
Dynamic Organization of Multi-Agent Systems

Philippe Mathieu, Jean-Christophe Routier, and Yann Secq

Laboratoire d’Informatique Fondamentale de Lille
Cité Scientifique 59655 Villeneuve d’Ascq Cedex�

mathieu,routier,secq � @lifl.fr
http://www.lifl.fr/SMAC

Abstract. Many models of organizations for multi-agent systems have been pro-
posed so far. However the complexity implied by the design of social organiza-
tions in a given multi-agent system is often not mentioned. Too little has been
said about rules that must be applied to build the architecture of acquaintances
between agents. Moreover, tools for managing the dynamic evolution of organi-
zations are seldom provided in current framework propositions.
In this paper we discuss self-adaptation of organizations in multi-agent systems
according to the dynamic of interactions between agents. Starting from a default
organization, the architecture of acquaintances evolves autonomously depending
on messages flow in order to improve the global behaviour of the system. We pro-
pose three principles that can be applied to adapt the organization: “have a good
address book”, “share knowledge”, “recruit new able collaborators”.
These principles have been applied in our multi-agent platform called MAGIQUE.

1 Introduction

Multi-agent systems can be seen as societies of interacting agents. This notion of in-
teraction, which allows agent to find each other and then to exchange information, is a
central point for the design of multi-agent applications. Some methodologies have been
proposed, and they always identify the need that agents have to get in touch with other
agents, but they seldom provide guidelines to design the acquaintances structure. The
GAIA[13] methodology, for instance, identify this stage as the acquaintance model,
which is defined as follow :

An agent acquaintance model is simply a graph, with nodes in the graph corre-
sponding to agent types and arcs in the graph corresponding to communication
pathways. Agent acquaintance models are directed graphs, and so an arc a �
b messages to b, but not necessarily that b will send messages to a. An acquain-
tance model may be derived in a straightforward way from the roles, protocols,
and agent models.

We see that this definition just defines what we could call the natural notion of acquain-
tance. The notion of organization is even not clearly identified. In another work [5], it
is stated that :

an Interaction Model describes the responsibilities of an agent class, the ser-
vices it provides, associated interactions, and control relationship between
agent classes.



Again, this is just a way to express that agents interact and so need to have some com-
munication paths to exchange information. Others methodologies [2, 10], often state the
same kind of concepts but seldom identify that the acquaintance structure is a first-class
citizen of MAS entities.

Some works highlight the importance of the notion of organization in multi-agent
systems[14, 6]. Unfortunately, those works seldom reify this notion. For example, the
Contact-Net Protocol [12], which is based on a market-type system where providers
make propositions to requesters, is one kind of organization : it provides a mean to
find the “best” acquaintance for a given task. The Aalaadin [7] model, which relies on
the idea that agents are identified by roles they hold within some groups, is another
kind of organization. Others works emphasized the notion of hierarchy : the Magique
[11] model propose a hierarchical structure where agents have a boss and can manage
a team. Finally, the holonic approach [3], defines the notion of holarchy to organize
holons. Roughly speaking, holons must conform to some contracts that allow dynamic
agent (holon) creation through the aggregation of a set of sub-agents (sub-holon). Those
works, even if they do not emphasize the same nature of social structure, promote the
same idea : organizations are backbones of multi-agent systems.

Building an organization to optimize agent interactions is not straightforward : how
should we spread functionalities among agents, and how is it possible to reduce the cost
of communication, and overall how can the system deals with agents that freely leave or
join it? Lastly, how organizations can deal with the ever-changing flow of agents inter-
actions? This paper postulates that this complexity should not be exclusively addressed
by the multi-agent system designer. Organizations infrastructures should provide de-
fault behaviours to dynamically optimize communications flow, in order to lower the
number of messages that are exchanged, or to improve the quality of service. Too little
works [9, 4] have been done in this direction.

In the first section, we describe the needs to have an adaptive organization. We first
present static organizations and their limitations, then we study how social organizations
deal with those problems before we apply their solutions to multi-agent systems. The
second section introduces the MAGIQUE multi-agent framework and uses it to illustrate
dynamic organizations through some simple experiments described in section three.

