
One Binary Horn Clause is EnoughPhilippe Devienne, Patrick Leb�egue, Jean{Christophe RoutierLaboratoire d'Informatique Fondamentale de Lille { CNRS UA 369Universit�e des Sciences et Technologies de LilleCit�e Scienti�que, 59655 Villeneuve d'Ascq Cedex, Francedevienne,lebegue,routier@lifl.fr,J�org W�urtzDeutsches Forschungszentrum f�ur K�unstliche Intelligenz { DFKI,Stuhlsatzenhausweg 3, 66123 Saarbr�ucken 11, Germanywuertz@dfki.uni-sb.deTopics : Logic in Computer Science, Theory of Programming Languages.Abstract. This paper proposes an equivalent form of the famous B�ohm-Jacopini theorem for declarative languages. C. B�ohm and G. Jacopini [1]proved that all programming can be done with at most one single while-do. That result is cited as a mathematical justi�cation for structuredprogramming. A similar result can be shown for declarative program-ming. Indeed the simplest class of recursive programs in Horn clauselanguages can be de�ned by the following scheme :(A1 :A2 A3: that is 8x1 � � � 8xm[A1 ^ (A2 _ :A3) ^ :A4] A4:where Ai are positive �rst{order literals. This class is shown here to beas expressive as Turing machines and all simpler classes would be trivial.The proof is based on a remarkable and not enough known codi�cationof any computable function by unpredictable iterations proposed by [5].Then, we prove e�ectively by logical transformations that all conjunctiveformulas of Horn clauses can be translated into an equivalent conjuctive4{formula (as above). Some consequences are presented in several con-texts (mathematical logic, uni�cation modulo a set of axioms, compila-tion techniques and other program patterns).1 IntroductionThis paper is about the computational power of classes of quanti�cational for-mulas speci�ed by restrictions on the number of atomic subformulas. Importantworks have been done about decision problems for such classes. W. Goldfarb andH.R. Lewis in [10] established the undecidability of the class of those formulascontaining �ve atomic formulas as follows8x9w8z1 � � �8zm[(:A1 _A2 ^A3) _ (:A4 ^A5)]

Indeed, the satis�ability of such a class is equivalent to the halting problem fortwo{counter machines which is undecidable [16]. H.R. Lewis tried to solve the4{subformulas case, but without success. This problem remained open until lastyear and was shown to be undecidable too by two independant ways ([12] and[9]). The main result of this paper is obtained by merging these two proofs and weestablish that this undecidability is of the maximal degree, in other words, thisclass of formulas has, in fact, the same expressive power than Turing machines.Moreover, this class can be reduced to Horn clause formulas :(HC) 8x1 � � � 8xm[(A_ :A1 _ � � � _ :An)] (denoted A A1 � � � An:)Such clauses, useful in logic programming, contain at most one positive subfor-mula (or literal).Within this particular class, related decision problems have been also studied.For instance, Implication of Horn clauses, denoted \HC1) HC2", also calledgeneralized subsumption, is an important notion in learning theory and compi-lation. It was shown decidable if clause HC1 is binary (two{literal) [19] and hasbeen shown recently undecidable if HC1 is ternary [15].More precisely, our paper is devoted to establish that all computation onMinsky machines can be expressed as the checking of consistency of the 4{formulas of the following form :8x1 � � � 8xm[A1 ^ (A2 _ :A3) ^ :A4] that is 8<:A1 :A2 A3: A4:where, because of the existence of universal Minsky Machines, the three �rst sub-formulas,A1, A2 and A3 can be �xed in a constructible way and A4 correspondsto the input datum. This very restrictive class is Turing{complete.The proof is based on two di�erent techniques. The �rst part (Section 2) is anencoding of periodically linear functions whose iterations have been proved to beequivalent to Minsky machines by [5]. Standard methods for decision problemsand computational power use Minsky or Turing machines. It seems to be sur-prising that the remarkable result proposed by Conway was rarely used. Its for-malism is of higher level and much easier to encode. The second part (Section 3)is based on logical transformations using meta{programs and meta{interpreters.This theorem is clearly equivalent to the famous B�ohm{Jacopini theoremto declarative languages. In 1966, they had proven that within imperative lan-guages, every
owchart is equivalent to a while{program with one occurrenceof while{do, provided auxiliary variables are allowed. This proof is constructiveand usually cited as the mathematical justi�cation for structured imperative pro-gramming (see also [13]). We show that in Horn clause languages, any programcan be automatically transformed to another one composed of one binary Hornclause and two unit clauses. This transformation preserves both termination andthe answer{substitutions (on the original variables). This shows the expressivepower of a single Horn clause and can be used as a theoretical tool for decisionproblems in theorem proving. Some applications on other notions or structuresare presented in the last section.

