One Binary Horn Clause is Enough

Philippe Devienne, Patrick Lebeégue, Jean—Christophe Routier
Laboratoire d’Informatique Fondamentale de Lille — CNRS UA 369
Université des Sciences et Technologies de Lille
Cité Scientifique, 59655 Villeneuve d’Ascq Cedex, France

devienne,lebegue,routier@lifl.fr,

Jorg Wirtz
Deutsches Forschungszentrum fur Kiinstliche Intelligenz — DFKI,
Stuhlsatzenhausweg 3, 66123 Saarbriicken 11, Germany
wuertz@dfki.uni-sb.de

Topics : Logic in Computer Science, Theory of Programming Languages.

Abstract. This paper proposes an equivalent form of the famous Béhm-
Jacopini theorem for declarative languages. C. Bohm and G. Jacopini [1]
proved that all programming can be done with at most one single while-
do. That result is cited as a mathematical justification for structured
programming. A similar result can be shown for declarative program-
ming. Indeed the simplest class of recursive programs in Horn clause
languages can be defined by the following scheme :

./41 — .
./42 — ./43. that is V.’L‘l .. 'V.’L‘m[.Al AN (./42 \Y% _|./43) AN _|.A4]
F.A4.

where A; are positive first—order literals. This class is shown here to be
as expressive as Turing machines and all simpler classes would be trivial.
The proof is based on a remarkable and not enough known codification
of any computable function by unpredictable iterations proposed by [5].
Then, we prove effectively by logical transformations that all conjunctive
formulas of Horn clauses can be translated into an equivalent conjuctive
4—formula (as above). Some consequences are presented in several con-
texts (mathematical logic, unification modulo a set of axioms, compila-
tion techniques and other program patterns).

Introduction

This paper is about the computational power of classes of quantificational for-
mulas specified by restrictions on the number of atomic subformulas. Important
works have been done about decision problems for such classes. W. Goldfarb and
H.R. Lewis in [10] established the undecidability of the class of those formulas

containing five atomic formulas as follows

VedwVzy - Ve [(0AL V Az A As) V (0 A4 A As)]

Indeed, the satisfiability of such a class i1s equivalent to the halting problem for
two—counter machines which is undecidable [16]. H.R. Lewis tried to solve the
4—subformulas case, but without success. This problem remained open until last
year and was shown to be undecidable too by two independant ways ([12] and
[9]). The main result of this paper is obtained by merging these two proofs and we
establish that this undecidability is of the maximal degree, in other words, this
class of formulas has, in fact, the same expressive power than Turing machines.
Moreover, this class can be reduced to Horn clause formulas :

(HC) Yai- -Vaeu[(AV-Ar vV - vV =Ad,)] (denoted A+ Ay -+ Ay))

Such clauses, useful in logic programming, contain at most one positive subfor-
mula (or literal).

Within this particular class, related decision problems have been also studied.
For instance, Implication of Horn clauses, denoted “HC; = HC,”, also called
generalized subsumption, is an important notion in learning theory and compi-
lation. Tt was shown decidable if clause HC; is binary (two-literal) [19] and has
been shown recently undecidable if %Cy is ternary [15].

More precisely, our paper is devoted to establish that all computation on
Minsky machines can be expressed as the checking of consistency of the 4-
formulas of the following form :

A .
Vlzl .. me[Al A (-/42 V —|A3) A _|,,44] that iS ./42 — ./43~
%./44.

where, because of the existence of universal Minsky Machines, the three first sub-
formulas, A7, As and A3 can be fixed in a constructible way and A4 corresponds
to the input datum. This very restrictive class is Turing—complete.

The proof is based on two different techniques. The first part (Section 2) is an
encoding of periodically linear functions whose iterations have been proved to be
equivalent to Minsky machines by [5]. Standard methods for decision problems
and computational power use Minsky or Turing machines. It seems to be sur-
prising that the remarkable result proposed by Conway was rarely used. Its for-
malism is of higher level and much easier to encode. The second part (Section 3)
is based on logical transformations using meta—programs and meta—interpreters.

