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Abstract The multi-agent resource allocation problem is the negotiation of a set
of resources among a population of agents, in order to maximize a social welfare
function. The purpose of this study is the definition of the agent behavior which
leads, if possible, to an optimal resource allocation at the end of the negotiation pro-
cess as an emergent phenomenon. This process can be based on any kind of contact
networks. Our study focuses on a specific notion: the Nash product, which has not
the drawbacks of the other widely used notions. However, centralized approaches
cannot handle large instances, since the social function is not linear. After a study
of different bilateral transaction types, we underline the most efficient negotiation
policy in order to solve the multi-agent resource allocation problem with the Nash
product and provide an adaptive, scalable and anytime algorithm.

1 Introduction

The multi-agent resource allocation problem has been studied for a long time, either
within a centralized framework or a distributed one. In studies with a centralized
approach, agents report their preferences on the resources to a specific agent, e.g.,
an auctioneer, who then determines the final resource allocation. Within this context,
authors [17] have suggested different transaction models for given types of auctions.
At the opposite, in studies based on a distributed framework, an initial resource
allocation evolves by means of local negotiations among agents. The convergence
of such a negotiation process can be viewed as an emergent phenomenon, due to
local negotiations among agents. The advantages are adaptability and dynamicity
of the system, while keeping privacy for all users. However, assumptions have been
implicitly made. Indeed, an agent is able to communicate and negotiate with all other
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agents. This assumption is not always plausible as soon as real world applications
are considered.

The evaluation of a resource allocation is usually made by means of notions from
the social welfare theory [2]. The most widely used notions such as the utilitarian
welfare or the egalitarian welfare may have some undesirable effects on the resource
allocation which is obtained. In this work, we choose to focus on the Nash product,
which has not these drawbacks (see Section 2.3). Considering this welfare, an ap-
proach based on a centralized framework is not efficient. The determination of the
optimal resource allocation is a complex and time-consuming problem which can
only be solved in a very large amout of time.

In this study, our purpose is the definition of the best agent behavior, in order
to ensure the convergence of the negotiation process towards a socially optimal re-
source allocation, or when the need arises, towards a socially close allocation. We
provide a scalable and anytime algorithm which can be based on any kind of contact
network, when the Nash product is considered as social welfare measure. The solu-
tion which is provided in this paper is adaptive, new agents can be added with new
resources during the negotiation process, while with a centralized approach, such a
thing is not possible without restarting the whole solving process with the new data.

After a presentation of related studies in Section 1.1, we define basic notions
in Section 2. Section 3 presents a centralized approach, and Section 4 presents our
distributed approach. Section 5 presents the experiment protocol, the evaluation cri-
teria, and an analysis of the results.

1.1 Related works

Lots of studies focus on mathematical properties of the multi-agent resource alloca-
tion problem. In [16], the author handles the properties of the allowed transactions
and establishes a classification of the basic transactions along with theorems on the
existence or the non-existence of a transaction sequence leading from any initial
resource allocation to an optimal one. However, no process are provided to reach
an optimal resource allocation. Along the same lines, mathematical properties on
some classes of utility functions and payment functions are studied in [7] in order
to design negotiation processes, which terminate after a finite number of iterations.
[8] presents the impact of the acceptability criterion, the utility function and the
transaction properties on the society welfare, without regard for the agent behavior
which leads the negotiation process to such a socially optimal resource allocation.
In other studies, authors define criterion which favors equitable deals [9] and others
study the envy-freeness in the resource allocation process [4, 6]. In [14, 15], agent
behaviors are studied, but only in the case of the utilitarian welfare, for which an ob-
vious centralized solution exists. The notion of neighborhood is seldom considered,
whereas it is one of the most important points for real world applications.



A Realistic Approach to Solve the Nash Welfare 3

2 Multi-Agent Resource Allocation Problem

2.1 Definitions and notations

The multi-agent resource allocation problem is based on a population P = {a1, . . . ,an}
of agents, and on a set R = {r1, . . . ,rm} of available resources, which are assumed
indivisible and static.

