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Within number theory, other numerous examples can be found, in particularthe Hilbert's tenth problem (1900) which was solved by Matijasevits in 1970and there exists an explicitly constructable universal diophantine equation withdegree 4. Another remarkable codi�cation was proposed by J.H. Conway in 1972by using only periodically linear functions from IN to IN. The iterations of theseinteger functions are generalizations of the famous \3x+ 1" conjecture that wewill recall later.Closer to our study domain, for Horn clauses without function symbols asDatalog languages, a similar codi�cation has been obtained using quasi{iterativeprograms (that is, each clause contains at most one occurrence of a recursivepredicate) [GM87]. For Horn Clause languages, it has been established that allprogramming can be done with one recursive clause and three facts [PDL91].The proof, like that of [BJ66], is simple and direct, that is, by an immediatetranslation of any Horn clause program directly into such a Horn clause programverifying the above form.The right{linear binary clauses, p(t)  p(tt), may induce in�nite computa-tion that W. Bibel, S. H�olldobler and J. W�urtz [BHW92] call \cycle uni�cation". Within dynamic analysis, some works were done for controlling recursivity[ABK89]. In Section 2, we introduce binary Horn clauses and their resolution,then a codi�cation of the famous \3x + 1" conjecture is given. In Section 3, ageneralization of this conjecture is presented and based on the works of J.H. Con-way. In Section 4, we show how the unpredictable iterations of [Con72] can besimulated by binary clauses and we use it to prove the undecidability of haltingproblem of binary clauses.2 Binary ClausesLet F be a set of function symbols (which contains at least one constant andone symbol whose arity is greater than 1) and V ar be an in�nite countable setof variables, we denote M (F;Var) the set of terms built from F and Var.De�nition1. The binary (recursive) Horn clauses have the following form :p(t1; :::; tn)  p(tt1; :::; ttn) :where ti and tti are any terms of M (F;Var).A binary clause is said to be right{linear (resp. left{linear) if all variableoccurs at most once in the body part (resp. the head part).For example, \append([X j L]; LL; [X j LLL])  append(L; LL;LLL)." is aright{linear binary clause.It is well known that during the resolution, before applying any clause, theformal variables of the clause have been renamed to fresh variables which do notappear anywhere else. The simplest way to do it is to put an additional indexon all formal variables, which corresponds, for instance, to the number of theinference.



ith inference : append([Xi j Li]; LLi; [Xi j LLLi])  append(Li ; LLi; LLLi) .The sequence of inferences using the clause, left  right, can be drawn inthe form of a series of dominoes :� � � left1  right1 left2  right2 � � � leftn�1  rightn�1 leftn  rightn � � �Like in the domino series, the ith domino can be followed by an i+1th one, if termslefti+1 and righti can be uni�able and this constraint is compatible with thoseof the other iterations. Hence, applying n times this binary clause is equivalentto solve the following system :f lefti+1 = righti j 8i 2 [1; n� 1]g :For example applying n times \append" clause is equivalent to solve thefollowing system :fappend([Xi+1 j Li+1]; LLi+1; [Xi+1 j LLLi+1]) =append(Li ; LLi; LLLi) j 8i 2 [1; n� 1]g,that is in a solved form :8i 2 [1; n� 1]8<:Li = [Xi+1 j Li+1]LLi = LLi+1LLLi = [Xi+1 j LLLi+1] :If good intuition is possible about simple binary clauses such as the aboveone, the non{linearity of the terms, the existence of some variables on one sideof the clause, and the permutation of variables during inference generally makeintuitive comprehension of behaviour impossible.The following example shows how di�cult the problem of proving termina-tion can be. The exact origin of the Collatz conjecture { also called \Syracuseconjecture" or \3x+1 problem" [Lag85] is not clearly known. It had circulated byword of mouth among the mathematical community for many years. This prob-lem is credited to Lothar Collatz at the University of Hamburg. This conjectureasserts that the following program, given any integer n, always terminates.While n > 1 DoIf n is evenThen n n2Else n 3n+ 1EndIfEndWhileNabuo Yoneda at the University of Tokyo has checked it for all n < 240. Thebehaviour of the Collatz's series seems to be structureless and \random". Forinstance, from (2500 � 1), integers greater than (2500 � 1088) are reached.The Collatz's program can be translated into equivalence relations on V ar�IN :



