QualiXML - an XML-based Static Code
Analysis Framework

Dimitri Durieux, Christophe Ponsard, and Jean-Christophe Deprez
CETIC Research Centre
Charleroi, Belgium
email: {ddu,cp,jcd} @cetic.be

Abstract—QualiXML is (yet another) static code analysis
framework, initially developed to answer a industrial request
of quick and flexible code quality checks. It relies on XML
to represent the Abstract Syntax Tree and enables the use of
standard XML tools to compute various quality metrics. Initially
limited to C++ and standards metrics, the tool evolved towards a
flexible framework with multi-language support and the ability
to handle technology specific processing (like mobile framework
specificities). The framework is designed to ease the integration
of new languages following the object-oriented paradigm through
the addition of ANTRL parsing to the XML proposed format.
The author’s intend is to release QualiXML under an Open
Source Software license.

I. MOTIVATION

There exist many good code analysis frameworks both in
the Open Source [1] and commercial world [2]. Some of these
frameworks cover many mainstream languages, provide rich
analysis capabilities and support a variety of reports to present
analysis results. However a number of practical use cases
require the use of standalone code analyser for instance, to
perform pre-commit checks or specific type of analysis. Many
of the existing solutions proved inadequate to address these
specific situations because of their closed nature or monolithic
structure. Other frameworks combining various tools also lack
homogeneity or would require significant adaptation effort
to fit the need reusing the same analyser across different
languages.

A possible option is the use of a meta-engineering frame-
work like RASCAL, which aims at rapidly constructing analy-
sis, transformation, generation or visualization of source code
written in different programming languages [3]. However,
the practical request from a customer is to rely on XML
technology to represent the abstract syntax tree (AST) so that
XML technology (XSLT, XPATH, DOM...) could then be used
to carry out analyses. Furthermore, the customer request is to
replace the SrcML tool [4] which proved not reliable enough.

Although the first QualiXML implementation was limited
to C++, reliying on ANTRL technology for the parsing helped
to extend fairly easily to other languages like Java [5]. Fur-
thermore QualiXML also integrates with SonarQube for the
presentation of results.

II. FRAMEWORK ARCHITECTURE

The overall dataflow architecture of QualiXML is depicted
in Figure 1 and is composed of the following steps.

S — . — -
raw Posthandler|

(xml)

+— Violations «— [Rule Engine
plugin standalone
Scope Metric
Sonar System Rule Measure

Fig. 1. Framework Architecture

o Parsing. QualiXML gets a representation of the source
code as a XML tree after a parsing step. The parsing
can accommodate different parsers but we preferably rely
on ANTRL technology for which many grammars are
already available. Visitors are applied to get a XML out-
put complying to a single grammar for different object-
oriented languages and to enable the application of the
same rules across different languages hence ease the
alignment of quality models on different lanaguages.

o Post-handlers. A post-handler mechanism is available
to decorate the raw XML with attributes to capture
typing information, data flow information among others.
Attribute values will then ease the computation of rules.
A number of standard handlers are available for type
inference or filtering, e.g. for class level analysis.

o Context definition. A context is a more recent Qual-
iXML feature that provides an abstract view on families
of languages or technology. Context information is used
to facilitate the alignment of quality models, for example
standard OO languages metrics can be defined on an
OO context. Specific profiles can also be defined, e.g for
relational databases.

o Rule Engine. Predefined rules are applied on the XML
AST to generate a violation report. A general config-
uration ensures proper post-handing. Rules can have
dependencies on each other (low level metrics used by
higher level rules). QualiXML uses smart propagation
mechanisms across its network of rules to optimise the



evaluation. Internally, a violation report is represented in
an XML format describing the violations as a set of tuples
(one per violation) composed by the violated rule, the
violating artefact, the line where the violation is located
and a human readable message giving information about
the violation.

« Result Exploitation. Violation reports are used either in
the scope of a specific run-time system (e.g. pre-commit
checks) or inside a code quality dashboard. SVN hooks
and an integration plugin for SonarQube are available.

QualiXML currently supports C++, Java and partly PHP. It is
implemented in Java and relies on standard XML libraries like
XSL1.0 transformation, dom4J, XPATH 1.0.

