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Abstract—In empirical studies on software evolution, many
research questions relate to the time-dependent nature of the
systems being analysed. However, the specificities of such a nature
are too often neglected. The statistical technique of survival
analysis can provide a solution to this problem. Survival analysis
aims to analyse the distribution of the occurrences of a particular
event over time, and takes into account absence of data points.
We illustrate the opportunities offered by survival analysis by
presenting some empirical studies on software evolution in which
the technique has been used.

I. INTRODUCTION

The analysis of evolving software systems often aims to
predict how the system will evolve in the future, in order to
have better control over this evolution process. In particular,
the prediction of future software failures or the occurrence of
specific events may be useful for understanding the impact of
external factors on the considered systems. It also may help
to make informed decisions on how to reduce down time and
risk of failure, to increase the time before failure, etc.

Several metrics have been proposed to measure the relia-
bility of a system, i.e., its probability that a particular event
(such as a failure) does not occur over time. The time to
first failure (TFF) and mean time to first failure (MTFF)
are simple yet convenient measures for assessing a system’s
reliability, because they reduce a potentially complex system
behaviour to a single scalar value. They are mainly used in
hardware engineering [15]], but have also found their way in
software engineering [8], [20], healthcare [12], [19], [13] and
criminology [9]], [1], among others.

Unfortunately, these and similar approaches suffer from sev-
eral weaknesses that limit their value when studying complex
systems:

o They strongly aggregate the observations, and hide the
temporal distribution.
o They don’t take into account censored data.

Two types of censoring might occur:

o With right censoring, if a subject leaves the study before
the event of interest could occur, the occurrence of the
event after that point remains unknown for that particular
subject. For example, in studies for a particular medical
treatment, patients may drop-out before the end of the
study. Right censoring also deals with the fact that the
observation period may end before the event of interest
could occur on some of the studied subjects.

o With left censoring, the event of interest may already have
occurred before the subject was enrolled in the study, in
which case the occurrence time cannot be determined.

While generally neglected in empirical studies of evolving
software systems, right censoring is a frequently recurring
property. For example, when studying software projects hosted
in some open source forge, some projects may leave the forge
before the end of the study.

In the rest of this paper, we review the notion of survival
analysis that aims to circumvent these limitations. We also
present some empirical studies on software engineering based
on a survival analysis.

II. SURVIVAL ANALYSIS
A. Survival Function

The survival function of a population is the probability that
one does not observe the occurrence of a given event for a
member of this population before a given time. Depending
on the context of use, the event may be referred to by a
more specific term such as failure or death. To conform with
common usage, and despite the fact that the occurrence of any
type of event can be considered in a survival study, we will
use the term death and its associated terminology here to refer
to the considered event.

The survival function is monotonously decreasing, with
a value between 0 and 1. It offers an easily interpretable
visualisation of the reliability of a studied population, and
can be used to determine the median survival time of the
population, or, conversely, the probability that a particular
subject survives longer than a given time.

If there are no right-censored observations, its value at
time 0 is 1 and the entire survival function is equal to the
complement of the cumulative distribution function:
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Where n; is the number of subjects still alive at time ¢, and

N is the population size.

B. Kaplan-Meier Estimator

A more complex model is required for taking into account
and quantifying the uncertainty due to censored observations.
The Kaplan-Meier estimator [[14] is often used for this purpose



in various research domains, including hardware engineer-
ing [17] and healthcare [4]. Because this estimator is non-
parametric, it can be used even if the shape of the survival
distribution over time is unknown.

This estimator determines the maximum likelihood of a
survival function, i.e., the maximum probability that a subject
survives longer than a given time ¢. More specifically, for a
given population of N subjects, if £; < ... < ¢ are the times
at which each of the subjects have been last observed (either
because they died, or because their histories are censored after
these times), the estimator S (t) of the survival function of the
population is based on the number of subjects that risk to be
seen dead after ¢:
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Where n; is the number of living subjects that are not
censored just prior ¢; and d; is the number of subjects that
died at time t;.

The survival curve is sometimes plotted with an estimated
confidence interval arround the maximum likehood estimate.
Greenwood’s formula [[11] is a frequently used approach for
estimating the standard error of the Kaplan-Meier estimator.

Figure [I]is a typical representation of the survival function
of an hypothetical study in which each subject is a HIV
positive patienﬂ The function is represented by a piecewise-
constant curve that only decreases at the times corresponding
to the (uncensored) death of one or many subject(s). Ticks
are added to the curve to mark censored observations, while a
confidence interval of 0.95% surrounds the survival function.
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Fig. 1. Survival function of HIV positive patients.

