Designing a Concurrency Aware Refactoring Framework

Maria Gouseti*
Bol.com, Utrecht, The Netherlands
mgouseti@gmail.com

1. INTRODUCTION

This extended abstract summarizes ongoing work, based
on the first author’s masters thesis |1, on a refactoring frame-
work for the Java programming language which is correct in
the presence of concurrency (i.e. Java multi-threading). We
refer to the thesis for a precise positioning with respect to
related work and detailed motivating examples.

A refactoring tool is a code transformation tool that re-
structures an existing body of code, altering its internal
structure without changing its external behaviour. In this
paper we focus on refactorings with the intent of moving an
existing code snippet to another location. To ensure that the
transformed code is correct, regression tests are often used [2]
3]. However, as parallel execution becomes more and more
popular with the increasing production of multi-core proces-
sors and the use of distributed computing architectures, it
is important to make sure that refactorings are concurrency
aware and their correctness can be proven. Concurrency
bugs are difficult to find through testing due to the infeasible
amount of test runs necessary.

Schifer et al. [4] use 5 motivating examples to demonstrate
how refactored code that is correct in sequential execution
may introduce bugs in concurrent execution. The authors
defined three refactoring categories, organised by the theory
used to prove their correctness: (i) memory trace preserv-
ing refactorings, which have to preserve data accesses on
shared memory (e.g. MOVE METHOD); (ii) dependence edge
preserving refactorings, which have to preserve data and
synchronization dependencies (e.g. INLINE LOCAL); and (iii)
introducing new shared state refactorings, which are left as
future work since neither of the previous theories can be
applied (e.g. CONVERT LOCAL VARIABLE TO FIELD).

To fix these refactoring tools, to be able to reason about
their correctness, and to be able to generalise to more refac-
torings, we introduce an intermediate language called Syn-
chronised Data Flow Graph (SDFG) and a framework called
Concurrency Aware Refactoring with Rascal (CARR). SDFG

*Work performed while at Centrum Wiskunde & Informatica

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE 2016, Austin TX, USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Jurgen Vinju
Centrum Wiskunde & Informatica, Amsterdam
Eindhoven University of Technology, Eindhoven,
The Netherlands
Jurgen.Vinju@cwi.nl

captures all the data and synchronisation dependencies of
Java memory accesses of a program. We propose the exis-
tence of a set of code moving refactoring tools which preserve
the shape of this intermediate representation to guarantee
correctness. The CARR framework directly uses the preser-
vation of the SDFG as a condition to the refactoring.

We are now working on showing how CARR produces cor-
rect concurrency aware refactoring implementations and we
suggest that it could support lightweight proofs of correctness
for a large range of refactoring tools. In this abstract we de-
tail our goals and requirements and the principle architecture
of CARR and the SDFG intermediate language.

2. GOALS

The state-of-the-art in correct concurrency refactorings
is that different theories are used to prove different smaller
classes of refactoring tools. Our goal is to find a common,
simple theory which encompasses at least the published
categories |4] and generalises to more refactoring tools. This
theory could then be used to underpin the implementations
of many concurrency aware refactoring tools.

1. Our first goal is to reproduce the results of Schéfer et
al. [4] in a different context and generalise to at least in-
clude a fix for CONVERT LOCAL VARIABLE T0 FIELD.

2. Our second goal is to support a wide range of refactor-
ing tools, generalizing the state-of-the-art. Our main
method is to introduce a reusable intermediate format
into a framework which is parameterized by details
specific to each refactoring.

3. Our third goal is to evaluate the architecture by ap-
plying it to refactoring tools which were previously
incorrect in the presence of concurrency and have not
yet been fixed.

4. Our final goal is to prove the correctness of each refac-
toring tool developed using CARR, one-by-one but
reusing the framework to be able to reuse specific lem-
mas and limit the amount of work.

3. SOLUTION ARCHITECTURE

Figure [1] depicts an overview of the CARR framework for
constructing correct refactoring tools.

The basic conceptual idea is to convert the Java code
under refactoring both before and after applying the pro-
posed code transformation to an intermediate representation
called the Synchronised Data Flow Graph (SDFG) language.

Source Transform
Program to SDFG
L. no mapping
| Simulated P found
1 Transformation ! mapping
1 ! found
Target Transform Target
Program to SDFG Program

Figure 1: Concurrency Aware Refactoring Architecture —Flow Graph of CARR. The light parts are reusable
infrastructure, the dark parts are specific per refactoring tool. Intermediate representations are considered
I/0 for the refactoring tool engineer, not for the end-user programmer.

