
A Search-based Recommender System
for Source Code Templates

Tim Molderez
Software Languages Lab

Vrije Universiteit Brussel, Belgium
tmoldere@vub.ac.be

Coen De Roover
Software Languages Lab

Vrije Universiteit Brussel, Belgium
cderoove@vub.ac.be

Abstract—Source code templates are a convenient means to
search and transform source code. However, it may not always
be evident to write a template that produces only those matches
that are desired. To assist users of the EKEKO/X program
transformation tool in specifying templates, they can mark which
matches are either desired or undesired. The user’s current
template is then given to our genetic search algorithm, which
is able to suggest an improved template by applying a sequence
of mutation operations.

I. INTRODUCTION

Software continually evolves to fix bugs and to add new
features. It often occurs that fixing bugs and adding features
requires multiple similar changes to the source code. To avoid
accidental errors in performing these changes, source code
templates can be used to concisely specify all code snippets
that need to be transformed.

Our existing EKEKO/X program transformation tool [1]
is an Eclipse plug-in that enables its users to search and
transform Java source code by means of such code templates.1

Matching a template results in a number of corresponding
source code snippets of interest, e.g. instances of a bug,
snippets that should be refactored or transformed, instances
of a design pattern, etc. The use of code templates lowers
the learning curve of using program transformation tools, as
searches and transformations are specified in terms of concrete
snippets of Java code, augmented with the use of wildcards,
metavariables and different kinds of annotations to alter the
template’s semantics. Despite this lowered barrier to entry, it is
not always easy to produce a template that matches only with
the desired snippets. A template may either be too general and
it produces false positives, or too specific and it produces false
negatives.

To assist users in specifying EKEKO/X templates, we pro-
vide a recommendation system that suggests a series of modi-
fications to templates such that they will only match with a set
of desired source code snippets. Note that we currently focus
on templates that perform source code searches; supporting
transformations is considered future work.

The approach to making template modification recommen-
dations is search-based [3]; it uses a single-objective genetic
search algorithm. To give a brief overview of this approach: If

1The EKEKO/X program transformation tool is available for download at
https://github.com/cderoove/damp.ekeko.snippets

the user’s current template does not quite produce the desired
set of matches, he or she can indicate which matches are still
missing, as well as which of the current matches are undesired.
Given this set of target matches, the current template is used
to initiate the genetic search algorithm, which keeps trying out
different sequences of modifications with the aim of increasing
the number of desired matches. To test this algorithm, we have
applied to the edge case where the user has only created a new
template from one concrete code snippet, without making any
modifications to it, and to use this template as input for the
algorithm.

II. THE EKEKO/X PROGRAM TRANSFORMATION TOOL

The EKEKO/X program transformation tool is built on top
of the EKEKO [2] meta-programming library, which provides
a logic API to perform code searches and transformations at
the level of Java ASTs. As mentioned before, in EKEKO/X
such searches and transformations are specified in terms of
source code using templates. A template essentially is a code
snippet, in which parts (corresponding to AST nodes) can be
replaced by wildcards and metavariables, and different kinds
of annotations called directives can be added.

Fig. 1. An example template group

An example of a group with two templates is given in Fig. 1.
The first template matches with all calls to methods called
acceptVisitor, and the second then looks for the correspond-
ing method declarations. The use of an ellipsis indicates a
wildcard. The acceptVisitor method call is annotated with
an equals directive, which binds the call to the ?invocation

metavariable. To link the method call to its declaration, the
invoked-by directive has ?invocation as its operand. Next to
the invokedby and equals directives, EKEKO/X offers a whole
range of different directives that can either add additional
constraints to a template, or relax them.

A screenshot of EKEKO/X’s user interface is given in Fig. 2,
in which the template editor for the example of Fig. 1 is shown



Fig. 2. EKEKO/X user interface

in the top-left. In the bottom view, the list of match results is
given, listing all acceptVisitor declaration-call pairs found in
all EKEKO/X-enabed Java projects. Finally, and perhaps most
importantly, the top-right view provides access to all operators
that can be used to modify a template. There are operators
to add, remove and replace parts (AST nodes) of a template.
There are operators to add and remove directives. Finally, there
also are "composite" operators that can affect multiple parts of
a template, e.g. to abstract away all occurences of a particular
variable with a metavariable.