2 Adapting the Architecture of the Organization

Before we consider how to adapt the organization of a multi-agent system, some prob-
lems with predetermined static structures must be considered. We will then propose
some general strategies to tackle these problems.

2.1 Some problems with static organizations.

One of the first problem, and probably the basic one, is to determine how acquaintances
are created? That is, how an agent can have information about the existence of another
able agent. One solution of course, is that this can be predetermined and established
by the multi-agent system designer, but this is not a satisfactory answer. Firstly, how



should this designer proceed to choose the most fitted acquaintance architecture, which
methodology must be applied, if there exists any really convenient. And secondly, what
about systems where new agents appear or what happens when the “able acquaintance”
is removed from the system, or becomes unavailable, because of a network failure for
example?

A second problem is more connected with the distribution of the skills over the
agents and is related with performance issues similar to load balancing. How can the
system be organized in such a way such that no agent becomes a critical overloaded
resource[8]? This implies that even if an organizational structure has been chosen, this
is not enough. You need to choose how the skills are distributed among the agents. It is
of course difficult if not impossible, to give universal rules to do this. It would be better
if one agent does not become a bottleneck in the system simply because he is the only
one able to provide a too often required service. In this situation you probably prefer
the service to be provided by several agents. Of course, this is not always appropriate,
in the case of some certification service for example. But when it is, how could it be
predetermined ? It is not necessarily obvious which service will be critical (in term of
overloading) and, even if you give such a service to several agents, how to ensure that
one of the able agents will not be overused and others ignored.

Lastly, we will consider a situation which is not so far from the previous one but
where we consider the “client of service” point of view rather than that of the service
provider. One agent may often have to use some given service for which he must make
requests to an able agent. In this case, even if the service provider agent is not over-
burdened, the client agent will probably be penalized by too many requests, at least
because of the communications. It would have been better, when designing the system,
to qualify this agent with the service, or to allow the agent to dynamically acquire it.

Aware of these problems, a multi-agent system designer will take them into account
and try to anticipate them and he will attend to limit them. He could succeed in that,
but what happens in the context of dynamic multi-agent systems, where agents can
freely join or leave the system ? This implies that some services will become available
at some time and unavailable at other. Agents must adapt themselves to this dynamic
environment. The designer cannot predetermine those situations. Therefore the only
thing he can do is to prepare his agents in such a way that they can adapt autonomously
to the changes that occur within their environment. In consequence, general strategies
must be given, we will discuss some of them in the following.

2.2 How do social organizations manage these problems ?

The problems we have raised in the previous section are not peculiar to multi-agent
systems but are general to social organizations, where members can be persons or com-
panies.

In every social structure, the problem of finding the “right person for the job” ap-
pears. Often this “right person” is not known a priori and it is necessary to use known
acquaintances to find who it is. But, of course, this may be a source of problems. You
do not necessarily want to use some go-between that can know what you want from
the “right person” and make use of this information. Moreover, this can have a cost



since the middleman can ask for a payment only because he has helped you to get in
touch with the good person. Therefore after some time, when information can have been
gathered you try to reach the right person directly.

The problem of overloaded resources exists too. The more able a person or a com-
pany is, the more probable it is that she or he will be overburdened (in fact this is often
considered as a symptom of competence). And then the delay before you benefit from
its service increase. In this case, the too much appealed resource must often find a way
to speed up its answer. Else, in the case of a company for example, clients will be
seeking an equivalent service somewhere else.

If you consider the client side, making too often requests to some critical resource
is a major drawback which has a cost. Either a time cost because client must wait for
the availability of the resource, or a money cost because clients pay for the service.
Therefore, when it is possible, clients try to go round this dependence.

In these three cases, the problem of cost or efficiency appears. In social organiza-
tions, there is a trend to aim at better efficiency. This trend can be natural – we all have
tendency to apply the law of least effort –, or economical by trying to reduce cost –
unless the intent is to increase profit? –.