This theorem is clearly equivalent to the famous Bohm—Jacopini theorem
to declarative languages. In 1966, they had proven that within imperative lan-
guages, every flowchart is equivalent to a while-program with one occurrence
of while—do, provided auxiliary variables are allowed. This proof is constructive
and usually cited as the mathematical justification for structured imperative pro-
gramming (see also [13]). We show that in Horn clause languages, any program
can be automatically transformed to another one composed of one binary Horn
clause and two unit clauses. This transformation preserves both termination and
the answer—substitutions (on the original variables). This shows the expressive
power of a single Horn clause and can be used as a theoretical tool for decision
problems in theorem proving. Some applications on other notions or structures
are presented in the last section.

2 An Original Codification of the Conway Functions

Here we present an original proof method, previously defined in [8, 9] where
it was the main basis of the proofs of the undecidability of the halting and
emptiness problem for one binary recursive Horn clause. It is based on an original
codification of some work by J.H. Conway[5], which we will present briefly here.

2.1 The Conway Unpredictable Iterations

J.H. Conway considers the class of periodically piecewise linear functions g :
IN — IN having the structure :

VO<k<d-—1, if (n mod d) =k, then g(n) =ayn .

where ag,---,aq—1 are rational numbers such that g(n) € IN. These are ex-
actly the functions g : IN — IN such that ﬂnﬂ is periodic. Conway studies the
behaviour of the iterates g(k)(n) and he states the following theorem :

Theorem 1. (Conway). If f is any partial recursive function, there is a Conway
function g such that :

1. Y n €N, ne Domn(f) iff Ik,j) € N* x IN, gi)(27) = 2.
2. ¢ (27) = 270 for the minimal k > 1 such that g*)(2") is a power of 2.

where IN = IN* U {0}. This result is based on a direct and clever translation
of the behavior of Minsky machines [16] (having the same computational power
than Turing machines) into Conway functions. Conway and Guy proposed an
instance of such Conway functions which produces all the prime number [11].
A more complex characterization of prime numbers had been done within dio-
phantine equations [16].

In the next proofs, we will need to transform Conway iterations “n — g(n)”
to Conway equivalences “n <> g(n)” by using Corollary 2. Considering the par-
ticular partial recursive functions f such that :

¥V n € Dom(f) D {0}, f(n) =0

and their associated Conway functions (we called them null Conway functions)
we can define some Conway equivalence relations =4, which mean that we do not
only consider positive iterates ¢*(27) resulting in 2°(= 2f(?)) but also negative
iterates ¢~%(2%) resulting in 2" where g=*(n) = {m € IN | ¢*(m) = n). Thus
we establish the following corollary :

Corollary 2. For every recursively enumerable set X containing {0}, there ex-
ists a Conway equivalence relation =4 such that ¥ = {n € IN | 2" =, 1}

2.2 Conway Functions and Conjuctive 4—formulas

Let us recall some definitions and notations about Horn clauses. A Horn clause is
a disjunction of atomic formulas (called literals) of which at most one is positive.

(HC) Yai- -Vaeu[(AV-Ar vV - vV =Ad,)] (denoted A+ Ay -+ Ay))

A is called the head part of the clause, and the other literals the body part. A
fact (resp. a goal) is a clause whose body part (resp. the head part) is empty. A
Horn clause 1s said to be binary if it is a composition of only two literals. As an
example consider :

append([],L, L) + . fact
append([X | L], LL,[X | LLL]) « append(L, LL, LLL). binary clause
— append(L, LL, [a,b]). goal.

A Horn clause program is a conjunction of Horn clauses universally quanti-
fied. The procedural semantics of such programs is based on the SLD-resolution
[14] derived from the refutation procedure of Robinson [18]. According to the
Edinburgh syntax ([4]), variables (X, L, LL, ...) are written using capital letters
and function symbols (a, b, ¢) with small letters. [X, X5 | L] denotes a list of
which X, X, are the two first elements and L the tail of the list. The SLD resolu-
tion, possibly infinite, computes all answer—substitutions ({L =[], LL = [a, b]}
yAL=1a],LL =[b]} , {L = [a,b], LL =[]} in our example).

The variables occurring in Horn clauses are renamed into fresh variables
during the resolution. The simplest way to do 1s to attach an additional index to
the variable, denoted by subscripts as in X; . Since we only consider one binary
Horn clause, we can choose this index to correspond to the number of inferences
using this clause.

