
Proposing a Visual Language for Spreadsheets
Bas Jansen

Delft University of Technology
Email: b.jansen@tudelft.nl

I. INTRODUCTION

Spreadsheets are extensively used by companies. Informa-
tion embedded in these spreadsheets often forms the basis
for business decisions. However, spreadsheets are known to
be error-prone and therefore, the risk exists that important
business decisions could be made on inaccurate information.

The success of spreadsheets can be partially explained by
their easy-to-use interface. It is this same interface, never-
theless, that is responsible for part of the problems that are
associated with spreadsheets. In spreadsheet software, it is
easy to enter data and formulas. When entered, only the
result of the formula but not the formula itself is presented to
the user. The underlying design of the spreadsheet is hidden
‘behind’ itself and this makes it difficult to understand it.

Another factor that affects the understandability of a spread-
sheet is the way the information is structured. In industry
best practices for the optimal structure of a spreadsheet have
been developed.1 A common design guideline is to split
input, model and output. This design principle works well
if input and calculations are relatively stable. For example, a
spreadsheet that calculates the value of a company based on the
input coming from their financial statements. The principle is,
however, less suitable if a user intends to analyze the effect of
different input values. For example, if a user wants to analyze
the effects of different interest rates or cash flows on the return
of investment in a business calculation for a new product line
in a factory, it is more convenient to have input and output
values close together. Thus, while guidelines exist, the optimal
way to structure a spreadsheet depends on the kind of problem
it has to solve.

In practice, users do not make a conscious choice how
to structure their spreadsheets. Even if they do have the
knowledge, it is often difficult to determine the right structure
in advance. Invited by the interface, users enter their data and
formulas without giving the structure a lot of thought. When
the complexity of spreadsheets increases over time they end up
with a disorganized model. At that point it is difficult to change
the underlying structure and the risk of errors is imminent.

This brings us to the three problems we focus on:

1) The design of a spreadsheet is hidden behind the spread-
sheet, increasing the difficulty for a user to get an
overview of the design

2) Users are not aware of the best way to structure a
spreadsheet

1See for example http://www.fast-standard.org

3) It is difficult to determine the right structure upfront.
Therefore, users start modeling without making con-
scious decisions about the structure of the spreadsheet.
The model works, but is often poorly structured and
error-prone.

In previous work [1] we introduced these problems in more
detail. In this extended abstract we share some initial results
and present a research plan for future work.

II. BACKGROUND

There have been previous attempts to address this. In 2001
Burnett et al. [2] developed Forms/3, a general purpose visual
programming language that is consistent with the spreadsheet
paradigm. Two principles in particular guided the development
process: directness and immediate visual feedback. Instead of
developing a general purpose programming language, we aim
to develop a visual language that is designed to generate well
formed spreadsheets, while honoring the concepts of directness
and immediate visual feedback.

Engels and Erwig [3] have described an automatic transfor-
mation process to generate a spreadsheet from a ClassSheet
(an object-oriented model for spreadsheet applications). Cunha
et al. [4] have further improved the concept of ClassSheets.
They have embedded the ClassSheet spreadsheet models in
spreadsheets themselves. The authors have also presented a
technique to perform co-evolution of the ClassSheet model
and the related spreadsheet. Modifications to the model are
automatically propagated to the spreadsheet.

The main difference between the ClassSheet approach and
ours is that our visual language does not use the tabular two-
dimensional layout of spreadsheet design. If the model is
represented in a spreadsheet-like layout, the design remains
hidden. Furthermore, we believe that spreadsheet users - who
are not professional programmers - should not be required to
have knowledge of object-oriented principles.

By using ClassSheets the users have to adhere to strict
layout rules when building their spreadsheets. Yet we still
believe that users should be able to freely influence the
spreadsheet’s layout. Spreadsheets are often used for financial
reporting [5] and layout is an important factor for effective
reporting.

III. INTRODUCING A VISUAL LANGUAGE

To address the problems described in Section I, we envision
an alternative user interface for the development of a spread-
sheet. The basis for this user interface is a visual language (see
Figure 1). By introducing an alternative interface we are facing



the challenge of user adoption. One of the success factors of
spreadsheets is their flexibility and ease of use. If users have
to learn a specific programming language before they can start
developing a spreadsheet, we expect that the adoption of this
alternative user interface will be very low. If we can, however,
develop a visual language that is easy to understand, works
intuitively and at the same time makes use of a drag and drop
interface, we expect a higher adoption. It is not uncommon
for business users to work with programs like Microsoft Visio
to document business processes or using a graphical interface
to build reports in a business intelligence system. We aim to
give the visual language an interface that is similar.