We have identified three principles that can be used to improve the global behaviour
and that implies a dynamical organization of the social structure :

1. having a good address book,
2. sharing knowledge (or selling it...),
3. recruiting new able collaborators.

The first principle deals with the first of the three previous problems. It may seem
that this principle could have been called “remove the go-betweens”, however this must
be moderated. Indeed, creating new (social) links has a cost and it is not appropriate to
always go round the go-between. This one may know his job and his offer for a given
service can change because he has found of a better provider. In such a case the use of
the go-between would have been beneficial. In consequence, “having a good address
book” does not mean always removing the go-between, but rather knowing when to use
him and when not.

The second and third principles are rather means to tackle second and third prob-
lems and more generally to improve efficiency by reducing the time necessary for a
service request to be treated. When a service company is overused, in order not to lose
client, it will probably recruit able collaborators. In the same way, when the company
needs a new skill, it can recruit new collaborators with the required competence. Or,
consider a craftsman with too many orders, he will take one or more apprentices and
train them. This is a combination of the two principles, even if it is more of the “sharing
knowledge” since the intention is that, after his or her training, the apprentice becomes
a new resource. Of course, once again, recruiting or teaching/learning knowledge has a
cost and can not be applied every time.

2.3 The three principles applied to multi-agent systems

These three principles can be applied to achieve a self organization of the social struc-
ture in multi-agent systems. By applying them, we want an evolution of the acquain-



tance structure and the distribution of skills in order to reduce, firstly, the number of
messages exchanged in the system and, secondly, the time necessary for a service re-
quest to be treated.

According to these principles, we start from a predetermined organization, where
the agents have default acquaintances and where skills (or services) are more or less
arbitrarily distributed over the agents. The idea is to have an evolution of the structure
of acquaintances where the natural links are favoured at the expense of predefined ones.

Of course the major benefit is for the designer of the multi-agent system who can
prepare his multi-agent system as it seems the most fitted and then rely on these princi-
ples to adapt the efficiency of his system. Here are some examples, where these princi-
ples can bring some benefits:

� If an agent makes requests for a given service, the agent who answers can change
between two requests1. This contributes to increase the reliability of the multi-
agent system. Indeed even if a skilled agent is removed, another could be found
even if the designer had not explicitly anticipated it, or better, without need for the
designer to anticipate it.
We can imagine for example that the acquaintance architecture adapts to match the
network performance architecture. Two agents ��� and ��� can provide the same ser-
vice required by a client agent ��� . Depending on the localization of ��� or ��� in the
network, or between any predefined acquaintance for � � and one of the �
	 , � � will
request only the provider whose answer is the fastest (without using a systematic
broadcast !).

� If an agent performs the same task, he can “prefer” to learn a skill and thus remove
the need to delegate its achievement.
On the other side, if an agent is overwhelmed by requests from other agents who
want to exploit one of his skills, he can choose to teach this skill to some other(s)
agent(s) to multiply the supply and then lighten his burden.

� If for some reason an agent has to disappear from the multi-agent system and he
owns some critical skill, he can teach it to some other agent and thus warrants the
continuity of the whole multi-agent system.

� When the designer want to improve how a service is treated in its system, he can
dynamically add a new agent with the new version of the skill and makes him teach
it to the older-version-skilled agents to upgrade them.

To be able to apply these strategies, agents should be able to :

� dynamically create new acquaintance links in order to self adapt the organi-
zation ([9]). However they must first have a way to find the “right agent”.
Therefore a default message routing and default acquaintances must be
provided for at least reaching the “right agent” through go-betweens.

� learn new skills from other agents (and therefore agents must be able to teach
each other) (see [4]). A mechanism must be provided that supports it and
the distributed aspect must be taken into account.

1 Since the acquaintances are dynamically computed (according to some predefined rules of
course).



� create new agents, and by using the learning/teaching ability, these agents
could be tuned to what is needed.