In [8, 9], using this renaming of variables, we have explicitly described how
relations of the form X, = X,), where g is any null Conway function, can be
expressed by a Horn Clause of the form :

p(left(X)) + p(right(X)).

where left(X) and right(X) are terms with variable X occurring in it. Thus,
considering the case where n is a power of 2, this corresponds to a codification
of the Conway equivalence relations into a binary Horn clause (Xon = Xy(gn) =
Xo0 = X7).

Indeed, in the following program :

a

——N—
p([Z,_, : "a—|L]a [X|LL]) %p(L,LL).
Fp([—a : "a—|L]aL)'

b

the size of the first variable of the Horn clause decreases by a while the size
of the second decreases by one, so we have (the trees denote lists) :

If there b = 0 in the goal, the equality of the two arguments would have generate :
Zi = Xai, the b shifts this equation then we have : 7Z; = Xgiqs.
By composition of two programs like this one, we obtain :

i

/—L /—L
p([Z, — " 'a—|L1]a [X|L2]a [Za—a o 'a—|L3]’ [X|L4]) Fp([’la[/2a1/3a[/4)
Fp([—a o 'a—|L]aLa [—a o a—|LL]aLL)
N—— N——
b b!

It involves the equalities :
Xai+b = Zz and Xa’i-l—b’ = ZZ .

It is clear now that as many as needed equalities of the form Xg;46 = Xarige
can be expressed in one binary Horn clause and one goal.

Let g be a periodically piecewise linear function defined by d, aq, -, aq_1.
For alln = ad+k (0 < k < d), we have g(n) = glad+ k) = agn = (ard)o + kay,
with (agd, kay) € IN?. Then (Xn = Xy(n))new can be decomposed into a finite
number of equivalence relations in the form (Xgi46 = Xa'i+b'),>0~ All the right—
linear binary clauses and goals which characterized these relations (as explained
above) can be merged in one right-linear binary clause and one goal by merging
their arguments. Thus it is clear that for any Conway function, there exist a
particular binary Horn clause and a goal.

Consequently, according to the previous corollary, for every recursively enu-
merable set X, containing 0, there exists a binary Horn clause (associated with
the corresponding ¢) which build a list £ = [X1, Xa, -+, X,, - -] with all the X;
linked by relations X; = X(;j. Thus we can characterize X' as :

Y ={n€IN| X =, X1}

Moreover, if at startup X; is marked by f, then this mark will be propagated

to every Xyn such that n belongs to Y. Thus the clause can be considered as a

process of enumeration of the elements of 2. An element of £ will be instantiated

to #f iff it is a pure power of 2 and this power belongs to ¥, that is iff 2" =, 2°.
The following program is an example in the case where ¥ is IN :

p(X|LL[Y, X|LL]) = p(L, LL) .
< p([BIL] [BILD) -

This program puts a f in every n'” position of the list [#]|L] iff n = 27.

If the starting listis £ = [f, _, - -+, _,b, _, - -], where b is in the (2)* position,
then the program will stop (since a unification fails) iff the equality X; = Xa»
occurs, that is iff we have 2" =, 2° i.e. iff n € X. It is undecidable for every n
and recursive enumerable set X whether n belongs to 2. Thus, we can prove that
the termination, when a goal is given, of one binary Horn clause is undecidable.
This result was first presented in [8].

In [9], using the same codification in a different way, it is proved that the
satisfiability problem is undecidable too. In this proof, a linear propagation of
the mark § is created and the existence of solutions for our minimal program
structure is shown to be equivalent to the fact that X' is not total.

2.3 The Main Lemma

Using the above codification, we establish the following lemma which is required
to prove the main theorem of this paper. In the following statement, the term
“program” corresponds to the intuitive meaning. You can consider, if you prefer,
it denotes “a machine (in sense of Turing machine) which computes a partial
recursive function”. This lemma needs a sharp analysis of how the codification
of Conway functions works. The proof is technical, therefore we will not present
it here. It will appear soon in a extended report.

Main Lemma 3. For cvery program II with input I, there exists a binary Horn
clause Ry such that there exists a goal, depending on I, such that R stops after
at least n iterative applications off 1l stops after n elementary steps with input
1, and does not stop otherwise.

Proof. To appear soon, it can already be communicated to every interested per-
son.