8k 2 IN If k is even Then Xk = X k2 Else Xk = X3k+1 :Let f be the function such that 8 i > 0; f(2i) = i and f(2i � 1) = 6i � 2.Since there does not exist some k 2 IN such that fk(1) = n (8 n > 4), wemay assert that we may extend the previous relation to the following system ofequations : �Xi = X2iX2i�1 = X3(2i�1)+1The following binary clause and goal generate such equations :�p([X j U ]; [Y;X j V ]; [ ; ; ; Y; ; jW ]) p(U; V;W ): p(Z;Z; Z):From the general goal  p(L;LL;LLL), through the inferences the solvedsystems of equations increases as :1: L = [X1jU1] LL = [Y1; X1jV1]2: L = [X1; X2jU2] LL = [Y1; X1; Y2; X2jV2]... ... ...n: L = [X1; X2; � � � ; XnjUn] LL = [Y1; X1; Y2; X2 � � � ; Yn; XnjVn]1: LLL = [ ; ; ; Y1; ; jW1]2: LLL = [ ; ; ; Y1; ; ; ; ; ; Y2; ; jW2]... ...n: LLL = [ ; ; ; Y1; ; ; � � � ; ; ; ; Yn; ; jWn]Then, from the goal  p(Z;Z; Z), we force the equalities :1. L = LL ) X2i�1 = Yi and X2i = Xi2. L = LLL ) X6i�2 = Yi.With a goal of the form : p([a; ; � � � ; �a| {z }n j L]; [a; ; � � � ; �a| {z }n j L]; [a; ; � � � ; �a| {z }n j L]) :we force X1 = a and Xn = �a. Therefore, the resolution is �nite i� a uni�cationfails because of Xn 6= X1, that is, if the \3x+1" program is �nite from the inputn. In other words, the \3x+1" conjecture is equivalent to prove that, given anygoal p(L;L; L) where L is a list of the form [a; ; � � � ; �a j ], the resolution is�nite.



3 A Generalization of the \3x+1" ProblemJ.H. Conway [Con72] considers the class of periodically piecewise linear functionsg : IN! IN having the structure :8 0 � k � d� 1; if n (mod d) = k ; g(n) = akn :where a0; � � � ; ad�1 are rational numbers such that g(n) 2 IN. These are ex-actly the functions g : IN ! IN such that g(n)n is periodic. Conway studies thebehaviour of the iterates gk(n) and he states the following theorem :Theorem2. (Conway). If f is any partial recursive function, there is a functiong such that :1. g(n)n is periodic (mod d) for some d and takes rational values.2. g(k)(2n) = 2f(n) for the minimal k � 1 such that g(k)(2n) is a power of 2.Principle of proof. Conway's proof uses Minsky machines[Min67], which havethe same computational power as Turing machines. He shows that to everyMinsky machine, it is possible to associate such a function g which simulates thebehaviour of this machine. In fact, he explains how to construct this function gfrom the Minsky machines.Since it is undecidable whether or not a given partial recursive function iseverywhere de�ned and identically zero, we obtain the corollary :Corollary3. (Conway). There is no algorithm, which, given a function g withg(n)n periodic, and given a number n, determines whether or not there is k withgk(n) = 1.We are now going to establish some variant of this corollary. To every partialrecursive function f , we associate a function f 0 such that :�f 0(0) = 0f 0(x) = f(x � 1); if x� 1 is in the domain of fIt is clear that f 0 is identically zero i� f is. Since 0 is in the domain of thefunction f 0, if we consider the function g0, de�ned as previously, associated to f 0,there is some p 2 IN� such that :g0p(20) = g0p(1) = 2f 0(0) = 1 :Therefore, we can naturally extend the Corollary 3 :Corollary4. There is no algorithm, which, given a function g with g(n)n periodicsuch that 9 p 2 IN�; gp(1) = 1, and given a number n, determines whether ornot there is k with gk(n) = 1.



4 Partial Recursive Functions and Binary ClausesIn this section, we codify the Conway's generalization from which we deduce theundecidability of the halting problem for one right{linear binary Horn clause.4.1 Codi�cation of the Conway's Unpredictable IterationsProposition5. For every periodically piecewise linear function g, there exist aright{linear binary clause p(t)  p(tt), a variable X and a goal  p() suchthat :(f = t1g [ ftti = ti+1 j 8i > 0g)"fXg � fXn = Xg(n) j 8n > 0g :(S "fXg is the projection onto the variables Xi of the equations expressed in S.)Lemma6. For every natural integers a; a0; b; b0, there exist two variables X andY , a right{linear binary clause p(t) p(tt) and a goal  p() such that :(f = t1g [ ftti = ti+1 j 8i > 0g)"fX;Y g � fXai+b = Ya0i+b0 j i > 0g :Proof. The following program :8>><>>:p([ az }| {; � � � ; ; Z| {z }b ; ; � � � ; jL]; [XjLL]) p(L;LL): p(L;L):because of the equality of the two arguments in the goal generates : Zi = Xai+b.By composition of two programs like this one, we obtain :8>>>><>>>>:p([ az }| {; � � � ; Z| {z }b ; ; � � � jL1]; [XjL2]; [ a0z }| {; � � � ; Z| {z }b0 ; ; � � � jL3]; [Y jL4]) p(L1; L2; L3; L4): p(L;L; LL;LL):It involves the equalities :Xai+b = Zi and Ya0i+b0 = Zi :By adding a function symbol it is quite easy to transform a any{arity predi-cate in a unary predicate. utProof of proposition. Let g be a periodically piecewise linear function character-ized by d; a0; � � � ; ad�1. g can be decomposed into a �nite number of equivalencerelations in the form (Xai+b = Ya0i+b0)i>0 . All the right{linear binary clausesand goals which characterized these relations (see Lemma 6) can be merged inone right{linear binary clause and one goal by merging the arguments of theseright{linear clauses. ut



