
A Generic Negotiation Model for MAS Using XML∗

Philippe Mathieu
Équipe SMAC, LIFL
Université de Lille I

Villeneuve d’Ascq, France
mathieu@lifl.fr

Marie-Hélène Verrons
Équipe SMAC, LIFL
Université de Lille I

Villeneuve d’Ascq, France
verrons@lifl.fr

Abstract – In this paper, we present a generic negotiation
model for multi-agent systems (MAS), built on three levels
: a communication level, a negotiation level and a strategic
level, which is the only level specific to the application. XML
files are used to configure the system, freeing the end-user
with recompilations each time he wants to change a param-
eter. The aim of this paper is then to show that it is possible
to describe precisely a generic model that we can use in sev-
eral negotiation problems. This model has been implemented
by a Java API called ANTS used to build our applications.
ANTS is the only platform which enables the use of different
communication systems and of negotiation strategies inde-
pendent of any attribute like price . . . These researches on
negotiation take place in software engineering works for ar-
tificial intelligence and multi-agent systems.

Keywords: Negotiation, multi-agent systems, artificial in-
telligence, XML, software engineering.

1 Introduction
With the progress of information technology, multi-agent

systems and electronic market places, the need of automatic
agents able to negotiate with the others on behalf of the user
becomes stronger and stronger. As a matter of fact, two
problems motivate agent negotiations : the complexity of the
decision making and the quantity of the messages required.
In certain cases, specially with cascaded renegotiations, the
number of messages can be in O(mn) if n is the depth of
the cascaded process and m the number of agents involved
in one negotiation. In this paper, we focus on the former one.

Since several years, negotiation has been studied by many
researchers ([6, 4]), and many negotiation systems have
been achieved in specific domains like auctions or market
places often in the aim of electronic commerce, let’s cite
Magnet [3] developed by the university of Minnesotta and
works done at HP Laboratories [1]. Of course, negotia-
tion can be used in other domains like meeting schedul-
ing or reservation systems, but it seems that these ways
have not been really studied. When studying such nego-
tiation problems, we can see that many used notions are
the same in many systems. For example, contracts,

∗0-7803-7952-7/03/$17.00 c© 2003 IEEE.

resources, contractors, participants have
a semantic equivalent in all negotiation systems. Our aim
in the software engineering field, is to show that these no-
tions can be reified in a generic and open negotiation model
and to build the corresponding API. This model should be
wide enough to allow classical negotiation applications to be
cover without an adaptation effort, and to possess enough
parameters to adapt to different models, which is a difficult
engineering problem.

Although it is difficult to define formally what is negotia-
tion, we will base our arguments on the following consensual
definition, which can be applied to many fields such as auc-
tions, appointment taking systems, games or others.

definition : Negotiation is carried out on a contract to ob-
tain common resources and on the request of an initia-
tor. It brings together a set of participants and an initia-
tor and runs until an agreement satisfying a percentage
of participants is reached. Participants equally try to
obtain the best possible solution for themselves while
giving a minimum set of information to the others.

This definition is of course inspired of the Contract Net Pro-
tocol proposed by Smith [8] in 1980, which is a fundamental
of all negotiation works [7].

To conceive our model, three levels are necessary. The
internal level which contains the management of data struc-
tures and speech acts necessary for agents to evolve their
knowledge; the communication level allowing agents to send
messages in a centralised way if agents are on the same com-
puter, or in a distributed way if they are on different com-
puters; the strategic level allowing agents to reason on the
problem and infer on the knowledge obtained from the oth-
ers. In our work, each level can be changed independently
of the others. It is for example possible to use ANTS in a
round robin way with synchronous communication with all
agents on the same computer to achieve a video game where
virtual beings will negotiate turn to turn, and to use it in a
distributed way with asynchronous communication for elec-
tronic marketplace. In our model, the negotiating agent is
composed of reactive micro-agents, where each micro-agent
manages a negotiation.

The success of a negotiation depends of course on strate-
gies adapted to the problem processed. We will not discuss

here about strategies, which, to be optimal, must be different
according to the kind of negotiation done. This is an impor-
tant field which goes out of this paper. Therefore, we pro-
pose simple but generic strategies, which work for all kinds
of problems, and that the user can easily refine.

