
Syncing Development Logs and Bug Tracking
Systems

Bilyaminu Auwal Romo
Department of Computer Science
Brunel University London, UK

Email: bilyaminu.auwal@brunel.ac.uk

Andrea Capiluppi
Department of Computer Science
Brunel University London, UK

Email: andrea.capiluppi@brunel.ac.uk

Abstract—The development logs of software projects, con-
tained in versioning control systems (VC system) can be severely
incomplete when tracking bugs, especially in open source
projects, resulting in a reduced traceability of defects. Other
times, such logs can contain bug information that is not available
in bug tracking system (BT system) repositories, and vice-versa:
if VC system logs and BT system data were used together,
researchers and practitioners often would have a larger set of
bug IDs for a software project, and a better picture of a bug life
cycle, its evolution and maintenance.

The aim of this work is to implement a tool-chain that
supports the automatic integration (synchronisation) of various
data sources, including the VCS logs and BT system data of open
source software projects. The syncing process was achieved using
the Bicho1 and CVSAnalY2 tools.

Overall, our results indicate that Version control commits
system logs (VCC system logs) and Bug tracking system data
(BT system data) often contain different subsets of bug-related
data. Therefore, the presented syncing process has the potential
to produce more complete datasets in both development logs and
bug-tracking systems.

I. APPROACH AND TOOLSET

Combining and cross-analysing the VCC system logs and
BT system data shows incompleteness, inconsistency and
skewed sets of data. In terms of bug-coverage, the VC system
logs and BT system data can have the following four scenarios,
depicted graphically in Figure 1.

1) The first scenario is when the set of bug IDs as found in
the BTS database has no intersection with the set of bug
IDs coming from the VCC logs (first left in Figure 1).

2) The second scenario is when all the bug IDs of either of
the sets are contained within the other set: in the theory
of sets, the cardinality of the union of the sets is the
cardinality of the containing set; while the cardinality
of the intersection of the sets is the cardinality of the
contained set (middle part of Figure 1).

3) The third scenario is the most common: there is a subset
of bug IDs that is common to the two data sources (e.g.,
the intersection of the sets, right of Figure 1). Apart from
the common IDs, there are also (i) one subset of bug IDs
that appear only in the VCC system logs, and (ii) another
subset of bug IDs that appears only in the BT system.

1http://metricsgrimoire.github.io/Bicho/
2http://metricsgrimoire.github.io/CVSAnalY/

4) The final scenario is when all the bug IDs are found in
both the BT system, and the VC system: in the set theory
language, the union of the sets is equal to the intersection
of the sets. This is the ideal scenario, because the bugs
are being mirrored exactly in the two databases.

Fig. 1. Scenarios of intersection of BTS and VCC bug-related sets of data

The objectives of this work are to integrate the sets of bug
IDs in the first and third scenarios: in both of them, the union
of sets is larger than what held in the BT system data or the
VCC system logs, therefore forming a larger set of bug IDs.
We do so by using the Bicho tool to recover the BT system
data, and the CVSAnalY tool to recover the VCC system logs.

After the creation of a larger data set of bug IDs, we propose
to integrate the BT system data of the bug-related activities
exclusively found in the VC system; and to integrate the VCC
system logs of the bug IDs and activities found in the BT
system data, but not reported in the VC system.

II. CONCEPT

Observing the tables of Bicho and CVSAnalY and their
attributes, we propose to use bug-related data in either database
to fill the missing data as detected in the other database. Any
bug IDs and attributes stored by CVSAnalY (but not found by
Bicho) could be used to fill the summary and other attributes in
the Bicho database. In consequence, automating the integration
of VCC system log with BT system data (and vice-versa) will
require the use of meta-data contained in the ‘scmlog’ table
(populated by CVSAnalY) to be copied in the ‘issues’ table
(populated by Bicho). Figure 2 shows that attributes could be
used from either table to fill the gaps in the other table.