4.2 The Undecidability TheoremsNotation7. We denote 8 k 2 IN; g�k(n) = fm 2 IN j gk(m) = ng.In order to simplify the proofs, g�k(n) will represent any integer, if it exists,of this set.Theorem8. There is no algorithm that, when given a right{linear binary Hornclause and given a goal, always decides in a �nite number of steps whether ornot the resolution (with or without occur{check) stops.Proof. Let us choose a function g such that g(n)n is periodic and such that thereexists p 2 IN�; gp(1) = 1 and consider the following systems of equations :8 i 2 IN�; Xi = Xg(i) ; X1 = �a ; Xn = a : (1)It involves that 8 k 2 ZZ; Xgk(n) = a. Therefore, if { and only if { there existssome k 2 ZZ such that gk(n) = 1, there is a contradiction between :X1 = �a and Xgk(n) = a :Furthermore, since there exists p 2 IN� such that gp(1) = 1 and k 2 ZZ suchthat gk(n) = 1 we can claim that there exists k0 2 IN� such that gk0(n) = 1.Then Corollary 4 asserts that there is no algorithm that, when given n 2 IN,decides in a �nite number of steps whether or not the above systems of equations(1) produces a contradiction.According to Proposition 5 and its lemma, we are able to construct a right{linear binary clause p(t)  p(tt) such that for some variable X and a goal p() :(f = t1g [ ftti = ti+1 j 8i > 0g)"fXg � fXn = Xg(n) j 8n > 0g :In the same way as in the Collatz codi�cation, we can easily add the equa-tions : Xn = a and X1 = �a in the goal. Then we construct the following systemsof equations : Xi = Xg(i) ; X1 = �a ; Xn = a :Hence, we can conclude that there is no algorithm that decides in a �nitenumber of steps whether or not the resolution stops. It is easy to verify that theoccur{check will not play any role. utAs an immediate consequence, we can state the following corollary :Corollary9. There is no algorithm that when given a program in the followingform : �p(f)  :p(t) p(tt):where f , t, tt are terms and a goal, \ p(g):", decides in a �nite number ofsteps whether or not there exists a �nite number of answer{substitutions.



Proof. If we consider the program built with :� the binary Horn clause and the goal de�ned in the previous proof,� a fact, \p(X) :", where X is a variable.Through a reasoning similar to the previous one, we can conclude that thisproblem is undecidable. Indeed, if n is such that there exists k 2 IN such thatgk(n) = 1 then the program will have a �nite number of solutions else an in�nitenumber. utBut it is possible to establish a more stronger form of the previous theoremand corollary :Theorem10. There exists an explicitly constructible, right{linear binary Hornclause for which there is no Turing machine that, when given a goal, alwaysdecides in a �nite number of steps whether or not the resolution (with or withoutoccur{check) stops.Proof. Let us consider one of the partial recursive function � associated to thefollowing program :input f; n ;where f is any partial recursive function.compute f(n)write 0In fact this program answers 0 if and only if n is in the domain of f (i.e.i� f halts with input n). It is possible to characterized the function f by itsG�odel number [Rog87]. (In the following, f represents equally the function orthe associated G�odel number. The context should clear the ambiguity if any.)Consequently, it is possible to characterized the input of � by the number 2f3nand then to consider that � has just one argument. It is obvious that we mayimpose �(0) = 0 without change.In summary, we have a function � such that �(0) = 0 and such that for everyinput of the form 2f3n, � gives 0 i� n is in the domain of f . Then 2f3n is in thedomain of � i� n is in the domain of f .Let g be the Conway function associated to � (from the Minsky machinewhich codes �, we are able to construct g). According to the Conway's theorem,2f3n is in the domain of � i� there exists some k 2 IN� such that gk(22f3n) =2�(2f3n) = 20 = 1. Since it is undecidable to know whether or not n is in thedomain of f , it is undecidable to know whether or not 2f3n is in the domainof � (i.e. if � halts with the input 2f3n). Therefore, it is undecidable to knowwhether or not, for a given n, there exists k 2 IN such that gk(n) = 1. Let usnote that since �(0) = 0, we have some p 2 IN� such that gp(1) = 1.Therefore, as in the proof of Theorem 8, it is possible to construct a right{linear binary clause p(t)  p(tt) such that for some variable X and a goal p() :(f = t1g [ ftti = ti+1 j 8i > 0g)"fXg � fXn = Xg(n) j 8n > 0g :