We have identify many criteria to describe a negotiation,
where we can find the number of rounds in a negotiation
process, the minimum number of agreements needed to con-
firm the contract, the retraction possibility, the answer de-
lay . . . Many of them have been taken into account to build
ANTS.

A human user has two ways to use his agent. Manually, it
is then a help-decision tool which shows the state of all the
concurrent negotiations. In such case, it is the human user
who agrees a query. Automatically, this time the agent is
hidden and propose or answers queries by itself.

In ANTS, the general server has an XML configuration
file which allows to define the general notions like retrac-
tion possibility, number of rounds in a negotiation process
. . . Each agent can also have his own XML file to define the
parameters of his owner (minimum number of agreements
needed to confirm the contract, answer delay . . .). Having
XML files to configure the system makes it easier for the
user to define a negotiation problem.

In this paper, we will first detail the protocol used (the
phases of the protocol, the communication primitives and its
properties). Then, we will describe ANTS and the different
ways to use it. Finally, we compare our works to others deal-
ing with the same subject.

2 Proposed protocol
The protocol we propose here aims to define the messages

that agents can send to each others with the operational dy-
namics associated. This negotiation protocol (Figure 1) is
characterised by successive messages exchanged between an
initiator (the agent who initiates the negotiation) and partic-
ipants (the agents who participate in the negotiation) as in
the Contract Net Protocol framework [8]. We first describe
the phases that compose our negotiation protocol, and then
the communication primitives between agents used in this
protocol. Finally we give characteristics of our negotiation
protocol.

2.1 Protocol phases
We distinguish three phases for a negotiation process : the

first one is the proposition phase which begins the negotia-
tion process. Then, there is an optional phase named con-
versation phase. This phase consists of rounds of propo-
sitions and counter-propositions in order to converge to an
acceptable contract for everyone. Finally, there is the final
decision phase where the contract is either confirmed, either
cancelled.

Proposition phase In this phase, the initiator proposes a
contract to participants and waits for their answer. In re-

initiator participant

propose(contract)

reject()

accept(parameters)

confirm(contract)

cancel(contract)

modification request(contract)

propose modification(modifs)

modification request(contract)

cancel(contract)

propose(contrat)

propose(contract)

Figure 1: Negotiation protocol of ANTS

sponse to the proposition, each participant answers if he
agrees or rejects it.

Conversation phase This phase is necessary if there was
not enough participants who agreed the contract proposi-
tion. A conversation is then started between the initiator and
participants during which modification propositions are ex-
changed. Following these propositions, the initiator proposes
a new contract to participants, and a new proposition phase
is thus entered.

Final decision phase This final decision phase comes to
either a confirmation or a cancellation of the contract. This
decision is taken by the initiator in response to participants’
answers.

2.2 Communication primitives
For agents to understand each other, they need commu-

nication primitives defined before beginning to negotiate.
These primitives are specific to the negotiation protocol and
they define the progress of the negotiation process. As Fig-
ure 1 shows, communication primitives of initiators are dif-
ferent to communication primitives of participants. As a mat-
ter of fact, it is the initiator who leads the negotiation process,
and participants only have to answer his queries. Let’s ex-

amine these communication primitives, beginning with ini-
tiators ones.

Initiator primitives The initiator begins and leads his ne-
gotiation process. He thus have specific primitives to do so.
The initiator can send four communication primitives to a set
of participants :

• propose(contract) : this is the first message sent by the
initiator. He sends a contract proposition to the partic-
ipants. The contract contains different resources to ne-
gotiate.

• modification request(contract) : this message indicates
to participants that the contract can’t be taken like this
and it has to be modified. The initiator asks participants
to send him one or several possible modifications of the
contract in order to propose a new one, better fitting
everyone. This can also be a way to refine the contract.

• confirm(contract) : this message indicates participants
that the contract is confirmed. The negotiation has been
a success.

• cancel(contract) : this message indicates participants
that the contract is cancelled. The negotiation failed.

Participant primitives Messages sent by a participant are
only received by the initiator. Other participants don’t know
about these messages. Moreover, participants don’t know the
set of participants in the negotiation, they thus cannot form a
coalition during negotiation.
Participants have three communication primitives which are
answers to the initiator queries.