Of course, agents will use these abilities autonomously and therefore behavioural
strategies, for deciding when to apply them, must be created. There is a need to chal-
lenge some of the decisions from time to time. For example when a direct acquaintance
link has been created, because at some time it was the most suitable, this may no longer
be the case later and then a new adaptation is necessary. Thus, these strategies should
integrate some mechanisms to call into question direct acquaintances that have been
created.

3 Experiments

To experiment these principles, we need a framework that provides code mobility in
order to apply the dynamic acquisition of skills. Thus, we used our multi-agent frame-
work called MAGIQUE2 [1, 11]. We will briefly introduce this framework and then
experiment dynamic organizations of multi-agent systems with it.

3.1 MAGIQUE

MAGIQUE proposes both an organizational model [1], based on a default hierarchical
organization, and an agent model [11], which is based on an incremental building of
agents.

Dynamicity is a keypoint in MAGIQUE and the three principles of self-organization
we have presented need this dynamicity in order to be implemented. The requirements
made in section 2.3 are satisfied. We will insist on features that promote these aspects,
other details will not be deepened here.

The agent model: building agents by making them skilled. The agent model is based
on an incremental building of agents from an elementary (or atomic) agent through
dynamical skill acquisition. A skill is a “coherent set of abilities”. We use this term
rather than service3, but you can consider both as synonyms here. From a programmer
oriented view, a skill can be seen as a software component that groups a coherent set of
functionalities. The skills can then be built independently from any agent and reused in
different contexts.

We assert that only two prerequisite skills are necessary and sufficient to the atomic
agent to evolve and reach any wished agent: one to interact and another to acquire new
skills 4.

Thus we can consider that all agents are at birth (or creation) similar (from a skill
point of view): an empty shell with only the two above previously mentioned skills.

2 Magique stands for the french “Multi-AGent hiérarchIQUE” which obviously means “hierar-
chical multi-agent”.

3 We keep service for “the result of the exploitation of a skill”.
4 Details can be found in [11].



Therefore differences between agents are issued from their “education”, i.e. the
skills they have acquired during their “existence”. These skills can either have been
given during agent creation by the programmer, or have been dynamically learned
through interactions with other agents (now if we consider the programmer as an agent,
the first case is included in the second one). This approach does not introduce any limi-
tation to the abilities of an agent. Teaching skills to an agent is giving him the ability to
play a particular role within the multi-agent system he belongs to.

For our purpose here, this ability to dynamically learn and teach skills is useful for
the dynamic organization of the multi-agent system, in particular to make use of the
second and third principles.

The organizational model. In MAGIQUE, there exists a basic default organizational
structure which is a hierarchy. It offers the opportunity to have a default automatic
mechanism to find a skill provider.

The hierarchy characterizes the basic structure of acquaintances in the multi-agent
system and provides a default support for the routing of messages between agents. A
hierarchical link denotes a communication channel between the implied agents. When
two agents within a same structure are exchanging a message, by default it goes through
the tree structure.

With only hierarchical communications, the organization would be too rigid and
thus MAGIQUE offers the possibility to create direct links (i.e. outside the hierarchy
structure) between agents. We call them acquaintance links (by opposition of the default
hierarchical links). The decision to create such links depends on some agent policy.
However the intended goal is the following: after some times, if some request for a skill
occurs frequently between two agents, the agent can take the decision to dynamically
create an acquaintance link for that skill. The aim is of course to promote the “natural”
interactions between agents at the expense of the hierarchical ones.

With the default acquaintance structure, an automatic mechanism for the delegation
of request between agents is provided. When an agent wants to exploit some skill, it
does not matter if he knows it or not. In both cases the way he invokes the skill is the
same. If the realization of a skill must be delegated to another, this is done automatically
for him, even if he does not have a peculiar acquaintance for it. The principle of the skill
provider search is the following:

� the agent knows the skill, he uses it directly
� if he does not, several cases can happen :

� first he has a particular acquaintance for this skill, this acquaintance is used to
achieve the skill (ie. to provide service) for him,

� he has a team and someone in his subhierarchy knows the skill, then he forwards
(recursively through the hierarchy) the realisation to the skilled agent,

� he asks its supervisor to find for him some gifted agent and his supervisor applies
the same delegation scheme.

