From Python to Pythonic - Preliminary Research

Gregorio Robles
GSyC/LibreSoft
Universidad Rey Juan Carlos
Fuenlabrada, Madrid, Spain
Email: grex@gsyc.urjc.es

I. INTRODUCTION

Every programming language has its idioms and culture.

Every programming language has as well been designed to
optimize certain tasks [3], [2]. This goes beyond a style guide
(such as PEP-8 in Pythonl), code conventions [1], or other
complexity measures and tools commonly used in software
development (as it is common for programming languages).
There are plenty of tools that offer feedback to the developers
about their programs, providing complexity metrics, warnings
or even hint to the presence of bad smells. PyFlakes®> and
PyLint? are an example of such tools in the Python ecosystem.

The mastery of a programming language can take years.
However, there is a lack of knowledge of many of the idioms
and advanced characteristics that a programming language
includes. So even with years of experience, a developer may
not be aware of them [5].

In our research we want to study the precense of advanced
idiomatic elements in the Python language. Experienced
Python programmers use thse elements, called Pythonic, in
order to have more readable, more concise and more optimized
code. By identifying idiomatic Python we will be able to assess
the skills in Python of programmers. We also plan to use it
to identify learning paths, the presence or absence of certain
idioms, etc.

II. IDIOMS

Kapser et al. provide a good definition of an idiom [4],
although their research focus is on software cloning. There is
an ample culture and public debate in the Python community
about writing idiomatic code, referred as Pythonic code.
However, there is nowhere an exact definition of what this
means*:

“Pythonic means something like idiomatic Python, but now
we’ll need to describe what that actually means.

Over time, as the Python language evolved and the commu-
nity grew, a lot of ideas arose about how to use Python the
right way. The Python language actively encourages a large
number of idioms to accomplish a number of tasks (“the one
way to do it”). In turn, new idioms that evolved in the Python

Uhttps://www.python.org/dev/peps/pep-0008/

Zhttps://pypi.python.org/pypi/pyflakes

3http://pylint.org/

4The excerpt has been taken from http://blog.startifact.com/posts/older/
what-is-pythonic.html.

Bogdan Vasilescu
Computer Science Department
University of California, Davis

Email: vasilescu@gmail.com

community have influenced the evolution of the language to
support them better.”

Many beginners in Python with some experience in other
languages could solve the problem of finding all countries in
the mylist list that contain the letter “a” with following
code:

countriesWithA = []
i=0
while i < mylist_length:
if "a" in mylist([i]:
countriesWithA.append (mylist[i])
i4+=1

Although completely correct, it would not be considered
good Python. We could improve it by using a built-in function
such as range:

contriesWithA = []
for i in range(mylist_length):
if "a" in mylist[i]:
countriesWithA.append (mylist[i])

But this is not Pythonic either. The following is better, as
it uses the for loop in a more Pythonic way:

contriesWithA = []
for country in mylist:
if "a" in coutry:
countriesWithA.append (country)

However, there is a Python idiom, list
comprehensions, that specifically can be used to
solve the problem of creating a list from another list (in
general, by filtering it):

countriesWithA = [country for country in

mylist if "a" in country]

We have identified a set of advanced features of the Python
language that are specific to the language or that are “embed-
ded” into its culture. There are many developers that program
in Python as they would do in any other language (i.e., without
using Pythonic elements). Even, we have found 500+ pages
introductory books that teach Python without including any of
the elements considered Pythonic! Plenty of other books and
web sites focus on these advanced elements of a programming
language [6].

An incomplete list of advanced features that we target is as
follows:

o Comprehensions

e Magic methods

o Keyword arguments

e Structures defined in collections
e Lambda functions

o Context managers

o Decorators

« Properties

o Static methods and classes

o Class methods

Our research goal is driven by the fact that there is a lack
of methodologies and tools that show the acquired level/skills
in a given programming language and that potentially help
developers to gain knowledge of new characteristics. This is
mostly obtained by collaborating with peers and reading oth-
ers’ source code. Therefore, we present a framework proposal
to evaluate the skills of a programmer in a given programming
language, in this case Python, and want to study as well how
these abilities affect the project in which these developers
collaborate.

III. GOALS AND RQs

The RQs we want to address are following:

1) What is the extent of Pythonic skills present among
Python developers in GitHub?

a) The more social (number of forks, number of
projects involved) a developer, the more Python-
ista’?

b) The more experienced a developer (number of
commits, number of LOC, number of comments,
etc.) a developer in Python, the more Pythonic
code?

¢) Can we find other characteristics that co-relate with
Pythonic code (gender, age, geographic location,
etc.)?

d) Are projects/repos clusters for Pythonistas?

e) Is the use of Pythonic elements constant over time?
Is today’s code more Pythonic than older Python
code?

2) What are the advanced elements mostly used? Which
are the less used ones?
3) How do Python developers learn advanced skills?

a) Can we identify the spread of Pythonic elements
from experienced developers to other developers
by means of collaboration (and/or forking)?

b) Can we identify a common learning roadmap?

4) Are Pythonista projects larger (in commits, in LOC)?
Do they attract more developers? Do they have more
forks?

5 A Pythonista is a developer who codes using idiomatic Python.

IV. METHODOLOGY

Our current research methodology is based on mining
GitHub, identifying those where the main language is Python
(and not being a fork). These projects will be downloaded and
analyzed by means of identifying advanced Python usage. To
identify Python idioms we use a lexer®. We have therefore
transformed the idioms in our list to tokens or a sequence of
tokens that we look for in the Python code under scrutinity.
This is an approach based on heuristics, but although as by
now we do not have values of precision and recall, our first
experiences show that it provides high values of both.

The author and time of the code snippets identified by
means of the blame git command will allow us to assign
that snippet to an author and obtain statistics on a project and
on an individual and project basis.

V. THREATS TO VALIDITY

As with all empirical studies, there are a number of threats
to its validity. The following is an uncomplete list of threats
that we have to consider.

e Our list of Python idioms considered as Pythonic will
always be incomplete, and because of its heuristic nature
prone to errors in identification.

« Although the number of Python projects hosted in GitHub
is large, it is by no means all the Python code that exists.
Much Python code is still using Mercurial, or may be
hosted in other forges and repositories.

o« We are aware that the occurrence of patterns may be
influenced by the Python libraries used. Actually, some
of the Python idioms refer especifically to the use of such
libraries.

o Small and large projects may have completely different
characteristics. This makes it hard to identify skills of
individual developers.

VI. ACKNOWLEDGMENTS

The work of Gregorio Robles has been funded in part by
the Region of Madrid under project “eMadrid - Investigacin y
Desarrollo de tecnologas para el e-learning en la Comunidad
de Madrid” (S2013/ICE-2715) and in part by the Spanish
Government under project SobreVision (TIN2014-59400-R).
The authors would also like the BENEVOL 2015 anonymous
reviewers for their feedaback and suggestions.

REFERENCES

[1] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton. Learning natural coding
conventions. In FSE, pages 281-293. ACM, 2014.

[2] J. Coplien. Advanced C++ programming styles and idioms. In Tools,
page 352. IEEE, 1997.

[3] J. O. Coplien. Idioms and patterns as architectural literature.
Software, (1):36-42, 1997.

[4] C. Kapser and M. W. Godfrey. “cloning considered harmful” considered
harmful. In WCRE, pages 19-28. IEEE, 2006.

[S] H. P. Langtangen. Python scripting for computational science, volume 3.
Springer, 2006.

[6] A. Martelli, A. Ravenscroft, and D. Ascher. Python Cookbook. O’Reilly,
2005.

IEEE

Shttp://pygments.org/docs/lexers/