Then by adding the equalities Xn = a and X1 = �a in the goal, we constructthe following systems of equations :Xi = Xg(i) ; X1 = �a ; Xn = a :Hence, we can conclude that for this particular right{linear Horn clause,there is no algorithm that decides in a �nite number of steps whether or notthe resolution stops. It is easy to verify that the occur{check will not play anyrole. utCorollary11. There is a particular explicitly constructible program in the fol-lowing form : �p(f)  :p(t) p(tt):where f , t, tt are terms, such that it is undecidable to know whether or not,given a goal, \ p(g):", there exists a �nite number of answer{substitutions.Proof. The proof is similar to the one of Corollary 9. ut4.3 Some Immediate ConsequencesThe next result follows directly from the previous corollary :Corollary12. There exists a particular explicitly constructible program, builtfrom a right{linear binary Horn clause, a goal and a fact, for which there is noTuring machine which decides in a �nite number of steps whether or not thisprogram is bounded2.Proof. Let us consider the program used in the proof of Corollary 11, since it isundecidable to know whether or not this program has a �nite number of solutions(answer{substitutions), the boundedness of this program is undecidable. utThrough a minor modi�cation of the proof of Theorem 10, it is possible toestablish the following theorem :Theorem13. There exists an explicitly constructible right{linear binary Hornclause for which it is undecidable to know whether or not, when given a goal, theoccur{check will be necessary during the resolution.Proof. In the proof of Theorem 10, if we replace the equalities :X1 = �a and Xn = aby the equalities : X1 = h(Y; s(Y )) and Xn = h(Z;Z) :It is undecidable to know whether or not the program will stop because of theequalities Z = Y and Z = s(Y ), that is because of the occur{check. ut2 A program is said to be bounded if there exists an equivalent program written onlywith a �nite number of unary clauses.



Remark. Any right{linear binary Horn clause can be simulated by a right{linearbinary Horn clause p(t) p(tt) such that Var(t) = Var(tt), that is without localvariable.Proof. By adding a trash{argument to the predicate ([PDL91]) :p(X;Y ) p(X;Z) � p(X;Y;trash([Z j L]; LL)) p(X;Z;trash(L; [Y j LL])) :ut5 ConclusionIn this paper we have proved the undecidability of the halting problem for pro-grams with one binary recursive Horn clause and one goal. As an immediateconsequence, the undecidability of the existence of a �nite or in�nite number ofsolutions for programs built with one binary and two unary clauses, has beenproved. The next sensible question is to consider the problem (called cycle uni�-cation problem in [BHW92]) of the existence of at least one solution for this classof programs. We recently proved that cycle uni�cation is undecidable [DLR92].The proof ot this last result is based on the same principle using the codi�ca-tion of the Conway functions which are associated to Minsky machines. Roughlyspeaking, we synchronise two processes in one binary recursive Horn clause,� the one put a mark at the (2n)th element of a list, in less that 2n iterationssteps, i� n is in the domain of Minsky machineM,� the other put a distinct mark at the (2n)th element of another list at the(2n)th iterations stepThe fact is chosen such that at the pth iteration :� if p 6= 2n there is no solution,� if p = 2n we unify the (2n)th elements of the two lists.Consequently, we will have solutions i� there exists n such that n is not in thedomain ofM. Hence, this program will have solutions i�M is not total, this isof course undecidable.Acknowledgements : We would like to thank Prof. Max Dauchet and Prof.Jean{Paul Delahaye for their illuminating discussion and their helpful collabora-tion, Eric Wegrzynowski and Benham Bani{Eqbal for their attentive and cleverreadinds. We would like as well to thank anonymous referees for their helpfulcomments.References[ABK89] Apt K.R., Bol R.N., Klop J.W. \On the safe termination of PROLOGprograms." ICLP'89, Lisbon, pp. 353{368. 1989.
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