One first advantage of this mechanism of skill achievement delegation is to increase
the reliability of the multi-agent system: the particular agent who will perform the skill
has no importance for the “caller”, therefore he can change between two invocations



of the same skill (because the first has disappeared of the multi-agent system or is
overloaded, or ...).

Another advantage appears at the programming stage. Since the search of a skilled
agent is automatically achieved by the hierarchy, when a request for a skill is coded,
there is no need to specify a particular agent. Consequently the same agent can be used
in different contexts (i.e. different multi-agent applications) so long as an able agent
(no matter which particular one) is present. A consequence is, that when designing a
multi-agent system, the important point is not necessarily the agents themselves but
their skills (i.e. their roles).

Obviously the evolutive default organizational structure with its automatic skill
provider search offers the tools to apply the first of the previously mentioned princi-
ples.

The API These models have been put into concrete form as a JAVA API, called MAG-
IQUE too. It allows the development of multi-agent systems distributed over an hetero-
geneous network. Agents are developed from incremental (and dynamical if needed)
skill plugging and multi-agent system are hierarchically organized. As described above,
some tools to promote dynamicity in the multi-agent system is provided: direct ac-
quaintance links can be created, new skills can be learned or exchanged between agents
(with no prior hypothesis about where the bytecode is located, when needed it is ex-
changed between agents). The API is available and can be downloaded at http:
//www.lifl.fr/MAGIQUE.

3.2 Experiments

In this section we will present terse experiments that put into concrete form the prin-
ciples of dynamic organization that have been described. These experiments have been
completed with MAGIQUE5.

The first experiment is concerned with the first principle : create the acquaintances
that follow the natural flow of messages in the multi-agent system. The second deals
with the second principle: the distribution of skills in the system is dynamically changed.
The third experiment corresponds to the... third principle: new collaborators are created
by an agent who wants to get rid of the need to treat too many requests for a given
service.

First experiment: adapting the acquaintances organization This is a simple exam-
ple where one agent, SU, is a service user and the needed service can be provided by
two other agents, SP1 and SP2. At the beginning, the multi-agent system is organized
into a hierarchy and our three agents are located somewhere in the hierarchy but are
not directly connected (cf. Figure 1). We do not show other agents since they do not
interfere here. We have chosen to have SP1 and SP2 connected to the same root agent
but this is of no importance nor influence. These agents are distributed over a network
of workstations.

5 The sources of these experiments can be downloaded at http://www.lifl.fr/
MAGIQUE/dynamicity.



Fig. 1. Dynamic organization of acquaintances in a multi-agent system. a. Beginning: multi-agent
system is hierarchically organized, service requests (see double dash lines) used the default hier-
archical organization and SP1 is reached. b. Self-organization: direct acquaintance link with SP1
is created. c. SP1 disappears: service requests use the default organization and SP2 is reached. d.
Self-organization: direct acquaintance link with SP2 is created.

Agent SU sends at regular time requests for a service � . Once the service has been
performed, a payment request is sent back to SU, thus we have a way to measure the
duration between the initial service request and the completion of the service.

At the beginning since SU does not know any skilled agent, the request is routed
using the default hierarchical organization. According to the automatic skill provider
search, SP1 is reached (see Figure 1-a.).

After some requests, since the same SP1 provides the service to SU, SU decides
to create a direct acquaintance link with SP1. The decision is taken according to some
criteria that can be chosen while the agent is designed (in this case a simple threshold
decision process has been used). The direct link is now used (see Figure 1-b.) and as a
consequence :

– the number of messages sent in the multi-agent system is reduced,
– agents S1, S11, S12 are less “stressed” and can use their time to perform other tasks

than routing messages,
– the delay before the service is finished is reduced.

Now, assume that agent SP1 is removed from the multi-agent system. Then the default
hierarchical organization is again used, and agent SP2 is now reached (see Figure 1-
c.). The direct benefit for the multi-agent system is fault tolerancy. Although an able
agent disappears, the organization provides a way to find another able agent. This is
automatically done for the service user, he performs the service requests in the same
way as before.