Fig. 1. Model and associated spreadsheet ([1])

It will be possible for the user to develop a spreadsheet with
the visual language in one part of the screen and seeing the
associated spreadsheet in another part. The link between the
model and the associated spreadsheet is bidirectional. Changes
made in the model are propagated to the associated spreadsheet
and vice versa.

IV. INITIAL RESULTS

To get a better understanding of how users work with
spreadsheets and what kind of functions they use, we have
analyzed the two largest available spreadsheet corpora: EUSES
and Enron [6]. We found that the majority of spreadsheets are
small in terms of worksheets and formulas and do not have
a high degree of coupling. Also the majority of formulas in
these spreadsheets is simple. This makes it less probable that
the complexity of spreadsheets is causing the high degree of
errors. It supports the hypothesis that it is the spreadsheet
interface that is at least partly responsible for the error-
proneness of spreadsheets.

We also discovered that spreadsheet users only use a small
subset of the available built-in functions. In both corpora,
about 70% of the spreadsheets can be created with only 15
of the (more than 300) built-in functions. This finding further
supports the idea of the feasibility of a visual language. It
seems to be possible to create a visual language that consists

of only a limited number of constructs, but can be used to
model the majority of spreadsheets.

V. RESEARCH PLAN

In our analysis of the EUSES and Enron corpora, we
investigated the use of functions within a single cell. Yet a
calculation in a spreadsheet does not always consist of a single
cell. For example, Cell C8 in Figure 2 is the end result of the
calculation. However, the formula in this cell does not contain
all information for the whole calculation. For that, the formula
in B8 is also needed. B8 and C8 form the calculation chain
for the end result. Only when both formulas are analyzed it is
possible to to get a complete list of all functions and operators
that are used to calculate then end result. In future research
we will use data mining techniques to search for patterns of
combinations of functions that are used in calculation chains.
These patterns will help us to design the constructs for the
visual language. Besides the way functions are combined, we
will also search for common patterns in the way the data
is structured and analyze if these patterns depend on the
functional domain or the type of problem that is solved in
the spreadsheet.

Fig. 2. The complete formula of the calculation chain of cell C8 is: (C5 *
(D5 / B5)ˆ1.06) / (D5 / 1,000)

When we have determined the ingredients for the visual
language and the best methods to structure the data in a
spreadsheet, we will develop a prototype of the visual lan-
guage. First we will focus on generating a spreadsheet model
from the specification made with the visual language. In a
next phase we will research if it is possible to make the
prototype bidirectional: changes made in the visual language
are propagated in the spreadsheet and changes made in the
spreadsheet will find their way back in the accompanying
visual language code.

When the prototype is developed it will be validated by
conducting case studies. Based on our experience in industry,
we will select real-life business problems and ask users to
solve these problems by developing a spreadsheet using the
visual language. Afterwards we will interview them and ask
them about their experiences. Did the visual language give
them a better overview of the spreadsheet? Did it make the
development of the spreadsheet easier? In addition, we will
set up controlled experiments to determine if spreadsheets
developed with the visual language contain fewer errors than
spreadsheets that were created in the standard way.



REFERENCES

[1] B. Jansen and F. Hermans, “Using a visual language to create better
spreadsheets,” Software Engineering Methods in Spreadsheets, 2014.

[2] M. M. Burnett, J. W. Atwood, R. W. Djang, J. Reichwein, H. J. Gottfried,
and S. Yang, “Forms/3: A first-order visual language to explore the bound-
aries of the spreadsheet paradigm,” Journal of functional programming,
vol. 11, no. 2, pp. 155–206, 2001.

[3] G. Engels and M. Erwig, “Classsheets: automatic generation of spread-
sheet applications from object-oriented specifications,” in Proceedings
of the 20th IEEE/ACM international Conference on Automated software
engineering. ACM, 2005, pp. 124–133.

[4] J. Cunha, J. Mendes, J. Saraiva, and J. P. Fernandes, “Embedding and evo-
lution of spreadsheet models in spreadsheet systems,” in Visual Languages
and Human-Centric Computing (VL/HCC), 2011 IEEE Symposium on.
IEEE, 2011, pp. 179–186.

[5] R. R. Panko and N. Ordway, “Sarbanes-oxley: What about all the
spreadsheets?” arXiv preprint arXiv:0804.0797, 2008.

[6] B. Jansen, “Enron versus euses: A comparison of two spreadsheet
corpora,” in Proceedings of the 2nd Workshop on Software Engineering
Methods in Spreadsheets, Florence, Italy, 2015.