III. THE FRAMEWORK

In this section, the structure of the framework is discussed,
comprising six modules: The Bug Tracking Issue System,
Control Version System, Bicho, CVSAnalY, SCMLog and

Fig. 2. Corresponding fields linked in Bicho and CVSAnalY

Issues. Figure 3 below depicts the components in a UML
notation that will be instantiated of the final implementation.
On the other hand, Figure 4 shows the architectural overview
of the framework. The next subsections describe the main
components, what has been achieved so far, and what is
currently missing.

Fig. 3. UML Diagram of Components

A. Issues-Tracker Parser through Bicho

The Issues-Tracker Parser through Bicho component in
figure 3 provides an interface in which the interaction between
Bicho and any Bug Tracking System is defined. The interface
that must be implemented by each client when mining data
from issue trackers is the Issues interface. Thus, the interface
would enable the interaction between Bicho and the supported
BT systems. Some BT systems are currently supported by our
framework: JIRA, Bugzilla, GitHub, SourceForge, Launchpad
and Allura. Among these systems only GitHub requires the
user to authenticate their identity using the logging credentials
already registered on GitHub, before it allows any interaction
or communication.

B. Development Log Parser through CVSAnalY

Th Development Log Parser through CVSAnalY component
in figure 3 defines the interaction between CVSAnalY and
any VC systems. In addition, the SCMLog component serves
as the main entry point where development logs (VCC system
log) are stored as extracted by CVSAnalY. In this way, the
SCMLog interface must be implemented, in order to allow
communication with any in figure 3. Currently, the framework
supports the interaction with other VC system such as Git, CV
system and Subversion.

However, one of the main obstacles among the supported
VC system is that Git requires authentication by the clients

or user before CVSAnalY can point to a repository in Git to
extract and stored development logs. User-name and password
need to be entered, in order to allow a communication between
CVSAnalY and the Git (VC system). As a result, this paper
implemented this framework only in its static interaction with
Git: users need to first specify their logging credentials for
authentication in GitHub in order to extract data by CVSAnalY
from the remote VC system and stored development logs into
a database generated by CVSAnalY.

IV. IMPLEMENTATION

We implement the majority of the tool chain in Perl pro-
gramming language, whose strengths are text manipulation,
portability, fast development capabilities and rapid develop-
ment cycle [3]. In addition, Perl has an impressively broad
range of standard library. However, Perl DBI package makes
the automation and integration of databases easy.

In this research, we partially implement the SZZ algo-
rithm [7] to trace bugs and logs within the OSS sample
obtained from GitHub. In our formulation, we only look for
bugs described by the ’# + digit’ regular expression (e.g.,
#1234), that are linked to the ID of a bug. In its original
formulation, the SZZ algorithm also searches for keywords
like ‘Bug’, ‘Fixed’ and others.

The components discussed in section III were integrated in
the tool-chain developed to search for bug IDs within the two
databases, and combine the results into intersection and union
of sets. In addition, not even to cross analyse VCC system
logs and BT system data but to ultimately synchronise the
VCC system logs and BT system data in Bicho and CVSAnaly
respective databases.

In this section, we detail the steps and process of the
implementation. These include retrieving the IDs from the two
databases, combining the results into intersection and union
of sets, synchronising the identified missing VCC system logs
and BT system data into their respective databases automati-
cally.

A. Retrieving VCC system Logs

Obtaining the VCC system Logs: the tool is capable of
interfacing with, and execute CVSAnalY and Bicho tool set,
in order to parse VCC system log and BT system data at
once. CVSAnalY and Bicho automatically create databases and
tables with meta-data, storing all the VCC system logs and BT
system Data of the sample. Among the tables generated by
CVSAnalY, we then specifically query the scmlog table. In the
presence of a bug ID, the VC system logs also mentions the
bug ID with the #1234 format. For the purpose of this research
we are only interested in bug IDs that are being mentioned by
developers: bug IDs do not necessarily need to be “fixed” or
“resolved”.