III. SOME USAGE SCENARIOS

A. Pre-commit Checks

QualiXML can be used as a pre-commit hook to validate a
portion or the whole source code. This validation ensures that
the code complies to a set of predefined rules. The commit is
rejected if at least one violation is detected. The installation
as a pre-commit hook consists of a simple script calling
QualiXML standalone deployment.

The set of predefined rules are constructed manually using
profile templates. Profiles can be managed internally or exter-
nally to QualiXML. The internal QualiXML profile manager
simply consists of a specific XML file gathering the profiles.
A profile is a set of language-dependant rules that can be
activated depending on the analysis context. External profile
management is done through the use of an external tool
that defines a quality model. We currently only support the
SonarQube profile’s management. This allows us to manage all
the QualiXML profiles in a central SonarQube web platform
and to generate dynamically the XML configuration at analysis
time.

B. Cross-Technology Analysis

Most projects consist of a mix of code in different lan-
guages potentially based on specific technologies like rela-
tional databases. A typical scenario is to check, the consistency
of a database model and the entities declared in a Java code.
Three QualiXML features ease this kind of analysis.

o dynamic profile composition: during the analysis, Qual-
iXML dynamically chooses the profile for each technol-
ogy detected in the code and creates a "composite profile”
based on the detected technologies. Rules are then applied
consistently on each supported technology.

o unique and centralized representation: QualiXML
merges the different parsing results into a single XML
AST file.

o use of contexts: The XML AST structure provides an
abstraction level thus source code mixing different OO
technologies can be analysed using the same set of
rules. This will also reduce the number of technology
interactions to consider after parsing.

IV. PrRO AND CONS

On the positive side, the solution has a simple design and
the use of XML faciliates adoption because tuning rules is
a matter of writing XPath expressions. XPath is well known
in Industry. Larger evolution effort for instance, to integrate
a new language proved quite reasonable given the level of
reuse that can be achieved inside the platform. Relying on an
homogeneous set of rules across technologies is an advantage
to enable the comparison of quality practices across languages.

A main drawback is the performance both in time and
memory. We performed comparison benchmarks between
QualiXML and PMD on large projects (e.g. Apache Xalan,
Tomcat codebases). Although the tool can scale, there is a time
overhead factor between 4 and 7 (lower for larger projects)
and a memory overhead where QualXML can use up to twice
the memory space used by PMD. In order to address those
issues, we first introduced a filtering mechanisms that only
produce the XML AST at the required level of granularity. A
second enhancement is a mechanism for processing the tree
representation in-memory. Note that not all usage scenarios
requires to process a large number of files. For example, in pre-
commit checking, usually small number of files are committed
at a time.

QualiXML has shown useful in specific industry cases
thanks to its simple structure and ease of tuning. It can also
support R&D activities, especially in the fields of software
quality and software evolution. That is why we decided to
engage in the process of releasing it under an Open Source
licence in early 2016 through some popular forge.

V. ROADMAP

Our short term roadmap is to keep enriching the rule
library and support other languages. We presently work on
supporting the new SWIFT language developed by Apple,
with a focus on security rules. We are also working on
enhancing the performance overhead and preparing the code
for an Open Source release through a thorough cleansening
and documentation. More contexts are also being defined.

ACKNOWLEDGMENT

This work was funded by the ASCETIC project (nr 610874).
Many thanks to Felipe Fabio (U. Valparaison, Chili) and Dang-
Minh Nguyen (TU. Troyes, France) for contributing.

REFERENCES

[11 G. A. Campbell and P. P. Papapetrou, SonarQube in Action, 1st ed.
Greenwich, CT, USA: Manning Publications Co., 2013.

[2] CAST Software, “Code Analysis tools.”

[3] P Klint, T. v. d. Storm, and J. Vinju, “Rascal: A domain specific language
for source code analysis and manipulation,” in Proc. of the Ninth IEEE
Int. Working Conf. on Source Code Analysis and Manipulation, 2009.

[4] M. L. Collard, M. J. Decker, and J. I. Maletic, “Lightweight transforma-
tion and fact extraction with the sreml toolkit,” in //th IEEE Working
Conference on Source Code Analysis and Manipulation, 2011.

[S] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Pragmatic Bookshelf,
2013.