3 Logical transformations

In the previous section, we have presented how to express Minsky machines into
binary Horn clauses. In this part, we show that there exists a constructible re-
duction from the Horn clause programs into the 1-binary Horn clause programs.
This result is obtained by a combination of the proof techniques of [12] and [8, 9].
The first one is used to generate the SLD resolution, the second to assure the
halting of the build meta—interpreter.

3.1 A Word Generator

In this section we show how to generate all words over the alphabet {a,b}. The

codification is similar to the one used in [12] to encode the Post Correspondence
Problem:

gen([W|R]—RR , W) « .
gen([W | Rl = [[a| W],[6| W] | RR], AW) + gen(R — RR, AW).
« gen([[] | R] = R, Word).

where R — RR denotes a difference list 3, 6].
By unifying the goal and the fact we obtain the solution Word = []. Using
the binary clause once, results in the new goal

gen([[a],[b] | RR'] — RR*, AW 1)

producing the solution Word = [a]. Resolving this new goal with the binary
clause instead of the fact results in the goal

gen([[b], [aa], [ba] | RR®] — RR*, AW ?)

resulting in the solution Word = [b] etc. Observe that a and b serve as prefixes
of two new words such that the suffix of these words is the first element of the
list generated so far '. These two words are concatenated to the tail of the list
generated so far. In other words, the difference-list can be seen as a LIFO (Last
In First Out) stack.

3.2 A First Meta—Interpreter

Let II be a set of Horn clauses {clausey, -, clause,}, and “ g1 ---g,.” be
a goal, the following meta—program generates the same answer—substitutions in
the same order as a standard SLD interpreter :

solve([],[]) « .

solve([Goal | Ry, [[Goal | Re] — Ry | L]) + solve(Rz,P).
solve(Goals, [Clause | Rest]) + solve(Goals, Rest).

— solve(G,P).

G denotes list [g1, g2, ...95] and P is the list of encoded clauses of a program IT
ie., P=[clausey, - - -, clause,] . A clause a < by, ... b, of II is encoded by the
difference list [a, by, ..., b, | R] — R. The first binary clause serves for choosing
the first clause in the current clause list for reduction. The second clause discards
the first clause in the current clause list. The complexity of the meta—program
have been shown to be linearly dependent on that of the original program (see
n7)).

For encoding an arbitrary program II only the first binary and the goal have
to be adapted in a appropriate way. Let us suppose now that I is one of known
Horn clause meta—interpreters (i.e. a universal Horn clause program), then this
codification defines a constructible meta—interpreter in the form :

./41 — .
./42 %./43.
./44 %./45.
%./46.

or Vxp-- Vl‘m[.Al A (./42 vV —'./43) A (./44 vV —'./45) A _‘A6]

! Note that this generator can be easily extended for any finite alphabet.

3.3 A Binary Meta—Interpreter

In this section we combine the two programs of Section 3.1 and 3.2.

Assume a program II consisting of the two binary clauses left; < right; and
lefts < rights , one goal goal , and one fact fact. Consider the word—generator
where A = righty, left; and B = rights, lefts .

meta([W |R]— RR , W) « .
meta([W | B = [[A[W], [B| W] | RE], [H | RRR])

+ meta(R — RR,[H, X, X | RRR]).
+— meta([[goal | L]| R] — R, [fact | LL).

After n times using the binary clause for resolving we obtain as second argument
of the new goal the list

[fGCtaXIaXIaXQaXQa"'aXnaXn | T]

Furthermore, we obtain after some iterations as the head of the first argument

(cf. Section 3.1)

[righti,, leftiy,, . .., right;,, left;, , goal | T'].

By resolving a current meta—goal with the fact of the meta—program above we
obtain the unification problem

right,, = fact,left;, = right; ... left;; = goal.

_1

Note that by construction it is assured that the list containing the fact is of
sufficient length to obtain these equations. This set is solvable if and only if there
exists a corresponding refutation of the original program II using the resolution
order imposed by the equations.

Since the meta—interpreter of Section 3.2 is such a program II, it is possible
to associate to any logic program an equivalent program (i.e., with the same
solutions) containing a binary clause and two unit clauses. Unfortunately, this
codification does not preserve termination. In the next section we will show how
to construct from this non—terminating interpreter a terminating one.

