff(ω, K2) diff(ω, K3) diff(ω, E)
000 {{p, q}, {q, r}} {{p}, {q}} {∅} {{p, q}, {q, r}}
001 {{q}} {{p, r}, {q, r}} {{r}} {{q, r}}
010 {{p}, {r}} {∅} {{q}} {{p, q}, {q, r}}
011 {∅} {{r}} {{q, r}} {{q, r}}
100 {{q}} {∅} {∅} {{q}}
101 {{p, q}, {q, r}} {{r}} {{r}} {{q, r}}
110 {∅} {{q}, {p}} {{q}} {{q}}
111 {{p}, {r}} {{q, r}, {p, r}} {{q, r}} {{q, r}}

Table 3: Example 2 - Computation of ∆diff,⊕
# (E)

• Let EQ be a maximal (w.r.t ⊆) subset of {pj ⇔ p | p ∈
L and j ∈ {1 . . . n}} such that (

∧
Ki∈E Ki

i )∧EQ is con-
sistent.
Then (

∧
Ki∈E Ki

i ) ∧ EQ is a consistent projected belief
change extension of E.
The skeptical merging ∇s(E) of E is the intersection of
all the consistent projected belief change extensions of E.

Example 3 We consider the profile E = {K1,K2,K3},
with K1 = (p ∧ q ∧ ¬r) ∨ (¬p ∧ q ∧ r), K2 = (p ∧ ¬q ∧
¬r) ∨ (¬p ∧ q ∧ ¬r) and K3 = ¬q ∧ ¬r.
The computation of ∆diff,⊕

# (E) is described in Table 3. We
have ∆diff,⊕

# (E) ≡ p ∧ ¬r.
There are four maximal sets of equivalences for ∆s(E):
EQ1 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3,

r2 ⇔ r3, q2 ⇔ q3}
EQ2 = {p1 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ3 = {p2 ⇔ p3, r1 ⇔ r2, r1 ⇔ r3, r2 ⇔ r3, q1 ⇔ q2}
EQ4 = {p1 ⇔ p2, p1 ⇔ p3, p2 ⇔ p3, r2 ⇔ r3, q1 ⇔ q2}
So, ∆s(E) ≡ ¬r ∨ (¬p ∧ q), and ∆s(E) '|= ∆diff,⊕

# (E).
For ∇s, the maximal sets of equivalences are the following
ones (p ⇔ p1 ⇔ p2 ⇔ p3 is used as a concise notation
for p ⇔ p1, p ⇔ p2, p ⇔ p3 and similarly for the other
variables):

EQ1 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3,
q ⇔ q2 ⇔ q3}

EQ′
1 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔

q1},
EQ2 = {p ⇔ p1 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ3 = {p ⇔ p2 ⇔ p3, r ⇔ r1 ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ4 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r2 ⇔ r3, q ⇔ q1 ⇔

q2}
EQ′

4 = {p ⇔ p1 ⇔ p2 ⇔ p3, r ⇔ r1, q ⇔ q1 ⇔ q2}

So,∇s(E) ≡ (p∧¬r)∨(¬p∧q), and∇s(E) '|= ∆diff,⊕
# (E).

More generally, we can prove the following statement:

Proposition 7 ∆diff,⊕
# , ∆s, ∇s are pairwise incomparable

with respect to inferential power, i.e., it is not the case that
for every profile E, the merged base obtained using one of
these operators implies the merged base obtained using an-
other operator among these three ones.



Conclusion and Perspectives
In this paper we have introduced a family of model-based
merging operators, relying on a set-theoretic measure of
conflict. We focused on set-product as an aggregation func-
tion and considered the corresponding operator ∆diff,⊕. A
feature of this operator, typically not shared by existing
model-based operators, is that it satisfies the temperance
property, and as a consequence, it is strategy-proof for the
weak drastic index when there are no integrity constraints.
The price to be paid is a higher complexity than usual model-
based operators (but similar to the one of formula-based
merging operators (Everaere, Konieczny, & Marquis 2007)).

An important point of this work is that it illustrates the fact
that the widely used Hamming distance (and more generally
all distance-based operators whatever the distance), can be
criticized for aggregation. We show through examples in
this paper that using diff can allow to find subtler results.

The main perspective opened by this work is to charac-
terize the merging scenarios requiring such subtler informa-
tion, and to improve existing merging operators by taking
it into account. This work calls for a number of other per-
spectives. Especially, there are several parameters used in
the definition of ∆diff,⊕ for which alternative choices could
be made (especially, other aggregation functions, other min-
imality criteria for characterizing the models of the merged
base). It would be interesting to determine whether some
specific choices for these parameters would lead to majority-
like operators or arbitration-like operators (Konieczny &
Pino Pérez 2002a). Another issue for further research con-
sists in determining rationality conditions on aggregation
functions (as it has been achieved for distance-based merg-
ing operators). More generally, investigating the properties
of the whole family of diff-based operators is an interesting
issue.
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