
Simulating artificial stock markets with
efficiency

Philippe MATHIEU and Yann SECQ

Introduction

Stock markets have been studied for years in economy and finance academic de-
partments by relying on the idea of a general homo economicus that makes rational
choices. Classical approaches use equational representation to enable a global mar-
kets characterization, but they fail to explain the link between individual behaviours
and the global market dynamic and trends that emerge.

Schelling seminal work on segregation models [12] has initiated a novel approach
relying on an individual behaviour characterization that leads to global observations.
This approach enables a finer grain behaviour modelling that allows more detailed
simulations. Within this context, it is possible to have several kind of agents, with
heterogenous cooperative or concurrent behaviours, and to study their actions ag-
gregation and feedback loops which produces emergent macroscopic behaviours.
The trade-off between the expressivity available with an agent-based approach and
its execution speed relies on the complexity and information volume of involved
processes.

Our study is focused on order driven markets and describes why scalability issues
appear when using an agent-based approach. After introducing our existing simula-
tion platform ATOM, we study the impact of the number of orders and transactions
and the cost of notification on execution time. These aspects lead us to search how
we could optimize our platform to be able to handle higher volumes that are close
to those generated by High Frequency Trading (HFT) algorithms.

First section studies problematics linked to order-driven market simulators in a
centralized setting. Second section identifies problematics that have to be tackled
to scale agent-based simulations. Third section presents the two main approaches
to efficiently distribute stock market simulations: network-based or GPGPU-based.
Last section concludes and identifies future works.

P. Mathieu and Y. Secq - Université Lille 1, Computer Science Dept. LIFL (UMR CNRS 8022)
e-mail: firstname.surname@univ-lille1.fr

1

firstname.surname@univ-lille1.fr


2 Philippe MATHIEU and Yann SECQ

1 Agent-based stock market simulation with ATOM framework

This section first introduce general notions on order-driven markets. Then, princi-
ples and dynamic of agent-based market simulators are described. These elements
show why scaling can be a crucial issue with this type of approach and within this
application domain. Then, section 2 study which solutions can be proposed to ease
scaling issues in agent-based simulations.

In order-driven markets, price formation is based on the confrontation of a for-
malized offer and demand. This formalization is done through the emission of or-
ders by traders that contain an asset name, a direction (bidding or selling), a quantity
(number of shares) and a price. All orders for a given asset are gathered in an order
book (generally a double auction order book) that is organised in two sets sorted
on price: sell orders and buy orders. Price formation is realized by confronting the
best ask order price with the best sell order price. Thus, in a stock market driven by
orders, actors involved in price creation are traders that send ask or bid orders, order
books that stores and generate prices (one for each negotiated share on the market)
and the market that can be seen as the container for all these information exchanges
(orders and quotes).

In an agent-based approach of stock markets simulation, traders are represented
as agents, there are several order books (as much as the number of assets) and there
is the market that establish the link between traders and order books. The order pro-
cessing dynamic has two stages: in the first stage, traders send orders to the market,
that forward them to the concerned order book, the second stage happens if a price
is fixed. When a new price is created, it is sent to the market (to store price history)
and traders whose orders where involved in the last quote have their portfolio and
their balance updated accordingly to the exchanged shares and fixed prices. Traders
behaviours can then react to these changes in the market leading to interesting feed-
back loops between agents strategies. This approach allows simulations with the
finest possible grain, because all entities in the system are observable. Nevertheless,
this granularity which is an interesting aspect that enables experimentations and ob-
servations close to real stock markets is also an important challenge to be able to
scale these simulations.

The ATOM (ArTificial Open Market, atom.univ-lille1.fr) platform has
been developed to easily build fine-grain stocks markets simulations. This platform
is made of several layers that enable the definition of markets, simulations and to
allow their execution. If needed, visualization and live interaction with a running
simulation can be done. The main component of ATOM is a Java API that define all
entities introduced in section ??. This component includes detailed predefined ob-
ject for orders (Limit, Market, Cancel, Update, Stop) and trading strategies
(ZIT, Chartist, ...). Thus, a simulation can easily be built as shown in figure 1
(a more detailed description of the ATOM platformis available in [6]).



Simulating artificial stock markets with efficiency 3

Simulation sim = new Simulation();
for (int i=0; i<10; i++) { // Adding 10 order books

sim.addNewOrderBook("IBM_"+i);
}
for (int i=1;i<=1000;i++) { // Adding 1000 ZIT agents

Agent trader = new ZIT("zit_"+i);
sim.addNewAgent(trader);
trader.account.credit(10000);

}
// 1000 days with 100 ticks (opening), 800 (continuous) and 100 (closing)
sim.run(1000,100,800,100);

Fig. 1 A simple intra/extra day simulation with ATOM

2 Scaling issues in agent-based simulations

The main principle of agent-based simulation (ABS) is its focus on individual be-
haviours. Thus, simulation involving a high number of agents or messages implies
scalability issues. These issues can be categorized in two classes: volume handling
(number of messages, information to be stored for post-analysis) and information
exchange efficiency (latency between an update within the system and its notifica-
tion to agents).