This set of resources R is initially distributed over the population of agents P .
Each agent a owns a bundle of resources, Ra. A resource allocation A is a parti-
tioning of the resources in R among the agents of P , A = {R1, . . . ,Rn}. A is the
set of all the possible allocations. The preferences of the agents are expressed by
means of 1-additive utility function [5, 12]. ua : Rma → IR and u′a : R→ IR with the
following relationship: ua(Ra) = ∑

r∈Ra

u′a(r). Even if their mathematical definitions

are different, since they are used in the same purpose, ua will be used equally in
order to simplify the notations.

2.2 Contact network

The relationships among the agents can be represented by means of a graph: the
contact network. A link between two agents means that they are able to communi-
cate between them. Most of the studies rely on the hypothesis of a complete contact
network. Any agent is able to negotiate with all other agent in the population. Such
a hypothesis has a strong impact on the negotiation process, and it is not realistic
as soon as real world applications are considered. For instance, in the case of social
networks, a person only knows a subset of the overall set of actors in the network.
Thus, the neighborhood of an agent a, denoted by Na, define the set of agents with
who he is able to talk. In this study, we consider that the contact network can be any
connected graph, ranging from complete graphs to small-world graph [1], including
structured graphs like rings, trees, or grids.

2.3 Social welfare

In order to evaluate a resource allocation, notions which come from the social wel-
fare theory are considered [2, 13]. Several notions exist, and each has advantages
and drawbacks.

Definition 1. The utilitarian welfare of a resource allocation A, denoted by swu(A),
corresponds to the summation of the agent utilities: swu(A) = ∑

a∈P
ua(Ra).

Definition 2. The egalitarian welfare of a resource allocation A, denoted by swe(A),
corresponds to the utility of the poorest agent: swe(A) = min

a∈P
ua(Ra).
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Definition 3. The Nash product of a resource allocation A, denoted by swN(A),
corresponds to the product of the agent utilities: swN(A) = ∏

a∈P
ua(Ra).

In order to illustrate the difference among these notions, let us consider a pop-
ulation of 3 agents, P = {a1,a2,a3}, and a set of 6 available resources, R =
{r1,r2,r3,r4,r5,r6}. Their preferences are expressed by means of a utility function,
as described in Table 1. Optimal social values are gathered in Table 2 with a cor-
responding resource allocation. The utilitarian welfare considers the welfare of the

Table 1 Agent preferences

Agents Resources
r1 r2 r3 r4 r5 r6

a1 10 7 10 9 2 1
a2 6 10 3 4 8 6
a3 1 2 1 2 1 3

Table 2 Optimal social values

Social welfare Value Resource allocation
swu 53 [{r1,r3,r4}{r2,r5,r6}{}]
swe 6 [{r1}{r5}{r2,r3,r4,r6}]
swN 1800 [{r1,r3}{r2,r5}{r4,r6}]

whole agent community, without concern about the individual welfare, and then can
lead to resource allocations where one agent, a3, does not get any resource. Some
agents can be neglected, especially if, for each resource, there exists another agent
who estimates more this resource. At the opposite, the egalitarian welfare considers
only the individual welfare, and then leads to resource allocations where every agent
owns at least one resource. No agent is neglected, but an agent with low preferences,
like a3, drains the resources, and the resulting allocation may be very unbalanced. In
between, the Nash product is a compromise which leads to more balanced resource
allocations, avoiding such a draining phenomenon, and where no agent is neglected.
This notion can only be used when utility values are positive. Moreover, small vari-
ations in an allocation lead to very large variations of the welfare: for instance, a
simple exchange of r1 with r6 leads to a decrease of the social value from 1800 to
594.