Lastly, after some times the multi-agent system adapts again, and an acquaintance
link between SU and SP2 is created (see Figure 1-d.).

The tabular of figure 2 gives, for the 4 periods, the average durations between the
moment a service � request is sent and the moment the payment is achieved. The first
line corresponds to a multi-agent system where only agents SU, SP1 and SP2 are work-
ing. In the second line, agents have been added to simulate load on S, S1 and S2, and to
generate extra network traffic. This is a more “realistic” situation. This explains differ-
ences between numbers in the first and third columns for the two rows.
Agents SU, SP1 and SP2 have been distributed over a network, and SP2 was located in
a different domain from the two others, this explains the slight difference between the
results in columns two and four.

Fig 1-a. Fig 1-b. Fig 1-c. Fig 1-d.

174.25 135.8 144.3 118.2
341.37 147.1 325.1 119.6

Fig. 2. Average durations in milliseconds before service achieved.

Second experiment: adapting the skill distribution This experiment is similar to the
previous one. One agent, SU, is a service user and the required service can be pro-
vided by another agent SP. In the beginning, the multi-agent system is organized into a
hierarchy and the two agents are located somewhere in the hierarchy (cf. Figure 3).

The scenario is the following: agent SU sends at regular time requests for a service
� . Once the service has been performed a payment request is sent back to SU, thus we
have a way to measure the duration between initial service request and the completion
of the service.

At the beginning since SU does not know any skilled agent, the requests is routed
using the default hierarchical organization. According to the automatic skill provider
search, SP is reached (see Figure 3-a.).

But after some times, according to some predefined policy of its own, SU decides
to try to acquire from SP the skill that is required to achieve the service � . If SP agrees,
the skill is exchanged between agents (see Figure 3 -b.). No hypothesis has to be made
about the location of bytecode for � , it is physically exchanged between agents6 if
needed.

Of course, once SU has learned (or acquired), he is no more dependant on SP and
service � is satisfied faster (see Figure 3-c.). Moreover, SP do not need SU any more.

Now, if SU is disconnected from the system (see Figure 3 -d.), he can still achieve
the service � (or similarly if it is SP that leaves the system).

6 More precisely, exchange is performed by the platform that hosts agents, since it is one of the
principle of the implementation of the MAGIQUE API.



Fig. 3. Dynamic exchange of skill. a. Beginning: multi-agent system is hierarchically organized,
service requests (see double dash lines) uses the default hierarchical organization and SP is
reached. b. Exchange: skill � is “learned” by SU from SP. c. SU use its “own” � to achieve
what he needs to. d. SU can even be disconnect from the system.

Giving figures like the previous experiment is not really meaningful. Before SU has
acquired/learner the service, the time before the service � is satisfied depends on how
much SP and the hierarchy are loaded. After the skill acquisition, the delay to achieve
the service for SU is reduced to the time needed to “run” it.

Third experiment: create a pool of apprentices In this experiment, an agent SU
makes request to a service � . This service can be provided by an agent SP. But SP is
also the agent which provides some � service. This � service is highly requested by
some � -user agents (see Figure 4-a. ).

Therefore, SP is overwhelmed by requests to its � -skill and SU, who does not use
� , suffers from that. To avoid this situation, SP creates a pool of agents to support him.
He teaches to these agents the skill to achieve � and each time he receives a request
for � , he spreads it to one of its apprentices (see Figure 4-b.). The consequence is of
course, that SP can spend more time to satisfy other requests and in particular requests
to � . Thus, the global efficiency of the system is improved.

In this experiment, 8 � -users are used. They send � requests and simultaneously SU
makes � requests for � . Before the pool of apprentices is created (that is when SP is
alone to satisfy all requests), the � . � and � . � requests are all achieved after

���
seconds.

When SP creates a pool of 3 agents, for the same � . � and � ; � requests, we obtain a
time of �	��
� seconds. Of course, all these experimentations are just proof of concept,
and particularly figures are given as examples.