• accept(parameters) : this message replies to a contract
proposition from the initiator. By this message, the par-
ticipant indicates the initiator that he accepts the con-
tract as it is. Parameters can be used in case of a par-
tially instantiated contract. For example, it is the case
in Vickrey auctions where participants have to propose
a price for the article sold.

• reject : this message replies to a contract proposition
from the initiator. By this message, the participant indi-
cates the initiator that he refuses the contract.

• propose modification(modification list) : this message
replies to a modification request from the initiator. The
participant sends to the initiator a list of possible modi-
fications for the contract. The number of modifications
contained in the list is a negotiation parameter. This list
can be empty if there is no possible modification for the
contract.

A communication primitive is common to initiators and
participants :

• retract(contract) : the contract has been confirmed but
a participant or the initiator can’t meet it anymore. The
agent then decides to retract himself from the initiator.

2.3 Applications achievable with this protocol
In this subsection, we present the type of applications

achievable with this protocol, as it is aimed to be general.
As we mentioned before, this protocol is inspired of the

Contract-Net, and it adds an optional phase of conversa-
tion. As the protocol describes messages exchanged between
agents but especially the order of messages and agents’ turn
to talk, and not what is the content of the message (for exam-
ple, always a price . . .), it allows many different applications
to use it, which is not the case of many protocols such as the
one used in ZEUS which is dedicated to marketplaces.

For example, you can use it in a “take it or leave it offer”
form if you don’t use the conversation phase. If you want
to make auctions applications, you can implement English
auctions as well as Dutch auctions. For English auctions, the
initiator proposes his articles and participants answer giving
a price as argument of the accept message if they are inter-
ested in the article, or rejecting the proposition otherwise. If
no participant has proposed a satisfying price for the initia-
tor, a conversation phase is entered where each modification
consists of a new bid. The process finishes when a satisfying
price has been proposed or when no one rebids or the max-
imum number of turns predefined by the initiator has been
reached.

For Dutch auctions, the initiator proposes an article with a
high price, and if no participant accepts the proposition, the
initiator proposes again the article with a lower price with-
out asking for a modification from participants. The process
finishes when a participant accepts the contract, or when the
price reaches the minimum price wished by the initiator, or
when the maximum number of rounds defined by the initia-
tor is reached.

This protocol is not adapted to negotiations that have to
be processed on several levels, for example, when negotiat-
ing to buy a car, you can first negotiate the colour, and then
the price . . . This protocol is not adapted to combined nego-
tiations, where contracts need to be linked. For example,
you can’t create two contracts and say both must be taken or
none. If you want several resources from the same person,
you put them in a single contract, but if you want several re-
sources from several persons, you’ll need one contract per
person/resource but you can’t specify that all contracts must
be taken or none. Despite the protocol could fit it, negotia-
tion with argumentationis not included in ANTS. The proto-
col could be adapted since the parameters of acceptation or
modifications could be arguments.

In this section, we have presented the negotiation proto-
col used in ANTS, let’s now see the different use modes of
ANTS.

3 ANTS
ANTS is a Java API for negotiation between agents. It is

aimed to provide a generic software architecture for contract-
based negotiations to applications developpers in order to fa-

cilitate their work. The internal objects needed to the im-
plementation of ANTS are described in [5]. We discuss here
about the different ways to use ANTS, and its major features.

3.1 ANTS features
ANTS major features are its negotiation cardinality

(many-to-many), the management of deadlocks, its concep-
tion in three levels and the XML parameterisation. We detail
here only the two last features because of space limitations.

Conception in three levels The first feature of ANTS
is its conception in three levels, in order to separate the im-
plementation of communications between agents, the imple-
mentation of negotiations management and the implementa-
tion of negotiations strategies. We decided to separate these
three levels in order to provide more facilities to adapt the ne-
gotiation system to applications as their common need is the
negotiation level. As a matter of fact, each application has
its own communication system and needs specific strategies
of negotiation. For example, communications between dis-
tributed agents can be done via e-mail or a Multi-Agent Sys-
tem (MAS) platform, while communications between cen-
tralised agents can be done in a round-robin way. It is easy to
define which communicator or which strategy an agent will
use as it is set up in an XML file. This separation of these
three levels is a difficult software engineering problem, and
from our knowledge, no other platform than ANTS separates
them.