The SDFG format captures all data and synchronisation
dependencies. These two program representations can then
be compared to one another to check for correctness. If the
comparison finds the two representations equivalent with
respect to the dependencies between memory accesses, then
the refactoring may go through, otherwise not.

A fast and practical implementation of CARR would
be to simulate the code transformation on the SDFG level
directly, before actually applying the refactoring to code.
This enables the same post-condition checking. However,
to avoid possible confusion, for the current presentation we
take a more conceptual point of view and we assume the
compared SDFG representations are acquired from the source
and target code respectively.

Portability of refactoring tools between programming
languages may be easier using CARR; by providing a new
front-end mapping to SDFG and reusing the mapping rules.
However, the obligation to prove the mapping rules correct
for the new language remains.

The linchpin design element in this architecture is
“Find Mapping” which decides if the two SDFG graphs are
semantically equivalent in terms of flow and synchronisa-
tion semantics. The possibilities for mapping semantically
equivalent parts of the SDFGs are specified by a (small) set
of equivalence inference rules. These rules are unique for
each refactoring tool: they model the unique properties of
each refactoring tool. On the one hand, the rules must be
re-considered for every new refactoring tool. On the other
hand, the rest of the CARR infrastructure may be reused as
soon as the new mapping function has been proven correct
and implemented. In this abstract we describe one such
mapping function as an example.

The key enabler for CARR as a reusable infrastructure
is a sound and complete mapping of programming language
syntax and semantics to the intermediate representation. The
code for the transformation from Java to SDFG is based on
the Eclipse JDT compilerEl and the Rascal M3 front-end [5].

4. SYNCHRONISED DATA FLOW GRAPH

"http://www.eclipse.org/jdt

An engineering challenge in constructing refactoring tools
for real programming languages is to capture the semantics
for the complete language in a faithful manner. This mo-
tivates the mapping of the Java language to a simpler and
more manageable intermediate format, clearly separating
arbitrary details of syntax and (static) semantics, from the
concepts of interest (data flow and synchronisation).

4.1 Definition

Figure [2| defines the intermediate language —SDFG— as
inspired by OFG @ This language strips a programming
language like Java from the structural features and maintains
only a set of “declarations” and a set of “statements”. The first
identify shared data locations (fields) and inter-procedural
flow points (constructors and methods) while the latter reflect
only the dependencies between memory accesses from the
original Java code. Such dependencies include the data
and synchronisation dependencies from the Java Memory
Model (JMM) applied on local memory accesses in addition
to the shared ones, as well as other dependencies that reflect
memory allocation and the beginning and ending of methods.
Each statement can also be read as a binary constraint
between two code points or between a code point and a
valueﬁ The loc data-type is used throughout SDFG to
represent unique source code artefact locators [5].

4.2 Mapping Java to SDFG

To extract the implicit dependencies, the converterEltra—
verses the AST and passes in every node the current state
which is updated and returned. The current state contains:
(i) a set of the Stmts that were gathered in that specific path,
(ii) a map with the identifiers of the last visible assign(:)
or change(-) of a variable declaration, (iii) a second map
that contains the identifiers of the last change of a class
which corresponds to the last visible change(-) and (iv) a
relation that contains a tuple with the lock declaration and
the identifier of an acquire action.

The two types of AST nodes that the converter visits are
the expressions and the statements. Both types return the

*Values are symbolic data values such as numbers or strings
3https://github.com/gmarouli/SDFG

http://www.eclipse.org/jdt
https://github.com/gmarouli/SDFG

data Program
= program(set[Decl] decls, set[Stmt] stmts);

data Decl

= attribute(loc id, bool volatile)

| method(loc id, list[loc] formals, loc lock)
| constructor(loc id, list[loc] formals);

data Stmt

= read(loc id, loc variable, loc depId)

| assign(loc id, loc variable, loc depId)

| change(loc id, loc typeDecl, loc dataDepId)

| acquireLock(loc id, loc lock, loc depId)

| releaseLock(loc id, loc lock, loc depId)

| create(loc id, loc comstructor, loc actParId)

| call(loc id, loc rec, loc method, loc actParId)
| entryPoint(loc id, loc method)

| exitPoint(loc id, loc method);

Figure 2: Definition of the Synchronised Data Flow
Graph language (SDFG) in Rascal [7].

exception state, which maps an exception with the current
state and keeps it until a catch statement is found. In case of
an expression, the converter returns a set of potential Stmts
which refer a potential read of the current variable. Finally,
in case that a statement is continue, break or return the
current state is saved and returned to its parent node until it
is time to be used. For instance, a state stored after a break
statement is stored until exiting a loop or a case from a
switch statement.