2.1 Handling the volume

The first problem that arise is information volume that is generated and that has
to be processed to compute one simulation time step. In this specific application
domain, information volume is function of the number of order books, of agents,
of prices fixed and thus, of agent wealth updates. Each time that an agent send an
order, it has to be processed by the market (stored and forwarded to the specified
order book), then by the order book (insertion and matching), and if a price is fixed,
the market must be informed (to keep price history) and then involved traders on
this transaction have to be updated.

When one thousand agents and a dozen of order books are created (as in figure
1), it involves a very large number of orders, prices and portfolios to be managed.
The cost is high memory but also in computation. In the above example, the number
of orders is 1000∗ (100+800+100)∗1000 = 109, prices generated are in the order
of 106 and the total time taken for this simulation is roughly one hour on a 2.66Ghz
i7 computer. It is difficult to know the number of orders sent in a day on Euronext,
but the Global Average Daily Volume is in the order of 8 to 10 millions prices fixed
in a single day (Source) with an average order matching speed below 1 millisecond
(Source).

http://www.euronext.com/news/press_release/press_release-1731-FR.html?docid=990970
http://www.nyse.com/press/1262689035798.html


4 Philippe MATHIEU and Yann SECQ

2.2 Information exchange efficiency

The second important aspect is linked to the information exchange cost between
traders and order books. There are mainly two main information flows: the incom-
ing orders flowing from traders through the market to be handled by order books
and an outgoing flow starting with a price fixed within an order book that has to
be transmitted to the market, then to traders involved in the transaction (and more
globally to all traders). A last information exchange that can happen between traders
and the market is concerned with information on volumes and order books (bid-ask
spread and first rows of best bid-ask orders waiting).

Traders in agent-based simulations use several information to compute their next
action (do nothing or send an order): market (quotes, orders waiting in orderbooks,
bid-ask spread) and social (news or messages from others agents). In function of
their trading strategy (chartist, arbitragist ...), agents need to access more or less
information and thus, the mechanism used to transmit them to traders becomes a
bottleneck for the simulator. When the number of orders increases, the delay be-
tween an order emission and its execution notification (if another order can match
it) increases also.

For real markets, we have not been able to find quantified information on the
duration of such round trip message. But, with a matching process that is below
1 millisecond and a publicized data message latency given under 5 milliseconds
(Source). we can infer that the whole process should not take more than 10-100
milliseconds. But in an artificial markets, this information exchange of a new quote
generates more computation costs because agents portfolio have to be updated.

3 Agent-based simulator distribution

To handle scalability issues two main approaches can be used: distribute the load
among a computer network or on a General Purpose Graphical Processor Unit
(GPGPU). The first approach enables a scalability linked to the number of avail-
able computers while the second is highly dependant on the GPGPU design to be
able to chain several GPGPU on a given host. A third hybrid approach using a net-
work of computers using GPGPU is possible but raises others issues (see [13] for
internet scale and [4] for local scale networks).

3.1 Distributing an artificial stock market

To be able to scale agent-based stock market simulations, we have seen that two
main issues are involved: data volume storage and querying and information ex-
change speed between traders and order books. Visualisation has also to be taken

http://www.nyxdata.com/arcabook


Simulating artificial stock markets with efficiency 5

into account because it involves a process that gather an important information set.
Even if visualisation can be deported, it involves a high cost in information transfer.

Several strategies can be used to distribute and parallelize market computations
but one has to understand that there are three distinct problematics: computation
costs involved by trading strategies, computation costs implied by order/price han-
dling (emission, logging, insertion and matching, portfolio updating), communica-
tion latency occurring because of information exchange between traders and the
market.

These problematics correspond to different kind of computations: heterogenous
behaviours for trading strategies, homogenous computations for orders matching
process and network infrastructure and libraries for communications. In the follow-
ing sections, we explain how network-based distribution should be used to enable
concurrent execution of heterogenous computations (ie. traders strategies) while
GPGPU are fitted to intense data parallelism, and thus interesting for homogenous
computations (ie. price fixing mechanism).

3.2 Should quotes be pushed or pulled?

The second problematic related to information exchange becomes critical in a dis-
tributed setting. Two main schemes can be used to transmit information between
traders and the market: pulling or pushing. In a pulling scheme, traders initiate a
request to the market to retrieve some information, while in a pushing scheme, the
market sends the information to all traders. Pulling is efficient when trading strate-
gies do not use a lot of information from the market, but when strategies needs
information on multiple assets, with an important level of details (bid-ask spread,
orders within order books ...), pushing the information is more efficient.

