
Breaking the Walls: A Unified Vision on
Context-Oriented Software Engineering

Kim Mens
UCL, Belgium

Nicolás Cardozo
Trinity College Dublin, Ireland

Bruno Dumas, Anthony Cleve
UNamur, Belgium

Abstract—In this presentation, we present the need for a
unified vision on context-oriented software engineering, that
reconciles different research areas in computer science, in-
cluding programming languages, human-computer interaction,
and database technology. We identify three dimensions wherein
proposed solutions for achieving context orientation could benefit
from cross-fertilisation and integration. We present a conceptual
and implementation framework that allows for a characterisa-
tion of context-oriented systems regardless of these dimensions,
serving as a vehicle to discuss some of the challenges involved in
reconciling the different dimensions and how to tackle them.

Index Terms—context-oriented software engineering, dynamic
software evolution, programming languages, human-computer
interaction, databases.

I. INTRODUCTION

With the advent of new software and hardware technologies,
such as mobile and ubiquitous computing, the internet of
things, software-as-a-service, cloud computing, big data, and
multimodal interfaces, software has become a continuously
evolving artefact. The last decade witnessed a clear trend
from traditional software systems to software that is ever
more aware of, and adaptive to, changing contextual informa-
tion. This trend is apparent across multiple computer science
fields, such as software engineering, programming languages,
human-computer interaction and databases, as well as across
different subfields of those fields, and across other dimen-
sions such as the different stages of the development process
(e.g., analysis, design, or implementation). Existing context-
oriented approaches explicitly posit the notions of context
and context-specific software variations, as first class entities
that can be manipulated and reasoned about. However, the
understanding, representation and handling of these concepts
differ with the requirements of each domain. Integrating these
different individual approaches calls for a holistic vision that
unifies the different solutions that have been proposed in the
computer science landscape. Some of these fields already start
to converge on their view of context orientation. We predict
that such cross-fertilisation among fields will increase further
in the coming years, driving the computer science community
to a new vision on context-oriented software engineering that
carries the notion of context at its heart.

II. DIMENSIONS

Techniques for building context-oriented software are cur-
rently being explored independently in a variety of computer
science fields. Working towards our goal of a unified vision on

context-oriented software engineering, we propose an initial
classification of the research space in different dimensions
that could benefit from cross-fertilisation, and classify some
existing research domains along these dimensions, before
discussing cross-fertilisation opportunities.
a) Dimension 1. Technological perspective. From a techno-

logical perspective, the problem of building context-oriented
software systems that can adapt dynamically to context
changes has been studied from at least three different angles.
Programming language research has explored novel progra-
mming paradigms to dynamically adapt the behaviour of run-
ning systems according to detected context changes. Database
research has studied context-aware database technology and
more flexible query languages. Human-computer interfaces
have studied the problem from the point of view of user
interfaces, including multimodal interfaces. However, building
a software system, whether it be mobile, web or of another
kind, requires taking into account all of these viewpoints and
their interactions together, not in isolation, especially in the
light of dynamically changing contexts.
b) Dimension 2. Software lifecycle phases. This dimension is

concerned with the different phases of the software develop-
ment lifecycle in which contexts are, or should be, taken into
account, ranging all the way from requirements engineering to
runtime support. These phases should look into the problem
of context orientation in an integrated way, e.g., by agreeing
on a unified model for representing and handling contexts
and context-specific variations. For example, recent proposals
on context variability modeling (at the requirements level)
bear close resemblance to how context-oriented programming
languages represent and manipulate contexts, dependencies
between contexts and context-specific software variations.
c) Dimension 3. Human perspective. This perspective, often

neglected by software engineers, has been studied actively by
sociology researchers, where the notion of context can be seen
as a user-centered concept and as an individualising paradigm.
This notion raises sociological and ethical questions. In par-
ticular, the question of user acceptance is crucial to software
engineering, having an important impact on the design and
implementation of context-oriented software systems.

III. CONCEPTUAL FRAMEWORK

As a second step towards our goal of achieving a unified
vision of context-oriented software engineering, we conceived
a conceptual framework, shown in Fig. II, that describes



Representation

Handling

Discovery

 Interaction

Context-Variation
Mapping

Variation Handling Context Handling

ReasoningInterpretation

Actuators

physical
environment

hardware and software
platform

Context Storage

External environment

Internal environment

Sensors

User input

sensed data

User output

Actions

Input

Variation Storage

Execution

user

Fig. 1. Our context-oriented software engineering conceptual framework.

the different building blocks composing a context-oriented
software system. The framework is generic enough to cover
most existing context-oriented approaches targeting different
software life cycle phases and artefacts, yet specific enough
to discuss in a more focused way how to unify these different
approaches, while remaining sufficiently concrete to serve as
a possible implementation framework for building context-
oriented software systems.

The framework has a layered structure clearly separating
the external environment interacting with the system, from
how the system interacts with that external world and dis-
covers relevant contexts of use, to how the system handles
contexts and context-specific variations, down to how contexts
and variations are represented internally, and finally how the
actual selection and execution of context-specific variations at
runtime are implemented.

IV. CROSS-FERTILISATION

The layered and modular architecture of the framework
facilitates the comparison of, and reasoning about how to
unify, different approaches for context orientation. For exam-
ple, how different approaches compare with regard to how
software can vary its behaviour dynamically in reaction to
changing contexts, is a question pertaining primarily to the
variation handling component (together with the context-
variation mapping, specifying variations-contexts associations.

The technological dimension regards different implemen-
tation technologies and how their interaction should be ad-
dressed in the representation layer, more specifically in the
variation storage component. This component defines how
context-specific variations are represented and implemented.
For example, does each context-specific variation need to
address the user interface, database and behaviour aspects
jointly, or does each variant focus on a single technological
domain only?

Although the framework is software methodology agnostic,
the lifecycle phases dimension can be addressed by looking
at how to unify different lifecycle activities from the point of

view of the framework components. For example, questions
regarding how to model context and context dependencies in
a unified way pertain to the context storage component. Other
activities, like verification can be decomposed in subtasks
for specific components. While the context handling com-
ponent can verify certain context dependencies dynamically,
the contact storage component can verify some dependencies
statically, and the variation handling component can verify in-
teraction validity amid variations and their associated contexts.

The human perspective dimension is apparent in the frame-
work with the explicit notion of users, and user input/output
in the interaction layer. But this dimension affects other
components too. For example, one way of dealing with user
acceptance is by providing gentle transitions, that help users
be aware of new active variations upon context changes. What
components would be in charge of representing and handling
such transitions? The framework provides a structured frame
of reference, as well as an implementation architecture, to
reason about such key issues.

V. CONCLUSION

Significant advances have been made in different fields of
software engineering, to the domain of context orientation,
which studies the ability of software systems to vary their
behaviour dynamically to changing contexts of use. These
fields have mostly studied the problem in isolation, thus miss-
ing important pieces of the puzzle to build context-oriented
software systems that can fully adapt to changing contexts.
This observation calls for a unified approach that integrates all
of these contributions, consolidating these research fields, and
raising users’ acceptance of autonomous and adaptive software
systems as part of their every day life. Towards achieving this
goal, we proposed a conceptual and implementation frame-
work as a research vehicle to compare and integrate different
existing approaches and to actually implement a prototype of
a unified context-oriented development environment.


	Introduction
	Dimensions
	Conceptual framework
	Cross-fertilisation
	Conclusion