Preprocessing steps can make the dependency extraction
more accurate, for example the map that contains the last
change of an object will be different if pointer analysis and
detection of methods that do not mutate state proceed it.
This shows the strength of this tool since it’s accuracy can be
improved by using better algorithms to resolve dependencies.

4.3 SDFG equivalence

Given that a dependency is a transitive relation between
two Stmts, we say that two SDFG programs simulate each
others dependence relation if they preserve the indirect de-
pendencies and we can argue that the changed dependencies
do not change behaviour.

Inference rules are used to model the expected changes
and map the refactored program to an inferred SDFG pro-
gram. Then, the original SDFG program is compared with
the inferred one. If the inferred program is a subset of the
original one, we guarantee that no unexpected dependencies
are introduced and, if the inference rules are correct, no de-
pendencies are lost. Consequently, proving the correctness of
the refactoring lies on proving the correctness of the inference
rules that model the anticipated changes.

5. CARR

The general algorithm used in the CARR implementation
consists of the following steps that were illustrated in Figure
The first and the last step are refactoring specific.

Code transformation, generating new identifiers when
needed and keep a map with the correspondence between
the original and the new identifiers.

Transform to SDFG both programs: the original and
the refactored one.

Find mapping by applying the mapping rules on the

transformed programs and either reject or accept the refac-
toring.

6. EXAMPLE - MOVE METHOD

The MoVE METHOD refactoring first applies a transforma-
tion to the method code and then applies another transfor-
mation to the rest of the code and the updated method code.
There are three ways that a method can be accessed after
it has been moved to another class: (i) the method is static,
(ii) the method has as a parameter the destination class so
the receiver and the parameter can be swapped, and (iii) the
destination class is a field of the source class of the method.
Consequently, the rules concerning the refactored code of the
method are:

e There should be no assign(-) that refers to this or
to the field of the class used as receiver in case of
parameter swap and field access respectively.

e The fields should have read dependencies to the new
parameter or the qualified name.

e In case that the destination class was a parameter, the
dependencies to the parameter should be replaced by
dependencies to this.

e The receiver of a method call should not be the value
null.

CARR requires that every method call to this method is
updated to match its new declaration. The previous rules are
formalised in the following inference rules. The inference rules
model how the Stmts from the refactored SDFG program
can be used to generate the original program.

In the following rules md is the original method declaration
and md’ is the refactored one. The next rules apply to
all the cases. The inference rules in which the premise
and conclusion are the same are omitted. RP and IOP
stand for Refactored Program and Inferred Original Program
respectively.

RP E entryPoint(id, md’) RP [exitPoint(id, md’))
IOP = entryPoint(id, md)’ IOP [= exitPoint(id, md)

In the case of static methods the inference rules for the
method code and the whole program are [2 and [3] respectively.

RP |=read(id, destinationClass, dep) @)
IOP [read(id, sourceClass, dep)

RP = call(id, destinationClass, md’, arg)
IOP [= call(id, sourceClass, md, arg)

®3)

In the case of the parameter swap, the following inference
rules refer to the method code, where p’ refers to the new
parameter of the sourceClass and p to the original parameter.
The command abort represents the immediate rejection of
the refactoring transformation due to an invalid Stmt with
respect to Java semantics.

RP | read(id, this, dep) RP = read(id, p’, dep)

4
IOP k= read(id, p, dep) ' IOP |= read(id, this, dep))

RP k= assign(id, this, dep)
IOP |= abort

()

RP = acquireLock(id, this, dep)

IOP [acquireLock(id, p, dep) (©6)
RP k= releaseLock(id, this, dep) G

IOP = releaseLock(id, p, dep)

RP [acquireLock(id, p’, dep) ()
IOP k= acquireLock(id, this, dep)

RP k= releaseLock(id, p’, dep) ©)
IOP = releaseLock(id, this, dep)

Inference rules for the whole SDFG program, where rec
is the original receiver of the method, arg is the parameter
being swapped and a all the other arguments of the method
call:

RP E call(id, arg, md’, rec) RP [call(id, arg, md’, a)
IOP k= call(id, rec, md, arg)’ IOP k= call(id, rec, md, a)
(10)

In case of fields access, the inference rules for the method
code, where p’ refers to the new parameter of the sourceClass
and f refers to the field used as the receiver of the class:

RP |= read(id, p’, dep) (1)
IOP = read(id, this, dep)

RP ': read(p/r, p/v *)7 aSSign(faa f3 p;‘)
IOP = abort

(12)

Inference rules for the whole SDFG program:

RP k= read(f,, f, rec), call(id, f., md’, a),call(id, f., md’, rec))

IOP [= call(id, rec, md, a)
(13)

In summary, the above example inference rules are all that
is needed to instantiate CARR for MOVE METHOD. The size
of the Rascal code implementing these rules is comparable to
the size of the above definition in IXTEX source code. These
rules introduce a proof obligation of soundness (each rule
guarantees semantic preservation) and completeness (the
rules together enable a match in all relevant circumstances).
Incomplete rule sets will lead to spurious rejections (no match
can be made and the refactoring is rejected), while an un-
sound rule will allow the refactoring to introduce bugs. So
soundness should be the focus of theoretical investigation,
while completeness is a matter of experimental evaluation.