C. Comparing Multiple Survival Functions

The comparison of multiple survival functions is a com-
mon step in survival analysis. For instance, the efficacy of
a treatment can be determined by comparing the survival
function of the group of patients who benefit from the tested
drug to the survival function of a control group that takes

Data source: http://www.ats.ucla.edu/stat/r/examples/asa/asa_ch2_r.htm

a placebo [7]]. The population can also be split according to
some intrinsic property, such as the gender [24], in order to
highlight significantly different survival behaviours between
subpopulations.

Due to the presence of censored observations, the
Wilcoxon—-Mann—Whitney test cannot be used to determine
if two survival functions are significantly different. The log-
rank test, also known as the Mantel-Cox test [16], [3] is
generally used instead. However, its ability to determine the
accuracy of predictive survival models is controversial. This
has led to alternatives such as the F'* test proposed by Berthy
et al. [2]. Whichever test is chosen for comparing survival
functions, the interpretation of a significant difference remains
the responsibility of the analyst: in some cases, a significantly
different survival function can not be considered to be ‘better’
or ‘worse’ than another one.

Figure [2] refines the results obtained in Figure [T] by distin-
guishing IV drug users from the other HIV positive patients.
The Mantel-Cox test reveals a significant (p < 0.01) difference
between the two survival functions.
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Fig. 2. Survival functions distinguishing IV drug users from other HIV
positive patients.

As usual, when multiple statistics are considered simulta-
neously, the multiple comparison problem must be taken into
account. The risk to incorrectly reject one of the tested null hy-
potheses, and therefore the risk to incorrectly consider that two
survival functions are significantly different, increases with
the number of survival functions being pairwise compared.
The Bonferroni and the Siddk corrections are examples of
approaches for countering this problem [5]], [22]], at the cost of
increasing the probability of incorrectly considering that the
difference between two survival functions is insignificant.

IIT. USING SURVIVAL FUNCTIONS FOR EMPIRICALLY
STUDYING SOFTWARE EVOLUTION

In empirical studies on software evolution, many research
questions are related to the time-dependent nature of the
systems being analysed. Many kinds of entities (for instance:
files, classes, methods, but also developers, bug report tickets,
and mailing list threads) can all be seen as potential subjects
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of a survival analysis for which the entire history cannot
be known at the time the study is carried out. Survival
functions should therefore be used to accurately represent
time-dependent properties and to correctly take into account
the censored observations.

In order to illustrate the opportunities offered by survival
analysis, this section briefly presents empirical studies on soft-
ware engineering in which such a survival analysis has been
carried out to answer some time related research questions.

Samoladas et al. [21] built a predictive model to determine
whether the likelihood of projects being discontinued in the
future. The model was based on the survival function of project
durations and other project properties, including metrics de-
scribing the involvement of stakeholders in the projects. The
results of their empirical study support the relevance of this
approach for predicting the evolution of software systems.

Scanniello [18] used the Kaplan-Meier estimator for
analysing dead code in five open source Java software systems.
In this study, the considered event was the appearance of
dead code blocks in methods, while removed methods were
considered as right censoring. For two of the studied projects,
the survival functions remain very high during the entire
observation period. For the other projects, a quick decrease of
the survival functions is observed. While no general conclusion
can be drawn from this small scale study, the authors are
convinced of the relevance of the Kaplan-Meier estimator as
a tool for analysing the progressive introduction of dead code
in software projects.

Survival analysis models have been used by Wedel et al.
for studying the occurrence of faults over time [23]. Survival
function estimators allow to take into account the fact that
some bug reports are not closed before the end of the ob-
servation period. The authors also discuss the automatic pre-
processing that must be applied to the used data sources in
order to carry out a large scale statistical analysis of fault
occurrence in software systems.

Claes et al. [6] have carried out a survival analysis of pack-
ages in the Debian open source Linux distribution. As potential
factors influencing a package’s longevity they considered the
presence and absence of strong conflicts in these packages,
as well as the time at which these conflicts appear. They also
studied the time needed for the conflicts to disappear. Among
other results, it turns out that strong conflicts almost never get
removed. It also appears that the longer a package has survived
without strong conflicts, the less likely it becomes that strong
conflicts will appear.

In [10]], we analysed the Kaplan-Meier estimates of tech-
nologies on which open source Java software systems rely to
manage access to a relational database. Contrary to our initial
intuition, a comparative study of the survival function of a
technology after another one has been introduced in the same
project did not reveal any significant difference in survival. We
found no evidence that the introduction of a second technology
in a project influences the survival of a first technology.

IV. CONCLUSION

Survival analysis is extensively used in medical research
for studying time-dependent properties. Different approaches
exist for taking into account censored data and for studying
an unknown distribution of event occurrences over time.
These approaches have been successfully applied to empirical
studies on software evolution for estimating the quality (in
the broadest sense of the word) of a software system or for
determining the factors influencing this quality.

Because of the relative simplicity of the presented survival
tools and their advantages over more traditional metrics such
as the mean time to first failure, it is likely that these tools
will become part of the standard toolkit for software analysts
in the near future.
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