3 A centralized approach

Of course, this resource allocation process can be solved using a centralized frame-
work. The optimal social value, and a corresponding resource allocation, can be
determined by means of the following mathematical model. The boolean variables
xra represent the ownership of a resource r by an agent a, with r ∈R,a ∈P . Then,
the optimal value of the Nash product can be found by solving this equation system:

sw?
N =


max ∏

a∈P
∑

r∈R
ua(r)xra

subject to: ∑
a∈P

xra = 1 r ∈R

xra ∈ {0,1} r ∈R,a ∈P.
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Such a system cannot be handled in a classic way since the objective function is
not linear. However, an estimation could be made with the following method. First,
a Lagrangian relaxation is used [10]. This method can solve non linear equation
system if the objective function is convex. However, it is not the case when the
Nash product is considered, and a multi-start algorithm has to be combined with the
relaxation using a sampling small enough for initial solutions. Starting from multiple
initial solutions may avoid local optima when non convex function are considered
[11].

Moreover, since resources are not divisible, an integer solution has still to be
found. Indeed, the relaxation changes the discrete value set {0,1} into a continuous
value set [0,1]. In order to obtain an integer solution, a branch-and-bound algorithm
is then used, guided by the values that have been provided by the relaxed solution.

Such a method cannot certify the optimality of the found solution. This central-
ized approach is not really scalable, consequently of the nonlinearity of the objec-
tive, and of the exponential solution space. A resource allocation problem with n
agents and m resources leads to a solution space of size nm (n� m). Moreover,
the implicit assumption of a complete contact network has been made with such a
model. Large sets of constraints have to be added to this model in order to prohibit
exchanges between agents who are not related.

Since such a method is not scalable, we developed two scalable heuristics in order
to determine an estimation of the optimal social value. The first heuristic is focused
on the resource value. The first step of this algorithm is to allocate each resource to
the agent who estimates it the most. The second step is to be sure that all agents own
at least one resource, otherwise, it looks for picking up the resource maximizing the
social value to an agent who has at least two resources. The second heuristic is
focused on the resource distribution uniformity, by allocating successively the best
remaining resource to each agent.

4 A Distributed approach

Our proposition is then to use a distributed approach. The purpose of such an ap-
proach is to define the agent behavior which leads to a socially optimal resource
allocation, as an emergent phenomenon at the end of the negotiation process. At the
opposite of centralized approach, our distributed approach can be based on any kind
of communication network, as discussed in Section 2.2. The question is: “which be-
havior must we give to the agent in order to obtain a good Nash welfare as emergent
phenomenon ?”

4.1 Acceptability Criteria

Such criteria have a strong impact on negotiation processes. Indeed, if an agent
can accept any kind of deal, then the negotiation process will not be able to stop.
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Even if the resource allocation process reaches an optimal state, the agents will
continue to negotiate among them and leave the optimum. Moreover, there is not
guarantee that such a process reaches one time a suitable resource allocation. The
acceptability criteria help the agent to determine whether a transaction is profitable
or not. An agent has to based his decision on an acceptability criteria, with respect to
the agent behavior. Such criteria restrict a lot the set of possible transactions among
the agents. A negotiation process ends when no agent in the population is able to
find an acceptable deal.

Let two agents, a and a′, illustrate the considered criteria. The agent a initi-
ates a transaction δ (A,A′) with an agent a′: the initial resource allocation A =
[. . . ,Ri, . . . ,R j, . . . ] evolves towards a new one A′.

Definition 4. A rational agent is an agent who only accepts transactions that in-
crease his utility. If the agent a is rational, he accepts a transaction only if: ua(R ′a) >
ua(Ra).

The rationality criterion is the most widely used in the literature, especially in the
case of non cooperative and selfish agents.

Definition 5. A rational transaction is a transaction in which all involved agents
are rational. If a transaction is rational, involved agents accept it if: ua(R ′a) >
ua(Ra) and ua′(R ′a′) > ua′(Ra′).

However, this criterion restricts a lot the set of possible transactions, and may
lead the negotiation process to a sub-optimal resource allocation.

Another criterion that ensures the end of the negotiation process after a finite
number of transactions is the sociality. This criterion is based on a local evaluation
of the social welfare evolution.

Definition 6. A social agent is an agent who can only accept transactions that in-
crease the considered social welfare function of the multi-agent system.

