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Abstract. This paper proposes a codification of the halting problem of
any Turing machine in the form of only one right—linear binary Horn
clause as follows :

p(t) « p(tt) .
where ¢ (resp. tt) is any (resp. linear) term. Recursivity is well-known
to be a crucial and fundamental concept in programming theory. This
result proves that in Horn clause languages there is no hope to control it
without additional hypotheses even for the simplest recursive schemes.
Some direct consequences are presented here. For instance, there ex-
ists an explicitly constructible right—linear binary Horn clause for which
no decision algorithm, given a goal, always decides in a finite number
of steps whether or not the resolution using this clause is finite. The
halting problem of derivations w.r.t. one binary Horn clause had been
shown decidable if the goal is ground [SS88] or if the goal is linear
[Dev88, Dev90, DLD90]. The undecidability in the non-linear case is
an unexpected extension.
The proof of the main result is based on the unpredictable iterations
of periodically linear functions defined by J.H. Conway within number
theory. Let us note that these new undecidability results are proved w.r.t.
any type of resolution (bottom-up or top—down, depth—first or breadth—
first, unification with or without occur—check).

1 Introduction

For imperative languages, C. Bohm and G. Jacopini [BJ66] proved that all pro-
gramming can be done with at most one while loop. A corollary was that the
control structures goto and while have the same expressive power. For term
rewriting system (using pattern—matching), Max Dauchet [Dau92] proved that
it is possible with only one left-linear rewriting rule to simulate any Turing ma-
chine. In comparison to Horn clauses languages, the rewriting of the (supposed
ground) goal w.r.t. one rule is non—deterministic because the rule is applied to
any sub—term of the goal or not only to the whole goal.
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Within number theory, other numerous examples can be found, in particular
the Hilbert’s tenth problem (1900) which was solved by Matijasevits in 1970
and there exists an explicitly constructable universal diophantine equation with
degree 4. Another remarkable codification was proposed by J.H. Conway in 1972
by using only periodically linear functions from IN to IN. The iterations of these
integer functions are generalizations of the famous “3z 4+ 1”7 conjecture that we
will recall later.

Closer to our study domain, for Horn clauses without function symbols as
Datalog languages, a similar codification has been obtained using quasi-iterative
programs (that is, each clause contains at most one occurrence of a recursive
predicate) [GM87]. For Horn Clause languages, it has been established that all
programming can be done with one recursive clause and three facts [PDL91].
The proof, like that of [BJ66], is simple and direct, that is, by an immediate
translation of any Horn clause program directly into such a Horn clause program
verifying the above form.

The right-linear binary clauses, p(t) < p(¢?), may induce infinite computa-
tion that W. Bibel, S. Holldobler and J. Wiirtz [BHW92] call “cycle unification
7. Within dynamic analysis, some works were done for controlling recursivity
[ABK89]. In Section 2, we introduce binary Horn clauses and their resolution,
then a codification of the famous “3x + 1”7 conjecture is given. In Section 3, a
generalization of this conjecture is presented and based on the works of J.H. Con-
way. In Section 4, we show how the unpredictable iterations of [Con72] can be
simulated by binary clauses and we use it to prove the undecidability of halting
problem of binary clauses.

2 Binary Clauses

Let F be a set of function symbols (which contains at least one constant and
one symbol whose arity is greater than 1) and Var be an infinite countable set
of variables, we denote M (F,Var) the set of terms built from F and Var.

Definition1. The binary (recursive) Horn clauses have the following form :
p(th, .. t") « pttt, ... ") .

where ' and #t! are any terms of M (F, Var).
A binary clause is said to be right-linear (resp. left-linear) if all variable
occurs at most once in the body part (resp. the head part).

For example, “append([X | L], LL,[X | LLL]) « append(L,LL,LLL).” is a
right-linear binary clause.