B. Data Cleaning

Data Cleaning: False Positives and True Positives: The
fourth step was the cleaning step, before isolating the bug
numbers and IDs for both CVSAnalY and Bicho. The query

Issue Analyser

Log Analyser

Issues

Logs

Bug/
Fixed/
#6515

Syncing Process

Bug/
Fixed/
#6515

Bug/
Fixed/
#6515

Issues

Logs

SQL queries

 GitHub

 GitHub

Automated Entries
into Bicho

Automated Entries
into CVSAnalY

Fig. 4. Architectural Overview of the framework

for the ’#’ sign followed by numeric values in the version
control commit logs imported with CVSAnalY produces a
large number of false positives in most of the sample of
344 OSS projects we obtained from GitHub. In this case, the
messages refer to the pattern searched for the # sign, but they
are all linked to a request of pulling a merge from another
distributed repository into the original one under GitHub.
These were filtered out automatically using the SQL-query
integrated into the tool that was developed for this research.

C. Isolating The Bug IDs

Isolating the bug numbers and IDs: After cleaning the
data and remove all the trailing strings and white spaces, we
composed two sets of bug IDs, one from the VCC system
logs, and the other from the issue tracking systems. In the
VCC system logs, we looked for the bug IDs in the free text
descriptions left by developers (and stored in the “scmlog”
table). In the bug tracking data, we used the bug IDs as
assigned by the developers to the issues reported as bugs.
These steps are performed within the developed tool, by
querying the appropriate tables and cleansing the results.

D. Evaluation

In addition, we randomly pick few on the sample of 344
OSS projects obtained from GitHub and manually analysed
each of the remaining bugs in Bicho and CVSAnalY databases,
to make sure that each of the remaining IDs pointed to real

bugs before evaluating the union and intersection of the sets.
The bug IDs within the data set obtained through Bicho are
always related to bug IDs.

Evaluating the union and intersection of the sets: the penulti-
mate step was to evaluate the union and intersection of the sets,
per project. Given a set of bug IDs mentioned in the SCMlog
table, and the list of bug IDs stored from the issue trackers
of a project, we evaluated the intersection (i.e., the common
bug IDs) of these two sets, as well as the union of such sets
(i.e., the overall set of unique bug IDs jointly held in the two
databases). We then formulated a metric (named Shared Bug
Coverage) to describe how many bug IDs are common in the
two databases. Also this final step is integrated into the tool-
chain.

V. SYNCHRONISATION

Synchronisation of BT system data and VCC system logs in
both tools has been an ultimate goal in this research, merging
BT system data and VCC system logs from different sources
is a big challenge that require complex method [6].

We utilised the existing techniques and attempts to provide a
solution to this problem(i.e., merging BTS data and VCC logs
from various sources using Bicho and CVSAnalY). Thus, we
can merge BTS data into VCC system logs of OSS projects
leveraging on the existing techniques.

In this way, we will instantiate the main components we
mentioned in section III above in the structure of the frame-

work. That is to say, Issues interface and SCMlog Interface
to enable interaction or connection between Bicho and the
supported BT system as well as CVSAnalY and the supported
VC system such as GitHub.

The synchronisation was implemented successfully, BT sys-
tem data not mirrored in SCMlog table in CVSAnalY database
was synchronised into a newer SCMlogcvsanaly table in CVS-
AnalY created automatically. Similarly, VCC system logs not
mirrored in Issues table in Bicho database was synchronised
into a newer Issuesbicho also created automatically.

VI. RELATED WORK

In this section, we report the related work that developed
methods to retrieve bug-related data. We also report the tools
that trace the bug-fixing commits to the bug traces in the issue
trackers.

A framework to sync VCC system logs (development logs)
and BT system data has been proposed and designed this is by
using and improving existing framework developed in the past
by [4] [2] [9] [1] [8] [1] [5] Which are all attempts to integrate
and identified missing links between VCC system logs and
BT system data. Thus, to provide researchers in empirical
software engineering with a unified framework for integrating
BT system and VC system for mining software repositories.
In the same way our novelty, lies but with an attempt to
synchronised either the missing VC system log or BT system
data of software projects retrieved by these tools (Bicho and
CVSAnalY) and stored into their respective databases.