2 An Original Codi�cation of the Conway FunctionsHere we present an original proof method, previously de�ned in [8, 9] whereit was the main basis of the proofs of the undecidability of the halting andemptiness problem for one binary recursive Horn clause. It is based on an originalcodi�cation of some work by J.H. Conway[5], which we will present brie
y here.2.1 The Conway Unpredictable IterationsJ.H. Conway considers the class of periodically piecewise linear functions g :IN! IN having the structure :8 0 � k � d� 1; if (n mod d) = k ; then g(n) = akn :where a0; � � � ; ad�1 are rational numbers such that g(n) 2 IN. These are ex-actly the functions g : IN ! IN such that g(n)n is periodic. Conway studies thebehaviour of the iterates g(k)(n) and he states the following theorem :Theorem1. (Conway). If f is any partial recursive function, there is a Conwayfunction g such that :1. 8 n 2 IN; n 2 Dom(f) i� 9(k; j) 2 IN� � IN; g(k)(2n) = 2j.2. g(k)(2n) = 2f(n) for the minimal k � 1 such that g(k)(2n) is a power of 2.where IN = IN� [f0g. This result is based on a direct and clever translationof the behavior of Minsky machines [16] (having the same computational powerthan Turing machines) into Conway functions. Conway and Guy proposed aninstance of such Conway functions which produces all the prime number [11].A more complex characterization of prime numbers had been done within dio-phantine equations [16].In the next proofs, we will need to transform Conway iterations \n! g(n)"to Conway equivalences \n$ g(n)" by using Corollary 2. Considering the par-ticular partial recursive functions f such that :8 n 2 Dom(f) � f0g; f(n) = 0and their associated Conway functions (we called them null Conway functions)we can de�ne some Conway equivalence relations �g, which mean that we do notonly consider positive iterates gk(2n) resulting in 20(= 2f(n)) but also negativeiterates g�k(20) resulting in 2n where g�k(n) = fm 2 IN j gk(m) = n). Thuswe establish the following corollary :Corollary2. For every recursively enumerable set � containing f0g, there ex-ists a Conway equivalence relation �g such that � = fn 2 IN j 2n �g 1g

2.2 Conway Functions and Conjuctive 4{formulasLet us recall some de�nitions and notations about Horn clauses. A Horn clause isa disjunction of atomic formulas (called literals) of which at most one is positive.(HC) 8x1 � � � 8xm[(A_ :A1 _ � � � _ :An)] (denoted A A1 � � � An:)A is called the head part of the clause, and the other literals the body part. Afact (resp. a goal) is a clause whose body part (resp. the head part) is empty. AHorn clause is said to be binary if it is a composition of only two literals. As anexample consider :8<:append([]; L; L) : factappend([X j L]; LL; [X j LLL]) append(L;LL;LLL): binary clause append(L;LL; [a; b]): goal:A Horn clause program is a conjunction of Horn clauses universally quanti-�ed. The procedural semantics of such programs is based on the SLD{resolution[14] derived from the refutation procedure of Robinson [18]. According to theEdinburgh syntax ([4]), variables (X, L, LL, ...) are written using capital lettersand function symbols (a, b, c) with small letters. [X1; X2 j L] denotes a list ofwhichX1,X2 are the two �rst elements and L the tail of the list. The SLD resolu-tion, possibly in�nite, computes all answer{substitutions (fL = []; LL = [a; b]g, fL = [a]; LL = [b]g , fL = [a; b]; LL= []g in our example).The variables occurring in Horn clauses are renamed into fresh variablesduring the resolution. The simplest way to do is to attach an additional index tothe variable, denoted by subscripts as in Xi . Since we only consider one binaryHorn clause, we can choose this index to correspond to the number of inferencesusing this clause.In [8, 9], using this renaming of variables, we have explicitly described howrelations of the form Xn = Xg(n), where g is any null Conway function, can beexpressed by a Horn Clause of the form :p(left(X)) p(right(X)):where left(X) and right(X) are terms with variable X occurring in it. Thus,considering the case where n is a power of 2, this corresponds to a codi�cationof the Conway equivalence relations into a binary Horn clause (X2n = Xg(2n) =X20 = X1).Indeed, in the following program :p([az }| {Z; ; � � � ; jL]; [XjLL]) p(L;LL): p([; � � � ;| {z }b jL]; L):the size of the �rst variable of the Horn clause decreases by a while the sizeof the second decreases by one, so we have (the trees denote lists) :