7. FUTURE WORK

Proving correctness of each refactoring tool is based on
the use of Separation Logic and basic Hoare Logic. Proof
sketches can be found in the first author’s masters thesis [1].

Updating objects leads to inaccuracy. Currently if a
method is called on an object or a field is changed, we assume
that every object of that type has changed too. This results
in rejecting refactorings that do not change behaviour. This
may be solved in the future by applying two extra steps before
transforming to SDFG. The first step would be analysing
aliases and the second to detect if a method changes the
state outside of its scope.

Intra-procedural analysis limits scope of possible refac-
toring tools. If added, even more different kinds of refactor-
ings could be considered.

Full integration into the Eclipse refactoring user-
interface is left as future work. For now we can trigger CARR
programmatically, which allows to evaluate its contributions
adequately.

8. CONCLUSION

In this work we focus on understanding when the behaviour
of refactored code is changed in the presence of concurrency,
and provide a configurable formal model in the format of
an intermediate language, SDFG, that can be used for se-
mantic verification and implementation of code movement
refactorings.

We implemented the converter from Java to SDFG and
integrated it to a refactoring tool called CARR to make the
tool concurrency aware. Our next goal is to evaluate the
architecture experimentally.

9. REFERENCES

[1] M. Gouseti, “A general framework for concurrency aware
refactorings,” Master’s thesis, Universiteit van
Amsterdam, 2014.

[2] B. Daniel, D. Dig, K. Garcia, and D. Marinov,
“Automated testing of refactoring engines,” in
Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software
Engineering, ser. ESEC-FSE '07. New York, NY, USA:
ACM, 2007, pp. 185-194. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287651

[3] G. Soares, R. Gheyi, and T. Massoni, “Automated
behavioral testing of refactoring engines,” IEEE Trans.
Software Eng., vol. 39, no. 2, pp. 147-162, 2013. [Online].
Available: http:
//doi.ieeecomputersociety.org/10.1109/TSE.2012.19

[4] M. Schéfer, J. Dolby, M. Sridharan, E. Torlak, and
F. Tip, “Correct Refactoring of Concurrent Java Code,”
in ECOOP 2010 — Object-Oriented Programming, ser.
Lecture Notes in Computer Science, T. D’Hondt, Ed.
Springer Berlin Heidelberg, 2010, vol. 6183, pp. 225-249.
[Online]. Available:
http://dx.doi.org/10.1007/978-3-642-14107-2_11

[5] A. Izmaylova, P. Klint, A. Shahi, and J. J. Vinju, “M3:

an open model for measuring code artifacts,” CoRR, vol.

abs/1312.1188, 2013. [Online]. Available:
http://arxiv.org/abs/1312.1188

P. Tonella and A. Potrich, “The Object Flow Graph,” in

Reverse Engineering of Object Oriented Code, ser.

Monographs in Computer Science. Springer New York,

2005, pp. 21-41. [Online]. Available:

http://dx.doi.org/10.1007/0-387-23803-4_2

P. Klint, T. van der Storm, and J. Vinju, “Easy

meta-programming with rascal,” in Generative and

Transformational Techniques in Software Engineering III,

ser. Lecture Notes in Computer Science, J. a. Fernandes,

R. Lammel, J. Visser, and J. a. Saraiva, Eds. Springer

Berlin Heidelberg, 2011, vol. 6491, pp. 222-289. [Online].

Available:

http://dx.doi.org/10.1007/978-3-642-18023-1_6

6

[7

http://doi.acm.org/10.1145/1287624.1287651
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.19
http://doi.ieeecomputersociety.org/10.1109/TSE.2012.19
http://dx.doi.org/10.1007/978-3-642-14107-2_11
http://arxiv.org/abs/1312.1188
http://dx.doi.org/10.1007/0-387-23803-4_2
http://dx.doi.org/10.1007/978-3-642-18023-1_6

	Introduction
	Goals
	Solution Architecture
	Synchronised Data Flow Graph
	Definition
	Mapping Java to SDFG
	SDFG equivalence

	CARR
	Example - Move Method
	Future work
	Conclusion
	References