It 1s well known that during the resolution, before applying any clause, the
formal variables of the clause have been renamed to fresh variables which do not
appear anywhere else. The simplest way to do it is to put an additional index
on all formal variables, which corresponds, for instance, to the number of the
inference.



it" inference : append([X; | L;], LL;, [X; | LLL;]) « append(Li, LL;, LLL;) .

The sequence of inferences using the clause, left + right, can be drawn in
the form of a series of dominoes :

left; < right; || lefte « rights <o | leftn—1 4 righty— || left,, « right,

Like in the domino series, the i** domino can be followed by an i+1t” one, if terms
left;+1 and right; can be unifiable and this constraint is compatible with those
of the other iterations. Hence, applying n times this binary clause is equivalent
to solve the following system :

{ left;yy = right; | Vi € [1,n— 1]} .

For example applying n times “append” clause is equivalent to solve the
following system :

{append([Xiy1 | Liy1], LLiy1, [Xipr | LLLiya]) =
append(L;, LL;, LLL;) | Vi € [1,n — 1]},

that 1s in a solved form :
Li = [Xig1 | Lig1]
Vie[l,n—1]8 LL; = LL;4
LLL; = [X;41 | LLL;41]

If good intuition is possible about simple binary clauses such as the above
one, the non—linearity of the terms, the existence of some variables on one side
of the clause, and the permutation of variables during inference generally make
intuitive comprehension of behaviour impossible.

The following example shows how difficult the problem of proving termina-
tion can be. The exact origin of the Collatz conjecture — also called “Syracuse
conjecture” or “3z+1 problem” [Lag85] is not clearly known. It had circulated by
word of mouth among the mathematical community for many years. This prob-
lem is credited to Lothar Collatz at the University of Hamburg. This conjecture
asserts that the following program, given any integer n, always terminates.

While n > 1 Do
If n is even
Then n + %
Else n «+ 3n+1
EndIf
EndWhile

Nabuo Yoneda at the University of Tokyo has checked it for all n < 2%°. The
behaviour of the Collatz’s series seems to be structureless and “random”. For
instance, from (2°°° — 1), integers greater than (2°%0 x 103%) are reached.

The Collatz’s program can be translated into equivalence relations on Var x

IN :



Vk € IN If k is even Then X, = X% Else Xi; = Xary1 -

Let f be the function such that ¥ ¢ > 0, f(2{) = { and f(2i — 1) = 6i — 2.
Since there does not exist some k € IN such that f5(1) = n (V n > 4), we
may assert that we may extend the previous relation to the following system of

equations :

{Xi = Xoi
Xoi—1 = X32i—1)+1

The following binary clause and goal generate such equations :

{p([X | ULIY, X V][ =Y o [ W) = p(U, VW),
—plZ,2,7).

From the general goal « p(L, LL, LLL), through the inferences the solved
systems of equations increases as :

1. L:[X1|U1] LL:[Yl,Xlﬂ/l]
2. L =[Xy, Xo|Us] LL =Y, X1,Ys, Xy|V5]

n. L=[X1,Xs -, Xn|Us] LL =Y, X1,Y2, Xy, Y, X V2]

L. LLL = [—a —) —ayla—’ —|W1]
2. LLL = [—a —) —ayla—a — =) = —aY2a—’ —|W2]
n. LLL = [—a—a—ayla—a—a"'a—a—a—aYna—’—|Wn]

Then, from the goal « p(Z, Z, Z), we force the equalities :

1. L=LL = Xy_1=Y;and Xy; = X
9. L=LLL = Xg_»=Y.

With a goal of the form :

ep([a,_,~~~,&|L],[a,_,~~~,fl|L],[a,_,~~~,fl|L]) .
S—— S——— S———

n n n

we force X1 = a and X,, = a. Therefore, the resolution is finite iff a unification
fails because of X,, # X1, that is, if the “32+1” program is finite from the input
n. In other words, the “3z 4+ 1”7 conjecture is equivalent to prove that, given any
goal p(L, L, L) where L is a list of the form [a,_,---,a | ], the resolution is
finite.