@@@..........................@@@@@. @@@..........................@@@@@..Z0 Z1 X0 X1 Xa�1Xa+1XaIf there b = 0 in the goal, the equality of the two arguments would have generate :Zi = Xai, the b shifts this equation then we have : Zi = Xai+b.By composition of two programs like this one, we obtain :p([az }| {Z; ; � � � ; jL1]; [XjL2]; [a0z }| {Z; ; � � � ; jL3]; [XjL4]) p(L1; L2; L3; L4): p([; � � � ;| {z }b jL]; L; [; � � � ;| {z }b0 jLL]; LL):It involves the equalities :Xai+b = Zi and Xa0i+b0 = Zi :It is clear now that as many as needed equalities of the formXai+b = Xa0i+b0can be expressed in one binary Horn clause and one goal.Let g be a periodically piecewise linear function de�ned by d; a0; � � � ; ad�1.For all n = �d+k (0 � k � d), we have g(n) = g(�d+k) = akn = (akd)�+kak,with (akd; kak) 2 IN2. Then (Xn = Xg(n))n2IN can be decomposed into a �nitenumber of equivalence relations in the form (Xai+b = Xa0i+b0)i>0 . All the right{linear binary clauses and goals which characterized these relations (as explainedabove) can be merged in one right{linear binary clause and one goal by mergingtheir arguments. Thus it is clear that for any Conway function, there exist aparticular binary Horn clause and a goal.Consequently, according to the previous corollary, for every recursively enu-merable set �, containing 0, there exists a binary Horn clause (associated withthe corresponding g) which build a list L = [X1; X2; � � � ; Xn; � � �] with all the Xilinked by relations Xi = Xg(i). Thus we can characterize � as :� = fn 2 IN j X2n �g X1gMoreover, if at startup X1 is marked by], then this mark will be propagatedto every X2n such that n belongs to �. Thus the clause can be considered as aprocess of enumeration of the elements of�. An element of L will be instantiatedto] i� it is a pure power of 2 and this power belongs to �, that is i� 2n �g 20.The following program is an example in the case where � is IN :p([XjL]; [Y;XjLL]) p(L;LL) : p([]jL]; []jL]) :This program puts a] in every nth position of the list [#jL] i� n = 2p.

If the starting list is L = []; ; � � � ; ; [; ; � � �], where [is in the (2n)th position,then the program will stop (since a uni�cation fails) i� the equality X1 = X2noccurs, that is i� we have 2n �g 20, i.e. i� n 2 �. It is undecidable for every nand recursive enumerable set � whether n belongs to �. Thus, we can prove thatthe termination, when a goal is given, of one binary Horn clause is undecidable.This result was �rst presented in [8].In [9], using the same codi�cation in a di�erent way, it is proved that thesatis�ability problem is undecidable too. In this proof, a linear propagation ofthe mark] is created and the existence of solutions for our minimal programstructure is shown to be equivalent to the fact that � is not total.2.3 The Main LemmaUsing the above codi�cation, we establish the following lemma which is requiredto prove the main theorem of this paper. In the following statement, the term\program" corresponds to the intuitive meaning. You can consider, if you prefer,it denotes \a machine (in sense of Turing machine) which computes a partialrecursive function". This lemma needs a sharp analysis of how the codi�cationof Conway functions works. The proof is technical, therefore we will not presentit here. It will appear soon in a extended report.Main Lemma3. For every program � with input I, there exists a binary Hornclause R� such that there exists a goal, depending on I, such that R� stops afterat least n iterative applications i� � stops after n elementary steps with inputI, and does not stop otherwise.Proof. To appear soon, it can already be communicated to every interested per-son.3 Logical transformationsIn the previous section, we have presented how to express Minsky machines intobinary Horn clauses. In this part, we show that there exists a constructible re-duction from the Horn clause programs into the 1{binary Horn clause programs.This result is obtained by a combination of the proof techniques of [12] and [8, 9].The �rst one is used to generate the SLD resolution, the second to assure thehalting of the build meta{interpreter.3.1 A Word GeneratorIn this section we show how to generate all words over the alphabet fa; bg. Thecodi�cation is similar to the one used in [12] to encode the Post CorrespondenceProblem:gen([W j R]� RR ;W) :gen([W j R]� [[a jW]; [b jW] j RR];AW) gen(R � RR;AW): gen([[] j R]� R;Word):