Fig. 3. Overview of the genetic algorithm

III. RECOMMENDING SOURCE CODE TEMPLATES

The example template group that was given in Fig. 1
still is reasonably straightforward to specify. However, this
example could be extended to something more complex than
looking for acceptVisitor methods. For example, it could be
extended to detect all instances of the visitor design pattern.
In such a case, the user may want some assistance from

our genetic search algorithm in designing a suitable group of
templates.

An informal overview of this algorithm is given in Fig. 3.
As input, the algorithm is given one template group, as well
as a set of all desired matches. An initial population of
template groups is created by making a number of copies
of the input template group. (In Fig. 3, the algorithm is
illustrated with a population size of 6, where each template
group is labeled with its own number.) This initial population
is then used as the current population in the genetic algorithm.
Next, tournament selection [4] is performed by making 6
(in this case) random selections in the current population.
Note that the same template group may be selected multiple
times. Depending on the number of "tournament rounds",
tournament selection is also more biased towards picking the
"best" template group of the current population.

Measuring "how good" a template group is, is determined by
its fitness value. The fitness of a template group consists of two
components: The main component is an F-score determined by
how many desired and undesired matches a template group
produces. As this is a fairly coarse-grained measure of fitness,
a second fitness component is needed. This second component
is the "partial matching" component. This component is based
on the idea that a template group that almost produces an
additional desired match is better than one that does not. As
such, during the template matching process, we keep track of
what percentage of AST nodes, belonging to a desired match,
were actually matched by the template.

Once the tournament selection phase has finished, the pop-
ulation is split into two partitions: one partition of template
groups is carried over directly to the new population; the
template groups in the other partition need to go through a
mutation phase. To mutate a template group, we randomly



pick a node in one of the group’s templates, and apply a
random mutation operator onto it. Note that the set of available
mutation operators actually is the very same set of operators
available to the user when manually editing a template. In
case an operator requires a number of operands, its values are
chosen at random as well. The operand type of most operators
typically is a metavariable. Picking a random operand value
will then either choose among the existing metavariables
occuring in a template group, or generate a new metavariable.

Once the template groups have been mutated, the two
partitions are combined into a new population. In case one
of the template groups inside the new population is a solution
that produces exactly the desired matches, the algorithm can
stop here. If not, the algorithm starts over again, where the
population we just produced becomes the current population.
This loop will continue producing new generations of popula-
tions until a solution is found. The user may of course also stop
the algorithm at any time, and use the results in the current
population to resume editing templates by hand.

IV. CONCLUSION

We have presented a brief overview of our search-based
approach to recommend improvements to EKEKO/X source
code templates, such that they produce a desired set of
matches. To test the effectiveness of the algorithm itself, we
are currently using it to produce template groups that describe
all instances of a design pattern within a project, given one
instance as input. We are also in the process of testing to what
extent this approach scales to more complex templates, as well
as larger Java projects.

REFERENCES

[1] C. De Roover and K. Inoue. The Ekeko/X Program Transformation Tool.
In 2014 IEEE 14th International Working Conference on Source Code
Analysis and Manipulation (SCAM), pages 53–58, September 2014.

[2] C. De Roover and R. Stevens. Building development tools interactively
using the EKEKO meta-programming library. In 2014 Software Evolution
Week - IEEE Conference on Software Maintenance, Reengineering and
Reverse Engineering (CSMR-WCRE), pages 429–433, February 2014.

[3] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-
based Software Engineering: Trends, Techniques and Applications. ACM
Comput. Surv., 45(1):11:1–11:61, December 2012.

[4] Brad L Miller and David E Goldberg. Genetic algorithms, tournament
selection, and the effects of noise. Complex Systems, 9(3):193–212, 1995.