3 A Generalization of the “32+1” Problem

J.H. Conway [Con72] considers the class of periodically piecewise linear functions
g : IN — IN having the structure :

VO<k<d—1, ifn(modd)=4k, g(n)=axn .

where ag,---,aq—1 are rational numbers such that g(n) € IN. These are ex-

actly the functions g : IN — IN such that 9n) g periodic. Conway studies the

n
behaviour of the iterates ¢*(n) and he states the following theorem :

Theorem 2. (Conway). If f is any partial recursive function, there is a function
g such that :

1. ﬂnﬂ is periodic (mod d) for some d and takes rational values.
2. ¢ (27) = 270V for the minimal k > 1 such that g*)(2") is a power of 2.

Principle of proof. Conway’s proof uses Minsky machines[Min67], which have
the same computational power as Turing machines. He shows that to every
Minsky machine, it is possible to associate such a function ¢ which simulates the
behaviour of this machine. In fact, he explains how to construct this function ¢
from the Minsky machines.

Since it is undecidable whether or not a given partial recursive function is
everywhere defined and identically zero, we obtain the corollary :

Corollary 3. (Conway). There is no algorithm, which, given a function g with

ﬂnﬂ pertodic, and given a number n, determines whether or not there s k with
k
g"(n) =1.

We are now going to establish some variant of this corollary. To every partial
recursive function f, we assoclate a function f’ such that :

{f'(o) =0
f(x) =f(z—=1), ifx—1isin the domain of f

It is clear that f’ is identically zero iff f is. Since 0 is in the domain of the
function f’, if we consider the function ¢’, defined as previously, associated to f7
there is some p € IN* such that :

gP2)=gr ) =20 =1
Therefore, we can naturally extend the Corollary 3 :

Corollary 4. There is no algorithm, which, given a function g with ﬂnﬂ pertodic
such that 3 p € IN*, ¢°(1) = 1, and given a number n, determines whether or
not there is k with g*(n) = 1.



4 Partial Recursive Functions and Binary Clauses

In this section, we codify the Conway’s generalization from which we deduce the
undecidability of the halting problem for one right-linear binary Horn clause.

4.1 Codification of the Conway’s Unpredictable Iterations

Proposition 5. For every periodically piecewise linear function g, there exist a
right-linear binary clause p(t) < p(tt), a variable X and a goal < p(7y) such
that :

({’y = tl} U {tti =441 | Vi > 0})T{X} = {Xn = Xg(n) | Yn > 0} .
(ST{xy is the projection onto the variables X; of the equations expressed in S.)

Lemma 6. For every natural integers a,a’, b, b’, there exist two variables X and
Y, a right-linear binary clause p(t) < p(tt) and a goal < p(7) such that :

({’y = tl} U {tti =141 | Vi > 0})T{X,Y} = {Xai+b = Yariyp | T > 0} .

Proof. The following program :

a

p([—a : "a—aZa—a : "a—|L]a [X|LL]) %p(L,LL).
N’

b
« p(L, L).

because of the equality of the two arguments in the goal generates : 7; = Xgiqp.
By composition of two programs like this one, we obtain :

i
a a

—_—— —_——
p([—a o 'aZa —y " |L1]a [X|L2]a [—a o 'aZa—a T |L3]’ [Y|L4])
e — N —r’
b b!
« p(L1,12,L3, L4).
« p(L,L,LL,LL).

It involves the equalities :
Xaiyb = Z; and Yaiqr = Z; .

By adding a function symbol it is quite easy to transform a any—arity predi-
cate in a unary predicate. a

Proof of proposition. Let g be a periodically piecewise linear function character-
1zed by d, ag, - -, aq_1. ¢ can be decomposed into a finite number of equivalence
relations in the form (Xgqp = Ya'z’+b'),>0~ All the right-linear binary clauses
and goals which characterized these relations (see Lemma 6) can be merged in
one right-linear binary clause and one goal by merging the arguments of these
right-linear clauses. a



4.2 The Undecidability Theorems

Notation7. We denote Vk € IN, g7%(n) = {m € IN | g¥(m) = n}.
In order to simplify the proofs, g=*(n) will represent any integer, if it exists,
of this set.