where R �RR denotes a di�erence list [3, 6].By unifying the goal and the fact we obtain the solution Word = [] . Usingthe binary clause once, results in the new goalgen([[a]; [b] j RR1]�RR1 ;AW 1)producing the solution Word = [a]. Resolving this new goal with the binaryclause instead of the fact results in the goalgen([[b]; [aa]; [ba] j RR2]�RR2 ;AW 2)resulting in the solution Word = [b] etc. Observe that a and b serve as pre�xesof two new words such that the su�x of these words is the �rst element of thelist generated so far 1. These two words are concatenated to the tail of the listgenerated so far. In other words, the di�erence{list can be seen as a LIFO (LastIn First Out) stack.3.2 A First Meta{InterpreterLet � be a set of Horn clauses fclause1; � � � ; clauseng, and \ g1 � � �gn:" bea goal, the following meta{program generates the same answer{substitutions inthe same order as a standard SLD interpreter :solve([]; []) :solve([Goal j R1]; [[Goal j R2]� R1 j L]) solve(R2 ;P):solve(Goals; [Clause j Rest]) solve(Goals;Rest): solve(G;P):G denotes list [g1; g2; :::gn] and P is the list of encoded clauses of a program �,i.e., P= [clause1 ; � � � ; clausen] . A clause a b1 ; : : : ; bn of � is encoded by thedi�erence list [a; b1 ; : : : ; bn j R]� R . The �rst binary clause serves for choosingthe �rst clause in the current clause list for reduction. The second clause discardsthe �rst clause in the current clause list. The complexity of the meta{programhave been shown to be linearly dependent on that of the original program (see[17]).For encoding an arbitrary program � only the �rst binary and the goal haveto be adapted in a appropriate way. Let us suppose now that � is one of knownHorn clause meta{interpreters (i.e. a universal Horn clause program), then thiscodi�cation de�nes a constructible meta{interpreter in the form :8>><>>:A1 :A2 A3:A4 A5: A6: or 8x1 � � � 8xm[A1 ^ (A2 _ :A3) ^ (A4 _ :A5) ^ :A6]1 Note that this generator can be easily extended for any �nite alphabet.

3.3 A Binary Meta{InterpreterIn this section we combine the two programs of Section 3.1 and 3.2.Assume a program� consisting of the two binary clauses left1 right1 andleft2 right2 , one goal goal , and one fact fact . Consider the word{generatorwhere A = right1 ; left1 and B = right2 ; left2 .meta([W j R]� RR ;W) :meta([W j R]� [[A jW]; [B jW] j RR]; [H j RRR]) meta(R �RR; [H;X;X j RRR]): meta([[goal j L] j R]� R; [fact j LL]):After n times using the binary clause for resolving we obtain as second argumentof the new goal the list[fact ;X1 ;X1 ;X2 ;X2 ; : : : ;Xn ;Xn j T]:Furthermore, we obtain after some iterations as the head of the �rst argument(cf. Section 3.1) [rightim ; leftim ; : : : ; righti1 ; lefti1 ; goal j T]:By resolving a current meta{goal with the fact of the meta{program above weobtain the uni�cation problemrightim := fact ; leftim := rightim�1 ; : : : ; lefti1 := goal :Note that by construction it is assured that the list containing the fact is ofsu�cient length to obtain these equations. This set is solvable if and only if thereexists a corresponding refutation of the original program � using the resolutionorder imposed by the equations.Since the meta{interpreter of Section 3.2 is such a program �, it is possibleto associate to any logic program an equivalent program (i.e., with the samesolutions) containing a binary clause and two unit clauses. Unfortunately, thiscodi�cation does not preserve termination. In the next section we will show howto construct from this non{terminating interpreter a terminating one.Let solve be the �rst meta{interpreter (Section 3.2) and all SLD derivationwhose length is n w.r.t. solve is evaluated w.r.t. its meta{program before at most2n resolution steps. In other words, all answer{substitution computed after nresolution steps w.r.t. solve will be computed before 2n resolution steps w.r.t.its meta{program.3.4 A Technical PreliminaryMPnS denotes the non{stopping meta{interpreter de�ned in Section 3.2. Let usconsider the following program �, with input a Horn clause program P :1. input P2. evaluate P by a breadth{�rst strategy and keep the solutions in S1