Definition 7. A social transaction is a transaction which causes an increase of the
considered social welfare function. Such a transaction can only be accepted by the

involved agents if: sw(A′) > sw(A), A,A′ ∈A such that A δ−→ A′.

The determination of the social value associated to a resource allocation needs
global information: Indeed, it is essential to have the value of the utility of each
agent. However, it is possible to determine the variation of this social value with
local information. From the agent point of view, the acceptability can be determine
from information given by involved agents. It is then not necessary to determine its
value.

swN(A′) > swN(A)⇐⇒ ua(R ′a)∗ua′(R
′
a′) > ua(Ra)∗ua′(Ra′).

where Ra and R ′a is the bundle of a before and after the deal. Since a finite number
of agents are involved in a transaction, two in the case of bilateral transactions, only
their resource bundle change. Then the utility of the agents that are not involved in
this transaction can be considered as a constant value.
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4.2 Transaction Kinds

Our study is restricted to bilateral transactions, i.e., transactions involving simul-
taneously two agents. Indeed, multilateral transactions are too much complex and
time-consuming to be optimally determined, especially when the Nash product is
considered. Moreover, our aim is to define the simplest agent behavior in order to
favor the scalability of the algorithm. Three kinds of bilateral transactions can be
distinguished. Others are combinations of these basic transactions. In each case, the
transaction is initiated by a, in which is involved one of his neighbor a′. They own
respectively ma and ma′ resources in their bundle

First, the gift transaction. The initiator a can only give one resource to a′. Only
ma gifts are possible. The gift transaction cannot be rational for the initiator and is
always rational for the agent participant (since utilities are positive).

Then, the swap transaction. Each agent provides a unique resource. This deal is
symmetric: the number of resources per agent cannot vary. Hence, an optimal solu-
tion can be reached only if the initial allocation has the same resource distribution
as one of the optimal allocation. ma×ma′ swaps are possible.

Finally, the cluster-swap (CS). Each agent can involve a subset of their resources.
At the opposite of the swap, it can be asymmetric. The cluster-swap contains the gift
and the swap transactions. 2ma+ma′ are possible

In the experiments of Section 5, besides “pure” negotiation policies which use
only one transaction kind, a “mixed” policy is defined: the swap+gift policy (S+G)
in which the initiator tries first to find an acceptable swap, and a gift if the need
arises. Agents use these policies according a specific behavior, which is defined in
the next Section.

4.3 Agent Behavior

A negotiation can be managed in many different ways. Indeed, during a negotiation,
if the participant rejects the offer, three alternatives arise: (i) the initiator gives up
and stops the negotiation, (ii) he selects another neighbor, or (iii) he changes the of-
fered resource. Based on these, various behaviors have been designed, implemented
and evaluated. Nevertheless, we always assumed that each agent tries to give first
his resource associated with the lowest utility. Only the behavior which leads to the
best results is presented in the sequel.

This agent behavior is flexible and volatile, which means that the initiator can
change either the selected neighbor or the offered resource. Such a behavior is
“complete”, meaning that according to kind of allowed transactions, if an accept-
able transaction exists in the neighborhood, it will be identified. This completeness,
which leads to greater results, has a cost. Costless behaviors can be designed, ac-
cording to the application and its quality requirements.
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Algorithm 1: Behavior of the initiator a
Sorts his resource bundle Ra ;
forall r ∈Ra do

forall a′ ∈Na do
if δa is acceptable then

Performs the transaction δa ;
Ends the negotiation ;

end
end

end

5 Experiments

5.1 Experimental setup and evaluation

During the experiments, various contact networks have been generated, some
complete and some Erdos-Renyi networks [3]. The mean connectivity degree of
such networks is n

4 , which means that an agent can talk at most to 25% of the pop-
ulation. The resources are initially distributed randomly. The preferences are also
generated randomly with values in 1..100. During the negotiation processes, the
speech turn is uniformly distributed over the agents. For the different population’s
sizes, the different allocation kinds, and the different networks, 100 instances are
run each time.