Theorem 8. There is no algorithm that, when given a right—linear binary Horn
clause and given a goal, always decides in a finite number of steps whether or
not the resolution (with or without occur—check) stops.

Proof. Let us choose a function ¢ such that @ is periodic and such that there

exists p € IN*, ¢gP(1) = 1 and consider the following systems of equations :

VieIN", X; =Xy Xi=a; Xp=a . (1)
It involves that V k € Z, Xy () = a. Therefore, if —and only if — there exists
some k € Z such that g"(n) = 1, there is a contradiction between :

X1 =a and ng(n):a .

Furthermore, since there exists p € IN* such that g?(1) = 1 and k € Z such
that g%(n) = 1 we can claim that there exists k' € IN* such that gkl(n) = 1.
Then Corollary 4 asserts that there i1s no algorithm that, when given n € IN,
decides in a finite number of steps whether or not the above systems of equations
(1) produces a contradiction.

According to Proposition 5 and its lemma, we are able to construct a right—
linear binary clause p(t) + p(tt) such that for some variable X and a goal

—p(y) :

({’y = tl} U {tti =141 | Vi > 0})T{X} = {Xn = Xg(n) | Yn > 0} .
In the same way as in the Collatz codification, we can easily add the equa-
tions : X, = @ and X; = @ in the goal. Then we construct the following systems
of equations :

Xi:Xg(i),Xlzfl,Xn:a.

Hence, we can conclude that there is no algorithm that decides in a finite
number of steps whether or not the resolution stops. It is easy to verify that the
occur—check will not play any role. a

As an immediate consequence, we can state the following corollary :

Corollary 9. There s no algorithm that when given a program wn the following

form :
{p(f) —.
p(t) < p(tt).
where f, t, tt are terms and a goal, “— p(yg).”, decides in a finite number of
steps whether or not there exists a finite number of answer—substitutions.



Proof. If we consider the program built with :

e the binary Horn clause and the goal defined in the previous proof,
o a fact, “p(X) « .7, where X is a variable.

Through a reasoning similar to the previous one, we can conclude that this
problem is undecidable. Indeed, if n is such that there exists k¥ € IN such that
g*(n) = 1 then the program will have a finite number of solutions else an infinite
number. a

But it is possible to establish a more stronger form of the previous theorem
and corollary :

Theorem 10. There exists an explicitly constructible, right-linear binary Horn
clause for which there is no Turing machine that, when gwen a goal, always
decides in a finite number of steps whether or not the resolution (with or without
occur—check) stops.

Proof. Let us consider one of the partial recursive function ¢ associated to the
following program :

input f,n ;where f 1s any partial recursive function.
compute f(n)
write 0

In fact this program answers 0 if and only if n is in the domain of f (i.e.
iff f halts with input n). It is possible to characterized the function f by its
Godel number [Rog87]. (In the following, f represents equally the function or
the associated Godel number. The context should clear the ambiguity if any.)
Consequently, it is possible to characterized the input of ¢ by the number 2737
and then to consider that ¢ has just one argument. It is obvious that we may
impose ¢(0) = 0 without change.

In summary, we have a function ¢ such that ¢(0) = 0 and such that for every
input of the form 273", ¢ gives 0 iff n is in the domain of f. Then 23" is in the
domain of ¢ iff n is in the domain of f.

Let g be the Conway function associated to ¢ (from the Minsky machine
which codes ¢, we are able to construct g). According to the Conway’s theorem,
273" is in the domain of ¢ iff there exists some k& € IN* such that gk(22f3n) =
24(278") = 99 = 1. Since it is undecidable to know whether or not n is in the
domain of f, it is undecidable to know whether or not 273" is in the domain
of ¢ (i.e. if ¢ halts with the input 273%). Therefore, it is undecidable to know
whether or not, for a given n, there exists £ € IN such that gk(n) = 1. Let us
note that since ¢(0) = 0, we have some p € IN" such that g?(1) = 1.