3. compute MPnS(P) and keep the solutions in S2, stop as soon as S2 = S1and write 0It is clear that � stops i� P stops and its stopping time (that is the numberof steps before termination) with input P is greater than the time used byMPnS(P) for producing all the solutions of P .Now, according to the main lemma, there exists a binary clause R� and thena program P� = MPS :MPS :8<:Stop(fact1) :Stop(left1) Stop(right1): Stop(goal1):which, with input (in the goal) a program P 2, stops i� P stops and its stoppingtime is greater than the one of MPnS(P). Observe that P is used only in thegoal.3.5 The smallest Meta{InterpreterUsing MPnS and MPS we prove the following theorem :Theorem4. There exists a meta{interpreter for Horn clauses in the form of aprogram with only one binary Horn clause, a fact and goal, which, given as inputa Horn clause program P , has exactly the same solutions as P and terminatesi� P terminates.Proof. In this proof, we use the meta program MPnS de�ned previously, wedenote its program :MPnS :8<:meta(fact2) :meta(left2) meta(right2): meta(goal2)We merge MPnS and MPS in a new meta{interpreter MP :MP :8<:TheMeta(fact1 ; fact2) :TheMeta(left1 ; left2) TheMeta(right1 ; right2): TheMeta(goal1 ; goal2):such that, with input a Horn clause program P , it produces all the solutions ofP (because of the MPnS part) and then will stop i� P terminates (because ofthe MPS part).Thus we have an append{like meta{program which preserves the solutions(produced in the same order as in a breadth{�rst strategy) and the terminationof any Horn clause program given as input. utAn immediate consequence of this theorem is :2 Based on the G�odel number of P .

Theorem5. The class of programs with only one binary Horn clause and twounit clauses is Turing{complete.Proof. Since we have a meta{interpreter for Horn clauses containing only onebinary recursive clause, we can assert that this class of programs has the samecomputational power as Horn clause programs and consequently as Turing ma-chines. utThis meta{interpreter is e�ectively the simplest constructible one. Indeed,the consistency of the formulas with three sub{formulas is clearly decidable.Let us remark that there is therefore a universal binary Horn clause+oneunit clause which are explicitly constructible. This theorem still remains true ifthe binary clause and one of the two unit clauses are �xed. In the same manner,uni�cation with or without occur{check, SLD strategies, bottom{up or top{downresolution algorithms do not alter anything.4 ConclusionThe �rst consequence of this theorem is that, as Lewis conjuctered in 1973, theconsistency of the class of formulas containing 4{subformulas is undecidable too,even for conjuctive formulas of Horn clauses with pre�xes of the form 8 � � � 8.The second consequence is that like in imperative languages [1], the sim-plest non{trivial program scheme can express any partial recursive function. Likein the B�ohm{Jacopini proof, the transformation can be done automatically. Ameta{interpretation of the academic append predicate has been implementedand its space complexity was so important that it can simulate only the four�rst original inferences under Sictus 2.1 on SUN machine with 12MB RAM.A third way to express this theorem is in uni�cation modulo a set of axioms.The usual uni�cation that is, modulo the set of equality axioms, is unary (thereis one most general uni�er) and decidable. As soon as a single arbitrary axiom isadded, the uni�cation becomes in�nitary and undecidable (see for instance theremarkable encoding proposed by [7]). This remains true even if the terms usedhave a special symbol (predicate name) which appears at their root and nowhereelse, and even if this additional axiom is linear and without local variables, thatis, all variables occurs once and only once in every term of the axiom.The negative result justi�es pragmatic or heuristics approach to logic pro-gramming analysis, like in abstract interpretation or type inference. There is nohope to de�ne any formal and complete methods to control the most basic recur-sive scheme. Even in such restrictive classes of programs, most of the interestingproperties (groudness, sharing, freeness, necessity of occur{check, ...) to providemore e�cient compilation technics are undecidable. For instance the propertyof total decoration can deal to e�cient translation from logic programming toattribute grammars [2]. Roughly speaking, a SLD resolution is said to be totallydecorated i� at each step of resolution all Horn clauses can be used to infer. Theopen problem concerning the total{decoration property can be proved easily tobe undecidable. Indeed for logic programs which contain only one binary clause,