This choice has also important implications on reliability. Indeed when a pulling
mechanism is used, denial of service attacks can be generated by malicious traders
by overloading the market with information requests. Even with fair traders, if
their trading strategy use an important information volume, it generates loads on
the market to prepare and transfer all these information. It should be noted that
in a distributed setting efficient group communication can be done thanks to pub-
lish/subscribe architectures, linked to networks broadcasting capabilities. For all
these reason, we believe that pushing information is clearly more fitted in a network-
based distribution. For GPGPU, this choice can be queried because memory laten-
cies are really low.

3.3 Network-based distribution

Distributing computation on a computer network allow to harness power of com-
moditized computers network. The main idea is to enable concurrent computations



6 Philippe MATHIEU and Yann SECQ

on each node and to use some message passing scheme to coordinate tasks. This
approach is particularly fitted to heterogenous computations that can be expressed
through task parallelism or embarrassingly parallel computations (as in [2]). The
main limiting factor is communication latency cost. To bypass this limitation, dis-
tributed systems try to cover communication costs with a coarser grain of computa-
tion chunk. These costs have been clearly evaluated in [8], where large scale traffic
simulations lead to a factor of 10 between a simulation on computers on a LAN
and on parallel machines. An interesting comparison of some of the well known
platforms (Repast, Cougaar, Aglets and AAA) can be found in [3].

Because heterogenous computations can be distributed, it is efficient to distribute
traders among the network. Even if some agents share the same trading strategy,
there are several strategies used during a simulation. This approach enables a con-
current computation of traders decisions. Difficulties that arise with this approach
is the guaranty of equity between agents. In a centralized setting, equity can be eas-
ily enforced with a turn of speak. In a distributed setting it becomes harder, but it
can be enforced by waiting that all traders have transmitted their action before in-
tegrating orders in the market. This synchronisation barrier decreases performances
because some computers are idle while the market is waiting for all traders answers.
An interesting use case that can leverage embarrassingly parallel computation is
the execution of several simulations. Experimentations done in [7] to compute so-
cial welfare in function of orders permutations requires orders! simulations that are
all independent from each other. This is typically a context where network-based
distribution is clearly fitted.

3.4 GPGPU-based distribution

To understand General Purpose Graphical Processing Unit (GPGPU) principles,
concepts of SISD, SIMD and streams have to be detailed. A Single Instruction Sin-
gle Data (SISD) can be seen has the default computation model, with one instruction
applied to one data in a time step. Early in computer hardware history, the concept
of Single Instruction Multiple Data (SIMD) has been developed in order to gain
computation power through a parallel execution of the same instruction on multiple
data.

Recently, these graphical processors that were tailored to graphical computations
have been redesigned to allow also some more general computation scheme by rely-
ing on a stream processing approach. GPGPU processors allow scalability through
the use of a large number of SIMD unit that can handle several parallel computation
chunks (called kernels).

GPGPU computation distribution is fitted to data intensive processing, but on
homogenous computations. The same algorithm can be applied in parallel to a
large number of data chunks. The main difficulty is then to redefine computation
in a stream oriented design to reach interesting performance gains. Works done on
agent-based simulation on GPU (as [10] and [9]) demonstrate the speedup that can



Simulating artificial stock markets with efficiency 7

be achieved but also illustrate difficulties and challenges to transform agent-based
computations in a stream parallelism model.

In stock markets, we can identify several mechanisms that could benefit a data
parallelism model: market trends characterization (as done in [5]) and price fixing
mechanism. The first computation type, for example assets mean value on a given
period or time series analysis, the benefit would come from being computed once
and shared by all trading strategies. The same process being applied to several assets
fit nicely with the stream processing model. The second computation type is harder
to parallelize. Indeed, price are fixed by heterogenous information chunks (orders
which varies in quantities, prices and assets). Nevertheless, an important time slice
is taken by orders sorting in ask and bid data structures. This point could benefit
from parallelized sorting algorithms.

A last important issue implied by GPGPU distribution is reproducibility. As
demonstrated in [11], if computations are not rigorously checked when using float-
ing point arithmetics, errors can grow rapidly and results become totally biased. This
could be crucial if algorithms linked to market data aggregation are parallelized in
order to provide on the shelves results to trading strategies.