XML parameterisation The novelty in ANTS is that
the parameters that are needed to configure a negotiation
application are set up in XML files, thus avoiding recom-
pilations at each change of a parameter value and facilitat-
ing the writing of a new application. Two kinds of files
are defined : one for the system parameterisation, one for
each agent which is optional. The system file contains com-
mon characteristics for all users of the negotiation system.
We define them in a DTD file called ants.dtd available at
http://www.lifl.fr/SMAC/projects/ants. Common resources,
agents initially present in the system, retraction ability are
found in it, plus default values for users parameters. Each
agent can have its own file to set up its individual resources,
its communicator, its strategies and negotiation parameters
like default answer and answer delay. Figure 2 shows the
system XML file for an appointment taking application.

3.2 ANTS use modes
ANTS can be used in different modes, which gives its

genericity. Among these ways to use it, we find the kind
of resources negotiated, automatic renegotiation, tools for
strategies and agents use modes.

Resources Resources that will be negotiated can be
common to all agents or individual. If we take the exam-
ple of meeting scheduling, each agent has the same agenda,
and so the same time slots. Thus, resources (time slots) are

<?xml version="1.0"?>
<!DOCTYPE ants SYSTEM "ants.dtd" >
<ants>
<negotiation-name>rdv</negotiation-name>
<resources-list>
<resource>8h-9h</resource>
<resource>9h-10h</resource>
<resource>10h-11h</resource>
<resource>11h-12h</resource>
<resource>14h-15h</resource>
<resource>15h-16h</resource>
<resource>16h-17h</resource>
<resource>17h-18h</resource>
</resources-list>
<agents-list>
<agent><name>Paul</name>

<address>localhost</address>
</agent>
<agent><name>Peter</name>

<address>localhost</address>
</agent>
<agent><name>John</name>

<address>localhost</address>
</agent>
</agents-list>
<default-communicator>
fr.lifl.ants.magique.MagiqueCommunicator
</default-communicator>
<default-initiator-strategy>
rdv.RdvInitiatorStrategy
</default-initiator-strategy>
<default-participant-strategy>
rdv.RdvParticipantStrategy
</default-participant-strategy>
<nbRounds>20</nbRounds>
<nbRenegotiations>3</nbRenegotiations>
<minAgreements>100%</minAgreements>
<answer-delay>10</answer-delay>
<default-answer value="refuse"/>
<simultaneity value="deferred"/>
<retraction-allowed value="true"/>
<nb-modifications-by-round>5
</nb-modifications-by-round>
</ants>

Figure 2: System XML file for appointment taking applica-
tion

common to all agents and any of them can make a propo-
sition on the time slots he wants. On the contrary, auctions
applications are typically those where we find individual re-
sources. Agents wishing to sell articles will sell only their
own articles, and not the one of its neighbours. So, for this
kind of applications, resources are individual, visible to all
agents but only the agents that possess them can make a con-
tract proposition. Resources are described in XML files. If
they are common to all agents, they are set up in the system
file, but if they are individual, they are set up in the agent file.

Automatic renegotiation Many times, during negotia-
tions, some contracts can’t be met any longer and have to
be negotiated again. It is the case when appointments are
negotiated. For this purpose, we propose to renegotiate au-
tomatically contracts that have to be moved. But you can’t
always question a contract that has been taken. For exam-
ple in auctions, when an article is sold, it is definitely sold,
you can’t retract yourself. That’s why we define a parameter
called retraction allowed, used to know whether it is possible
or not to retract yourself from a contract previously taken.
This is a common parameter to all agents which is defined in
the system XML file. If retraction is allowed, when an agent
retracts itself, the initiator of the contract can automatically
renegotiate the contract, and a number of renegotiations is
defined by the initiator (in the agent XML file) to know how
many times a contract can be negotiated again.