The evaluation of negotiation processes is not an obvious issue. It is always pos-
sible to find a metric which makes a process the best. Various metrics can be con-
sidered like the number of performed deals, the number of exchanged resources,
the number of speech turns or the number of attempted transactions. The relative
standard deviation among the social value of emergent allocations are also consid-
ered: a large value means that the considered negotiation process is very sensitive to
the initial resource allocation, and thus the quality of the emergent allocation quite
varies. Finally, a comparison with the estimation that is obtained with centralized
heuristics is made over 100000 instances. A ratio is computed to determine the gap
between them: the distributed social value over the centralized social value.

5.2 Result Analysis

First, results related to complete networks. The social swap+gift policy is more ro-
bust than others, with a relative standard deviation of 3.03% among the social values
for instances with 50 agents and 300 resources. This policy is less sensitive to the
initial allocation. At the opposite, the swap policy is not reliable, because strongly
sensitive to the initial allocation, with a social deviation of 114.09%. The swap pol-
icy is not enough flexible to avoid a local optimum. The swap+gift policy leads to
socially greater allocation than than ones reached by other policies, but is more ex-
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pensive in terms of attempted transactions(until 6 times). The cluster-swap policy
is the most expensive in time and in attempted transactions, the social deviation
is large enough to not compensate the additional costs, and thus is not interesting.
Computation times, shown in Table 3, and the corresponding number of performed
deals, shown in Table 4, are obtained for the swap+gift policy on complete contact
networks. Even an instance involving 50 agents and 2500 resources remains scalable
in a reasonable time.

Table 3 Computation time

Mean number of Number of agents
resources per agent 5 25 50

5 50ms 250ms 600ms
25 150ms 45s 4min
50 6s 5min 25min

Table 4 Number of performed deals

Mean number of Number of agents
resources per agent 5 25 50

5 35 350 900
25 150 1800 4600
50 400 4000 9000

Experiments on Erdos-Renyi networks bring about similar conclusions. The so-
cial swap+gift policy still obtains best results, with the greatest social value, coupled
with the lowest deviation ('17%). The value of this deviation depends strongly of
the network topology. Greater is the mean connectivity, lower will be the relative
standard deviation among the social values.

Finally, complex transactions such as the cluster-swaps, lead to a higher number
of attempted transactions, a larger computation time, but a lower number of speech
turns. At the opposite, simpler transactions such as gifts, lead to short negotiations
in time, but more speech turn are required before the end of the processes. However,
when the Nash product is considered, the gift policy or the swap policy are not
enough flexible to leave local optima and then leads to weaker allocations. The
swap+gift policy is a good compromise between scalability and complexity.

Since the swap+gift policy leads to the greatest social value, it has been com-
pared to the value obtained by the centralized heuristics, defined in Section 3. First,
the comparison to the heuristic which focused on the resource value. The distributed
negotiation process leads to better results on 99.97% of the instances, with a social
improvement of 140.86%, whereas when it leads to worst results, the gap is only
of 1.13%. During our experiments, the second heuristic, which is focused on the re-
source distribution, never reaches a better allocation than our distributed negotiation
process. The gap between the social value are huge, more than 10000%.

Thus, the social swap+gift policy is a flexible policy which leads to socially ef-
ficient allocations as well on complete networks as on Erdos-Renyi networks. Ne-
gotiation processes end in scalable time, for a small additional costs in terms of
attempted transactions.
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6 Conclusion

A centralized approach makes the solution of the resource allocation problem very
complex and time-consuming, as soon as the Nash product is considered as the
social welfare function. In this study, we have designed a negotiation process among
agents which leads to the emergence of a suitable resource allocation, by means
of local negotiations. This solving method is scalable, robust in terms of solution
quality, and adaptable. At the opposite of a centralized approach, ours can be based
on any type of contact network, and the addition of new agents (or new resources)
is possible and does not need to restart of the negotiation process. Moreover, it is
also an “anytime” algorithm: The quality of the solution increases as transactions
go along, and the solving process can be interrupted anytime.
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