Let solve be the first meta—interpreter (Section 3.2) and all SLD derivation
whose length is n w.r.t. solve is evaluated w.r.t. its meta—program before at most
27 resolution steps. In other words, all answer—substitution computed after n
resolution steps w.r.t. solve will be computed before 2" resolution steps w.r.t.
its meta—program.

3.4 A Technical Preliminary

MP, s denotes the non—stopping meta—interpreter defined in Section 3.2. Let us
consider the following program /7, with input a Horn clause program P :

1. input P
2. evaluate P by a breadth—first strategy and keep the solutions in &;

3. compute MP,s(P) and keep the solutions in Sz, stop as soon as S2 = &
and write 0

It is clear that IT stops iff P stops and its stopping time (that is the number
of steps before termination) with input P is greater than the time used by
MP,s(P) for producing all the solutions of P.

Now, according to the main lemma, there exists a binary clause R and then
a program Pp = MPg :

Stop(facty) « .
MPs : < Stop(left;) « Stop(righty).
+ Stop(goaly).

which, with input (in the goal) a program P?, stops iff P stops and its stopping
time is greater than the one of MP,¢(P). Observe that P is used only in the
goal.

3.5 The smallest Meta—Interpreter

Using MP, s and MPg we prove the following theorem :

Theorem4. There exists a meta—interpreter for Horn clauses in the form of a
program with only one binary Horn clause, a fact and goal, which, given as input
a Horn clause program P, has exactly the same solutions as P and terminates
off P terminates.

Proof. In this proof, we use the meta program MP, g defined previously, we
denote its program :

meta(facty) + .
MP,s : { meta(lefty) < meta(rights).
+ meta(goaly)

We merge MP, s and MPs in a new meta—interpreter MP :

TheMeta(facty, facts) + .
MP : < TheMeta(left;, lefts) < TheMeta(righty, rights).
— TheMeta(goaly , goals).

such that, with input a Horn clause program P, it produces all the solutions of
P (because of the MP,s part) and then will stop iff P terminates (because of
the MPg part).

Thus we have an append-like meta—program which preserves the solutions
(produced in the same order as in a breadth-first strategy) and the termination
of any Horn clause program given as input. a

An immediate consequence of this theorem is :

2 Based on the Gddel number of P.

Theorem 5. The class of programs with only one binary Horn clause and two
unit clauses is Turing—complete.

Proof. Since we have a meta—interpreter for Horn clauses containing only one
binary recursive clause, we can assert that this class of programs has the same
computational power as Horn clause programs and consequently as Turing ma-
chines. a

This meta—interpreter is effectively the simplest constructible one. Indeed,
the consistency of the formulas with three sub—formulas 1s clearly decidable.

Let us remark that there is therefore a universal binary Horn clause+one
unit clause which are explicitly constructible. This theorem still remains true if
the binary clause and one of the two unit clauses are fixed. In the same manner,
unification with or without occur—check, SLD strategies, bottom—up or top—down
resolution algorithms do not alter anything.

4 Conclusion

The first consequence of this theorem is that, as Lewis conjuctered in 1973, the
consistency of the class of formulas containing 4-subformulas is undecidable too,
even for conjuctive formulas of Horn clauses with prefixes of the formV --- V.

The second consequence is that like in imperative languages [1], the sim-
plest non—trivial program scheme can express any partial recursive function. Like
in the Bohm—Jacopini proof, the transformation can be done automatically. A
meta—interpretation of the academic append predicate has been i1mplemented
and its space complexity was so important that it can simulate only the four
first original inferences under Sictus 2.1 on SUN machine with 12MB RAM.

A third way to express this theorem is in unification modulo a set of axioms.
The usual unification that is, modulo the set of equality axioms, is unary (there
is one most general unifier) and decidable. As soon as a single arbitrary axiom is
added, the unification becomes infinitary and undecidable (see for instance the
remarkable encoding proposed by [7]). This remains true even if the terms used
have a special symbol (predicate name) which appears at their root and nowhere
else, and even if this additional axiom is linear and without local variables, that
18, all variables occurs once and only once in every term of the axiom.