this property is equivalent to the non{halting problem that we have shown tobe undecidable.Another program scheme studied by [15] for implication of clause is the fol-lowing one : 8>>>><>>>>:G1 :� � � � � �Gn :A A1;A2: Gn+1:where all Gi are ground (without variables) and the Horn clause is now ternary.They proved, using a sophisticated technique based on semi{Thue systemsand SLD resolution that the consistency for such a class is undecidable. Herethe halting problem of the SLD resolution can be shown to be undecidable tooand additional restrictions can be added like n � 2 and the ternary Horn clauseis explicitly chosen.Acknowledgements : We would like to thank Anne Parrain for her helpfulcollaboration. She contributes a lot to the work on meta{program. We wouldlike to thank Philipp Hanschke for valuable discussions. Last, we would like tothank anonymous referees for their valuable comments.References1. B�ohm C., Jacopini G. \Flow diagrams, Turing machines and languages withonly two formation rules." Communications of the Association for Comput-ing Machinery, Vol.9, pp. 366{371. 1966.2. Bouquard J.L. \Logic programming and Attribute grammars." Ph.D. Thesis,Orl�eans 1992.3. Bratko I. \Prolog Programming for Arti�cial Intelligence". Addison{WesleyPublishers limited. 1986.4. William F. Clocksin and Christopher S. Mellish, \Programming in Prolog".Springer{Verlag. 1981.5. Conway J.H. \Unpredictable Iterations." Proc. 1972 Number Theory Con-ference. University of Colorado, pp 49{52. 1972.6. Clark K.L., T�arnlund S.A. \A First Order Theory of Data and Programs."in Proc. IFIP 77. pp. 939{944. 1977.7. Dauchet M. \Simulation of Turing Machines by a regular rewrite rule." Jour-nal of Theoretical Computer Science. no103. pp. 409{420. 1992.8. Devienne P., Leb�egue P., Routier J.C. \Halting Problem of One Binary HornClause is Undecidable." Proceedings of STACS'93, LNCS no665, pp. 48{57,Springer{Verlag. W�urzburg. February 1993.9. Devienne P., Leb�egue P., Routier J.C. \The Emptiness Problem of One Bi-nary Recursive Horn Clause is Undecidable." In proceedings of ILPS'93,Vancouver. MIT Press. pp 250{265. October 1993.10. Goldfarb W. and Lewis H.R. \The decision problem for formulas with asmall number of atomic subformulas" J. Symbolic Logic 38(3), pp.471{480,1973.

11. Guy R.K. \ Conway's Prime Producing Machine." Mathematics Magazine.no56. pp. 26{33. 1983.12. Hanschke P., W�urtz J. \Satis�ability of the Smallest Binary Program." In-formation Processing Letters, vol. 45, no5. pp. 237{241. April 1993.13. Harel D. \On folk theorems" CACM, vol. 23, no7. pp. 379{389. 1980.14. Kowalski R. A. \Logic for Problem Solving." North Holland. New York. 1979.15. Marcinkowski J., Leszek Pacholski \Undecidability of the Horn{Clause Im-plication Problem" Proc. of the 33rd FOCS. 1992.16. Minsky M. \Computation : Finite and In�nite Machines." Prentice{Hall.1967.17. Parrain A., Devienne P., Leb�egue P. \Prolog programs transformations andMeta{Interpreters." Logic program synthesis and transformation, Springer{Verlag, LOPSTR'91, Manchester. 1991.18. Robinson J. A. \A Machine{oriented Logic Based on the Resolution Princi-ple." J. ACM no12, pp. 23{45. Januar 1965.19. Schmidt{Schauss M. \Implication of clauses is undecidable." Journal of The-oretical Computer Science, no59, pp. 287{296. 1988.