Therefore, as in the proof of Theorem 8, it is possible to construct a right—
linear binary clause p(t) + p(tt) such that for some variable X and a goal

—p(v)

({’y :tl} U {tti =141 | Vi > 0})T{X} = {Xn = Xg(n) | Yn > 0} .



Then by adding the equalities X,, = a and X; = a in the goal, we construct
the following systems of equations :
Xi:Xg(i) , X1 =a, Xp=a .

Hence, we can conclude that for this particular right-linear Horn clause,
there is no algorithm that decides in a finite number of steps whether or not
the resolution stops. It is easy to verify that the occur—check will not play any
role. a

Corollary 11. There is a particular explicitly constructible program wn the fol-
lowing form :
{p(f) —.
p(t) < p(it).

where f, t, tt are terms, such that it is undecidable to know whether or not,
given a goal, “— p(g).”, there exists a finite number of answer—substitutions.

Proof. The proof is similar to the one of Corollary 9. a

4.3 Some Immediate Consequences

The next result follows directly from the previous corollary :

Corollary 12. There exists a particular explicitly constructible program, built
from a right-linear binary Horn clause, a goal and a fact, for which there is no
Turing machine which decides in a finite number of steps whether or not this
program is bounded® .

Proof. Let us consider the program used in the proof of Corollary 11, since it is
undecidable to know whether or not this program has a finite number of solutions
(answer—substitutions), the boundedness of this program is undecidable. a

Through a minor modification of the proof of Theorem 10, it i1s possible to
establish the following theorem :

Theorem 13. There exists an explicitly constructible right-linear binary Horn
clause for which it 1s undecidable to know whether or not, when given a goal, the
occur—check will be necessary during the resolution.

Proof. In the proof of Theorem 10, if we replace the equalities :
Xi=aand X,, =«
by the equalities :
X1 =h(Y,s(Y)) and X, = h(Z,7) .

It is undecidable to know whether or not the program will stop because of the
equalities 7 =Y and Z = s(Y"), that is because of the occur—check. a

2 A program is said to be bounded if there exists an equivalent program written only
with a finite number of unary clauses.



Remark. Any right-linear binary Horn clause can be simulated by a right—linear
binary Horn clause p(t) < p(#t) such that Var(t) = Var(tt), that is without local
variable.

Proof. By adding a trash—argument to the predicate ([PDL91]) :

p(X,Y) « p(X,72) = p(X,Y,trash([Z | L], LL)) < p(X, Z,trash(L,[Y | LL])) .
|

5 Conclusion

In this paper we have proved the undecidability of the halting problem for pro-
grams with one binary recursive Horn clause and one goal. As an immediate
consequence, the undecidability of the existence of a finite or infinite number of
solutions for programs built with one binary and two unary clauses, has been
proved. The next sensible question is to consider the problem (called cycle unifi-
cation problem in [BHW92]) of the existence of at least one solution for this class
of programs. We recently proved that cycle unification is undecidable [DLR92].
The proof ot this last result is based on the same principle using the codifica-
tion of the Conway functions which are associated to Minsky machines. Roughly
speaking, we synchronise two processes in one binary recursive Horn clause,

e the one put a mark at the (27)%" element of a list, in less that 2" iterations
steps, iff n is in the domain of Minsky machine M,

e the other put a distinct mark at the (27)'* element of another list at the
(27)t" iterations step

The fact is chosen such that at the pt* iteration :

o if p #£ 2" there is no solution,
o if p= 2" we unify the (27)%" elements of the two lists.

Consequently, we will have solutions iff there exists n such that » is not in the
domain of M. Hence, this program will have solutions iff M is not total, this is
of course undecidable.
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