Tools for strategies The success of a negotiation de-
pends of course on strategies adapted to the problem pro-
cessed. We will not discuss here about strategies, which, to
be optimal, must be different according to the kind of nego-
tiation done. This is an important field which goes out of
this paper. Therefore, we propose simple but generic strate-
gies, which work for all kinds of problems, and that the user
can easily refine. In order to give basis to develop strategies,
two priority lists are defined in ANTS. Each person defines
a priority list for resources and a priority list for persons.
Thus, each person will be able to give a priority to a contract
according to priorities of resources included in the contract,
and according to the initiator’s priority. For example, if I
took an appointment with a colleague and my boss asks me
for an appointment at the same time, I will take the appoint-
ment with my boss (who has a greater priority) and I will
move the appointment with my colleague. These lists can
also be used in case that I am initiator of a contract and I
requested modifications from participants, I can weight their
answer according to the priority I gave them.

ANTS also provides rates of success or retraction of nego-
tiations that have been done in the past, given a participant
and a set of resources. It is thus possible to know if a par-
ticipant globally accepts propositions he receives, and if he
keeps his engagements.

Agents use modes As we mentioned before, a human user
has several ways to use its agent. He can use it with a graph-

ical interface to interact with it, in this case, the agent is a
help decision tool for the user. The agent manages the nego-
tiations and it is the user who answers contract proposition,
and creates contract to negotiate. Through the interface , the
user views messages received and sent, contracts taken and
being negotiated, and he can create a new contract, cancel
a contract he has previously taken and reply to a contract
proposition.

Another way to use the agent is the automatic way, in this
case, the agent manages the whole negotiation and replies
itself to propositions, the graphical interface is not used, and
the agent runs like a background task.

ANTS features and use modes have been applied
to several negotiation applications like appointment tak-
ing, Dutch and English auctions and timetable cre-
ation. These applications can be downloaded at
http://www.lifl.fr/SMAC/projects/ants.

In the next section, we compare our work to others in the
same field.

4 Comparison with other works
We are obviously not the only ones who are interested in

negotiation between agents and in proposing a generic archi-
tecture to accomplish it. Let’s cite the works achieved at HP
Laboratories by Claudio Bartolini et al. [1] who want to cre-
ate a general framework for automated negotiation dedicated
to market mechanisms. In this paper, they define two roles
: participant and negotiation host. A participant is an agent
who wants to reach an agreement, while the negotiation host
is responsible for enforcing the protocol and rules of negotia-
tion. Rules of negotiation include posting rule, visibility rule,
termination rule . . . It is the negotiation host who is respon-
sible for making agreements. This framework proposes a
general negotiation protocol parameterised with rules to im-
plement a variety of negotiation mechanisms. It has common
properties with our, like enabling one-to-one, one-to-many
and many-to-many negotiations, or like parameterisation.

Another formal work we can cite is the one done by Morad
Benyoussef et al. [2] who want to create a Generic Nego-
tiation Platform for marketplaces. They “have identified a
number of operations that are common to different negotia-
tion processes”, like “defining attributes and default values
for the formalized concepts, setting up the end conditions for
rounds, phases and the whole negotiation and defining the
information to be displayed to or hidden from the players”.
As us, they think that there is a need to separate the process
of negotiation from the other parts of the software, and that
the rules governing the negotiation should not be hardcoded.
Whereas both are issues for them, only the second one is still
an issue for us.

A third work is the SilkRoad project [9]. This project aims
to facilitate the design and implementation of negotiation
support systems for specific application domains. SilkRoad
facilitates multi-attribute negotiations in e-business scenar-
ios through a specific design methodology and a generic sys-

tem architecture with reusable negotiation support compo-
nents. A negotiation support system built on the basis of
the SilkRoad architecture model acts as an intermediary be-
tween the actual negotiating agents (which might be software
agents or humans) and thereby provides rule-driven com-
munication and decision support. This project has common
points with our, like the possibility to have human agents
and the genericity of the system. These three works are close
to our, but they are more directed to electronic commerce
whereas our model aims to fit also other types of automated
negotiations.