Fig. 4. Create pool of helpers. a. SP must satisfy request from � service users and from SU, he is
overwhelmed by requests for � . b. SP has created 3 helper agents and teached them the � skill,
he distributes requests for � to these helpers and thus lighten his burden.

4 Conclusion

Static organizations have defaults. In order to be efficient, there is a need to be reactive
and to adapt the organization to the reality of agents exchanges. Our thesis in this paper
is that the needs are the same for multi-agent systems. It is too difficult (and probably
even impossible) for a multi-agent system designer to foresee the flow of messages
within his system. Moreover, in some cases, there will not be only one designer but
several that design only a piece of the system. It should be possible to rely upon generic
strategies to manage dynamicity.

We have proposed some principles to adapt the organization in order to reduce the
number of messages in the multi-agent system and to improve the delay before a request
is satisfied: creation of new specific acquaintance relations to remove the go-between,
exchange of skills between agents and creation of new agents to reduce overloading.
Agents can apply these principles autonomously depending on some decision of their
own. And the taken decision should be challenged after some times, to ensure that the
current acquaintance is still the best choice.

Future works on this notion of dynamic organizations should be given a more formal
frame, particularly by working and defining on an ontology that describe its semantic.
Then, we could have agents that belong to several organizations, relying on different
kinds of organizational models. But, they would be able to handle the dynamicity within
those organizations.

References

[1] N.E. Bensaid and P. Mathieu. A hybrid and hierarchical multi-agent architecture model. In
Proceedings of PAAM’97, pages 145–155, 1997.

[2] F. M. T. Brazier, B. M. Dunin-Keplicz, N. R. Jennings, and J. Treur. DESIRE: Modelling
multi-agent systems in a compositional formal framework. Int Journal of Cooperative
Information Systems, 6(1):67–94, 1997.



[3] Gero Vierke Christian Gerber, Jorg Siekmann. Holonic multi-agent systems. Technical
report, DFKI GmbH, 1999.

[4] R.P. Clement. To buy or to contract out: Self-extending agents in multi-agent systems. In
SOMAS: A Workshop on Self Organisation in Multi Agent Systems, 2000.

[5] Anand Rao David Kinny, Michael Georgeff. A methodology and modelling technique for
systems of bdi agents. Technical report, Australian Artificial Intelligence Institute, 1996.

[6] J. Ferber and O. Gutknecht. A meta-model for the analysis and design of organizations in
multi-agent systems. In Proceedings of ICMAS’98, 1998.

[7] J. Ferber and O. Gutknecht. Operational semantics of a role-based agent architecture. In
Proceedings of ATAL’99, jan 1999.

[8] Christian Gerber. Bottleneck analysis as a heursitic for self-adaptation in multi-agent soci-
eties. Technical report, DFKI GmbH, 1998.

[9] R. Ghanea-Hercock. Spontaneous group formation in multi-agent systems. In SOMAS: A
Workshop on Self Organisation in Multi Agent Systems, 2000.

[10] E. A. Kendall, M. T. Malkoun, and C. H. Jiang. A methodology for developing agent based
systems. In Chengqi Zhang and Dickson Lukose, editors, First Australian Workshop on
Distributed Artificial Intelligence, Canberra, Australia, 1995.

[11] JC. Routier, P. Mathieu, and Y. Secq. Dynamic skill learning: A support to agent evolution.
In Proceedings of the AISB’01 Symposium on Adaptive Agents and Multi-Agent Systems,
pages 25–32, 2001.

[12] R. G. Smith. The contract net protocol: High-level communication and control in a dis-
tributed problem solver. In Proceedings of the 1st ICDCS, pages 186–192. IEEE Computer
Society, 1979.

[13] M. Wooldridge, NR. Jennings, and D. Kinny. The gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 2000.

[14] Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Organisational rules
as an abstraction for the analysis and design of multi-agent systems. International Journal
of Software Engineering and Knowledge Engineering, 11(3):303–328, 2001.