Conclusion

This paper has described the main challenges that appear while simulating large
order-driven stock markets with an agent-based approach. These problems have
been identified through the use of our ATOM platform whose core components are
executed on a single computer. We have identified two fundamental problematics
that have to be tackled in order to scale simulations to a large number of orders:
information volume and information exchange. These problematics are particularly
critical to study the impact of High Frequency Trading algorithms that generate a
high number of orders in short time slice. The first approach, distributing computa-

Network GPGPU
heterogeneous computation homogeneous computation

actor/concurrent model stream processing model
network communication cost (high latency) host/card communication costs (low latency)

high scalability (number of machines) scalability limited to GPGPU chaining
language agnostic C-99 (and OpenCL / CUDA)

Fig. 2 Network vs. GPGPU distribution

tion on a computer network; is fitted to scaling heterogeneous computations. These
computations are typically trading strategies used by artificial agents. The main lim-
iting criteria of this kind of distribution is network communication costs that have to
be compensated by a high computation cost. The second approach relies on GPGPU
optimization and thus is particularly fitted for homogeneous computations. We have



8 Philippe MATHIEU and Yann SECQ

seen that data intensive computation that can be parallelized can leverage GPGPU
computation power, but as with the network-based approach, the cost of information
transfer between host and graphic card memory is the limiting factor.

We have begun experimentations to implement an hybrid approach that tries to
leverage network and GPGPU approaches (in the same spirit as [1] but not focused
on spatial based issues). We focus on distributing only trading strategies on a com-
puter network and to using GPGPU cards to manage the market. The main diffi-
culties are the network latency hiding, the parallelization of price fixing mechanism
and determining an efficient price notification mechanism.

References

1. Aaby, B., Perumalla, K., Seal, S.: Efficient simulation of agent-based models on multi-gpu
and multi-core clusters. In: 3rd International ICST Conference on Simulation Tools and Tech-
niques, SIMUTools ’10, pp. 29:1–29:10 (2010)

2. Chiara, R.D., Mancuso, A., Mazzeo, D., Scarano, V., Spagnuolo, C.: A framework for dis-
tributing agent-based simulations. In: HeteroPar’2011 jointly published with Euro-Par 2009.
Springer Verlag (2011)

3. Gorton, I., Haack, J., McGee, D., Cowell, A., Kuchar, O., Thomson, J.: Evaluating agent
architectures: Cougaar, aglets and aaa. In: Software Engineering for Multi-Agent Systems II,
LNCS, vol. 2940, pp. 33–35. Springer Berlin / Heidelberg (2004)

4. Hamada, T., Narumi, T., Yokota, R., Yasuoka, K., Nitadori, K., Taiji, M.: 42 tflops hierarchical
n-body simulations on gpus with applications in both astrophysics and turbulence. In: Conf.
on High Performance Computing Networking, Storage and Analysis, pp. 62:1–62:12 (2009)

5. Lee, M., hong Jeon, J., Kim, J., Song, J.: Scalable and parallel implementation of a financial
application on a gpu: With focus on out-of-core case. In: 2010 IEEE 10th Int. Conf. on
Computer and Information Technology, pp. 1323–1327 (2010)

6. Mathieu, P., Brandouy, O.: A generic architecture for realistic simulations of complex financial
dynamics. In: 8th International conference on Practical Applications of Agents and Multi-
Agents Systems (PAAMS’2010), vol. 70, pp. 185–197. Springer (2010)

7. Mathieu, P., Brandouy, O.: Efficient monitoring of financial orders with agent-based technolo-
gies. In: Practical Applications of Agents and Multi-Agents Systems, vol. 88, pp. 277–286.
Springer (2011)

8. Nagel, K., Rickert, M., Barrett, C.: Large scale traffic simulations. In: J. Palma, J. Dongarra
(eds.) Vector and Parallel Processing VECPAR’96, LNCS, vol. 1215, pp. 380–402. Springer
Berlin / Heidelberg (1997)

9. Perumalla, K., Aaby, B.: Data parallel execution challenges and runtime performance of agent
simulations on gpus. In: Spring simulation multiconference, pp. 116–123. Society for Com-
puter Simulation International (2008)

10. Richmond P. Coakley S., R.D.: Cellular level agent based modelling on the gpu. In: High
Performance Computational Systems Biology (2009)

11. Saponaro, P., Taufer, M.: Improving numerical reproducibility and stability in large-scale sim-
ulations on gpu. Master’s thesis, University of Delaware (2010)

12. Schelling, T.: Models of segregation. American Economic Review 59(2) (1969)
13. Spurzem, R., Berczik, P., Berentzen, I., Nitadori, K., Hamada, T., Marcus, G., Kugel, A.,

Männer, R., Fiestas, J., Banerjee, R., Klessen, R.: Astrophysical particle simulations with large
custom gpu clusters on three continents. Comput. Sci. 26, 145–151 (2011)


	Simulating artificial stock markets with efficiency
	Philippe MATHIEU and Yann SECQ
	Agent-based stock market simulation with ATOM framework
	Scaling issues in agent-based simulations
	Handling the volume
	Information exchange efficiency

	Agent-based simulator distribution
	Distributing an artificial stock market
	Should quotes be pushed or pulled?
	Network-based distribution
	GPGPU-based distribution

	References