The Buco reporter, developed by Ligu et al. [5], is an exten-
sible framework that mirrors the VCC log and the BT system
data, and the tool generates a complete set of evolutionary
facts and metrics about a given OSS projects. Buco accurately
traces VCC system logs and BT system data, but the tool
was not designed and developed to synchronise the missing
VCC system log and BT system data if discrepancies were
found. The contribution of the presented research is a complete
framework tool-chain) to synchronize the missing VCC system
log and BT system data, supporting various repositories and
bug tracing algorithms and approaches.

The Linkster tool involves a series of steps to retrieve,
parse as well as convert and link the data sources [2]. As a
result, it requires significant manual effort to analyze recovered
links which might be much more accurate. On the other
hand, RELINK [9] collects information automatically from
the source code repository and BT system, builds the resulting
information linked between VCC system logs or BT system
data and output the identified links. In general, both these
tools require a large amount of interaction but they recover
missing VCC system logs and BT system data accurately.
Our approach completes these tools by filling the missing
VCC system logs and BT system data in either database in
an automatic way.

VII. CONCLUSION AND FUTURE WORK

Synchronisation of Bicho and CVSAnalY tool sets is suit-
able for analysing opens source software projects. Even OSS
projects with a small number of commits and contributors,
provide sufficient data for empirical software engineering
research purpose. This automation and synchronisation of
VCC system logs and BT system data evict the impediment
of incomplete, inconsistent as well as skewed sets of data sets
that researchers used for empirical studies.

The framework is easy to implements following the steps
and process that involve in mining VCC system logs and
BT system data. Although it is a daunting task and very
challenging because the origin of such data sets is also not
in sync. In this way, the synchronisation will enable flexible
cross-analyses of evolutionary aspects of OSS projects since
the tools can be able to mine VCC system logs and BT
system data from via VC system and BT system. Also, the
synchronisation provides a simple query-result mechanism and
supports complex data queries for analysis.

The proposed tool-chain will eliminate and avoid repetitive
activities in traceability tasks, as well as software maintenance
and evolution. as well as provides a solution towards the
automation and traceability of BT system data of software
projects (in particular, OSS projects) using VCC system logs
to complement and tract missing bug data.

REFERENCES

[1] P. Anbalagan and M. Vouk. On mining data across software repositories.
2009 6th IEEE International Working Conference on Mining Software
Repositories, 2009.

[2] C. Bird, A. Bachmann, F. Rahman, and A. Bernstein. Linkster: enabling
efficient manual inspection and annotation of mined data. In Proceedings
of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering, pages 369–370. ACM, 2010.

[3] T. Christiansen and N. Torkington. Perl cookbook. ” O’Reilly Media,
Inc.”, 2003.

[4] M. Legenhausen, S. Pielicke, J. Ruhmkorf, H. Wendel, and A. Schreiber.
Repoguard: a framework for integration of development tools with source
code repositories. In Global Software Engineering, 2009. ICGSE 2009.
Fourth IEEE International Conference on, pages 328–331. IEEE, 2009.

[5] E. Ligu, T. Chaikalis, and A. Chatzigeorgiou. Buco reporter: Mining
software and bug repositories. page 121, 2013. Retrieved January 23,
2015 from http://ceur-ws.org/Vol-1036/p121-Ligu.pdf.

[6] G. Robles, J. M. González-Barahona, D. Izquierdo-Cortazar, and I. Her-
raiz. Tools and Datasets for Mining Libre Software Repositories,
volume 1, pages 24–42. IGI Global, Information Resources Management
Association. 701 East Chocolate Avenue, Hershey, PA 17033, Jan. 2011.

[7] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? ACM SIGSOFT Software Engineering Notes, 30(4):1–5, 2005.

[8] A. Sureka, S. Lal, and L. Agarwal. Applying fellegi-sunter (fs) model for
traceability link recovery between bug databases and version archives. In
Software Engineering Conference (APSEC), 2011 18th Asia Pacific, pages
146–153. IEEE, 2011.

[9] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung. Relink: recovering links
between bugs and changes. In Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European conference on Foundations of Software

Engineering, pages 15–25. ACM, 2011.