Let’s now examine a platform for negotiation called mag-
net.Multi AGent NEgotiation Testbed [3] is a testbed for
multi-agent negotiation, implemented as a generalised mar-
ket architecture and developed at the university of Min-
nesota. It provides a support for a variety of types of trans-
action, from simple buying and selling of goods to complex
multi-agent contract negotiation. A session mechanism en-
ables a customer to issue a call-for-bids and conduct other
business. The negotiation protocol for planning by contract-
ing consists of three phases : a call-for-bids, bidding and
bid acceptance. In contrast, our protocol enables the initia-
tor of the call-for-bids to make counter-propositions until an
agreement is reached. In MAGNET, there is an explicit in-
termediary into the negotiation process and agents interact
with each other through it, whereas all agents directly inter-
act with each other in our negotiation process.

These previous works, like our, are based on the general
Contract Net Protocol model [8] which works on bids invi-
tation between a Manager agent and Contractor agents. From
all these works, Magnet is probably the one which is closest
to what we present. Nevertheless, none of them takes into
account at the same time generic aspects, automatic renegoti-
ations and a mechanism to manage conflicts between simul-
taneous negotiations, that we propose in ANTS. Moreover,
ANTS is the only platform which separates the communica-
tion level, the negotiation level and the strategic level.

5 Conclusion
In this paper, we have presented a generic protocol for

contract-based negotiation and a Java API called ANTS,
which enables many-to-many negotiations, simultaneous ne-
gotiation of several contracts, and the management of dead-
locks in conversation. Three distinct levels were defined : the
knowledge representation level allowing the agent viewing
the advancement of his/her negotiations, the communication
level which we achieved with a multi-agent platform allow-
ing physical distribution, and the strategic level for which
we propose generic strategies adaptable to any kind of prob-
lem. Each level can be easily extended by the developer as
he wants to map with his application, which is a feature that
only ANTS proposes. Moreover, XML files are used to set
up parameters and define an application, which facilitates
the end-user work, and avoid useless recompilations. These
works are a part of software engineering and distributed arti-
ficial intelligence works. Many implementation perspectives

of these works on different software supports are possible
(distributed, centralised, WEB) and strategic level enhance-
ment for different specific problems is considered. We in-
tend to extend our protocol in order to achieve multi-level
and combine negotiations, and to define the protocol to be
used to negotiate in a separate file, in order to improve the
genericity of the system and to provide a library of negoti-
ation protocols. This API will now be applied to different
problems like distance teaching, network games, workflow
systems.

References
[1] Claudio Bartolini, Chris Preist, and Nicholas R. Jen-

nings. A generic software framework for automated ne-
gotiation. Technical Report HPL-2002-2, HP Laborato-
ries Bristol, 2002.

[2] Morad Benyoucef, Rudolf K. Keller, Sophie Lam-
ouroux, Jacques Robert, and Vincent Trussart. Towards
a Generic E-Negotiation Platform. In Proceedings of
the Sixth International Conference on Re-Technologies
for Information Systems, pages 95–109, Zurich, Switzer-
land, 2000.

[3] J. Collins, M. Tsvetovatyy, B. Mobasher, and M. Gini.
MAGNET : A Multi-Agent Cntracting System for Plan
Execution. In Workshop on Artificial Intelligence and
Manufacturing: State of the Art and State of Practice,
pages 63–68, Albuquerque, NM, August 1998. AAAI
Press.

[4] Sarit Kraus. Strategic Negotiation in Multiagent Envi-
ronments. MIT Press, 2001.

[5] Philippe Mathieu and Marie-H élène Verrons. A generic
model for contract negotiation. In Proceedings of the
AISB’02 Convention, London, UK, 3-5 April 2002.

[6] J. Rosenschein and G. Zlotkin. Rules of encounter :
designing conventions for automated negotiation among
computers. MIT Press, Cambridge, Mass., 1994.

[7] T. Sandholm and V. Lesser. Issues in automated ne-
gotiation and electronic commerce: Extending the con-
tract net framework. In First International Conference
on Multiagent Systems (ICMAS-95), pages 328–335, San
Fransisco, 1995.

[8] Reid G. Smith. The Contract Net Protocol : high-
level communication and control in a distributed prob-
lem solver. IEEE Transactions on computers, C-
29(12):1104–1113, December 1980.

[9] M. Ströbel. Design of Roles and Protocols for Electronic
Negotiations. Electronic Commerce Research, Special
Issue on Market Design, 1(3):335–353, 2001.