The negative result justifies pragmatic or heuristics approach to logic pro-
gramming analysis, like in abstract interpretation or type inference. There is no
hope to define any formal and complete methods to control the most basic recur-
sive scheme. Even in such restrictive classes of programs, most of the interesting
properties (groudness, sharing, freeness, necessity of occur—check, ...) to provide
more efficient compilation technics are undecidable. For instance the property
of total decoration can deal to efficient translation from logic programming to
attribute grammars [2]. Roughly speaking, a SLD resolution is said to be totally
decorated iff at each step of resolution all Horn clauses can be used to infer. The
open problem concerning the total-decoration property can be proved easily to
be undecidable. Indeed for logic programs which contain only one binary clause,

this property is equivalent to the non-halting problem that we have shown to
be undecidable.

Another program scheme studied by [15] for implication of clause is the fol-
lowing one :

Gn .
A F.Ah.Az.
an+1~

where all G; are ground (without variables) and the Horn clause is now ternary.

They proved, using a sophisticated technique based on semi—Thue systems
and SLD resolution that the consistency for such a class is undecidable. Here
the halting problem of the SLD resolution can be shown to be undecidable too
and additional restrictions can be added like n < 2 and the ternary Horn clause
1s explicitly chosen.

Acknowledgements : We would like to thank Anne Parrain for her helpful
collaboration. She contributes a lot to the work on meta—program. We would
like to thank Philipp Hanschke for valuable discussions. Last, we would like to
thank anonymous referees for their valuable comments.

References

1. Béhm C., Jacopini G. “Flow diagrams, Turing machines and languages with
only two formation rules.” Communications of the Association for Comput-
ing Machinery, Vol.9, pp. 366-371. 1966.

2. Bouquard J.L. “Logic programming and Attribute grammars.” Ph.D. Thesis,
Orléans 1992.

3. Bratko I. “Prolog Programming for Artificial Intelligence”. Addison—Wesley
Publishers limited. 1986.

4. William F. Clocksin and Christopher S. Mellish, “Programming in Prolog”.
Springer—Verlag. 1981.

5. Conway J.H. “Unpredictable Iterations.” Proc. 1972 Number Theory Con-
ference. Unwversity of Colorado, pp 49-52. 1972.

6. Clark K.L., Tarnlund S.A. “A First Order Theory of Data and Programs.”
tn Proc. IFIP 77. pp. 939-944. 1977.

7. Dauchet M. “Simulation of Turing Machines by a regular rewrite rule.” Jour-
nal of Theoretical Computer Science. n°103. pp. 409—420. 1992.

8. Devienne P., Lebégue P., Routier J.C. “Halting Problem of One Binary Horn
Clause is Undecidable.” Proceedings of STACS’93, LNCS n“665, pp. 48-57,
Springer—Verlag. Wiirzburg. February 1993.

9. Devienne P., Lebegue P., Routier J.C. “The Emptiness Problem of One Bi-
nary Recursive Horn Clause is Undecidable.” In proceedings of ILPS’93,
Vancouver. MIT Press. pp 250-265. October 1993.

10. Goldfarb W. and Lewis H.R. “The decision problem for formulas with a
small number of atomic subformulas” J. Symbolic Logic 38(3), pp.471-480,
1973.

11.
12.
13.
14.
15.
16.

17.

18.

19.

Guy R.K. ¢ Conway’s Prime Producing Machine.” Mathematics Magazine.
n°56. pp. 26-33. 1983.

Hanschke P., Wurtz J. “Satisfiability of the Smallest Binary Program.” In-
formation Processing Letters, vol. 45, n®5. pp. 237-241. April 1993.

Harel D. “On folk theorems” CACM, vol. 23, n°7. pp. 379-389. 1980.
Kowalski R. A. “Logic for Problem Solving.” North Holland. New York. 1979.
Marcinkowski J., Leszek Pacholski “Undecidability of the Horn—Clause Im-
plication Problem” Proc. of the 38rd FOCS. 1992.

Minsky M. “Computation : Finite and Infinite Machines.” Prentice—Hall.
1967.

Parrain A., Devienne P., Lebegue P. “Prolog programs transformations and
Meta—Interpreters.” Logic program synthesis and transformation, Springer—
Verlag, LOPSTR’91, Manchester. 1991.

Robinson J. A. “A Machine—oriented Logic Based on the Resolution Princi-
ple.” J. ACM n°12, pp. 23—45. Januar 1965.

Schmidt—Schauss M. “Implication of clauses is undecidable.” Journal of The-
oretical Computer Science, n°59, pp. 287-296. 1988.

