
IWAISE’2008 APRIL 2008 1-1

Middleware: Challenges and
Evolution from Procedural to

Service Orientation

Bruno Traverson (bruno.traverson@edf.fr)

IWAISE’2008 APRIL 2008 1-2

Middleware
• Contraction of « middle »

and « software ».
• Définition

– Core software independent of
any application domain and
generally covering four
categories of functionalities:

• Communication,
• Coordination,
• Conversion,
• Facilitation.

[Mehta, Medvidovic, Phadke, Towards a taxonomy of
software connectors. Software Engineering, 2000]

[Meeting in the Middle, Ruth Palmer]

IWAISE’2008 APRIL 2008 1-3

Software Architecture

• Four main approaches in middleware
• Procedural, • Object-oriented,
• Component-based, • Service-oriented.

• Definition
– Structure of a system and

its components, their
relationships and the
mainlines that guide their
design and their
evolution during time.

[Constantine, Farid Benyaa]

IWAISE’2008 APRIL 2008 1-4

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-5

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-6

Communication

• Communication functions insure exchanges
among the various elements of a distributed
application.

• Classification based on the kind of the flow
• Information flow (data or code),
• Control flow (signal or call).

• And on the kind of binding between elements
• Direct binding (elements know each other),
• Indirect binding (elements communicate via a tier).

IWAISE’2008 APRIL 2008 1-7

Client/Server

• One entity playing the « client » role calls an
operation offered by another entity playing the
« server » role.

• Characteristics
– Control flow with direct binding
– Simultaneous presence of client and server entities,
– Blocking call for the client.

client server

IWAISE’2008 APRIL 2008 1-8

Producer/Consumer

• Entities playing the « producer » role emit events to
other entities playing the « consumer » role.

• Event producers and consumers communicate
through a tier called « event channel » (anonymous
communication).

• Characteristics
• Information flow with indirect binding,
• Muti-peer communication,
• Push or Pull model.

push pushevent channel

producer consumer

event propagation

IWAISE’2008 APRIL 2008 1-9

Coordination

• Coordination functions organize the global
execution of the various elements of a distributed
application.

• Classification based on the coordination strategy
– Based on concurrency between activities (scheduling

functions : serialization and causality orders, transaction)
– Based on cooperation among activities (consensus

algorithms : distributed termination, workflow).

IWAISE’2008 APRIL 2008 1-10

Transaction

• Definition
• A set of operations that makes the Information
System go from one initial consistent state to another
final consistent state.

• Corollary
• Intermediate states may be inconsistent.

• Four ACID properties
• Atomicity • Consistency
• Isolation • Durability

IWAISE’2008 APRIL 2008 1-11

Workflow

• Limits of transaction management
• A transaction cannot commit if one of its operations
fails (atomicity),
• A transaction cannot cooperate with other
transactions (isolation),
• A transaction must be short-lived (atomicity and
isolation).

• Definition
A set of "open-ended" operations (uncertain duration,
conditional execution, potential interactions with other
activities).

IWAISE’2008 APRIL 2008 1-12

Conversion

• Conversion functions mask the disparities
among the various elements of a distributed
application.

• Classification based on the level of conversion
• Interface adaptation,
• Communication protocol,
• General model.

• And the responsibility of the conversion
• Application responsibility (gateway),
• Middleware responsibility (bridge),
• Shared responsibility (context-awareness, pervasive systems).

IWAISE’2008 APRIL 2008 1-13

Basic Conversion Techniques

client server

Interface X Interface Y

Interface X

gateway

Interface Y

: middleware: application

client server

Protocol A Protocol B

Protocol A

bridge

Protocol B

IWAISE’2008 APRIL 2008 1-14

Adaptable Middleware

• Modification of all the system or of one of its
parts in a transparent way with regards to its
operational state in order to satisfy a particular
concern (error correction, performance
optimization).

• Characteristics
– Manual adaptation

• Adaptation strategy handled by a human administrator,
• Event propagation when evolution is detected.

– Automatic adaptation
• Self-adaptation following registered adaptation strategies,
• Reflection mechanism allowing self-observation and self-

modification.

IWAISE’2008 APRIL 2008 1-15

Facilitation

• Facilitation functions optimize interactions
among the various elements of a distributed
application.

• The main goal is to enhance performance and
reliability characteristics of the application or,
more generally, to manage the quality of
service (QoS).
– Fault tolerance,
– Load balancing.

IWAISE’2008 APRIL 2008 1-16

QoS Contracts

• Definition
– Interval of tolerance between QoS requests and

offers (in case of environment failure, offer a
service of lower quality but still acceptable by the
user).

• Characteristics
• Composition,
• Observation,
• Guarantee,
• Negotiation.

IWAISE’2008 APRIL 2008 1-17

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-18

Procedural Approach

• The system is splitted into functional modules.
When the modules are running on remote
machines, middleware supports distribution.

• Main standards
• DCE : Distributed Computing Environment,

• DTP : Distributed Transaction Processing.

• Main realizations
• Distributed Operating Systems,
• Distributed Transaction Processing Monitors.

IWAISE’2008 APRIL 2008 1-19

Communication Paradigms

• Asynchronous Processing
• Entities communicate through a tier,
• Exchange flow is one-way.

• Conversational
• Entities communicate as peers,
• Information is exchanged inside a session with respect to

control rules defined by peers.

• Request/Response
• One entity calls the other,
• Exchange flow is two-way.

IWAISE’2008 APRIL 2008 1-20

• Using a Programmatic Interface

svcA(tpsvcinfo);
{...
tpreturn()}

CLIENTS

tpenqueue()
...
tpdequeue()

TMQUEUE

enqueue

dequeue

FIFO CHANNEL MANAGERS

TMS_QM

SERVERS

TMQFORWARD

dequeue
tpcall()
enqueue

svcA

client_replyA

FAILURE_Q

Asynchronous Processing

IWAISE’2008 APRIL 2008 1-21

• Using a Programmatic Interface

svcA(tpsvcinfo);
{...
tprecv(tpsvcinfo->cd,
..., &revent);
tpsend(tpsvcinfo-> cd,
..., TPRECVONLY);
tprecv(tpsvcinfo-> cd,
..., &revent);
tpreturn(TPSUCCESS,

...)}

Client

{
cd=tpconnect("svcA
", ...,
TPSENDONLY);
tpsend(cd, ...,
TPRECVONLY);
tprecv(cd, ...,
&revent);
tpsend(cd, ...,
TPRECVONLY);
tprecv(cd, ...,
&revent);
}

Server

Conversational

IWAISE’2008 APRIL 2008 1-22

• Using a Programmatic Interface

Client

{

...
tpcall("svcA", ...);

...

}

Serveur

svcA(tpsvcinfo);
{...
tpreturn(

TPSUCCESS,
...);

}

Request/Response (1)

IWAISE’2008 APRIL 2008 1-23

Request/Response (2)
• Using a Language Extension

• The interface offering remote operations is defined using a
language called IDL (Interface Definition Language).

• Communication between client and server involves adaptators
to network based on the interface definition.

Client

Communication Kernel

Procedure

Server

IDL
Interface

Client Stub Server Stub

IWAISE’2008 APRIL 2008 1-24

Sy
ste

m
Ma

na
ge

me
nt

Communication
Management

Transaction
Management

Service
Management

Security

Workstation

Pr
es

en
tat

ion

Workstation

Remote
Site

•
•

•
•

•
•

Routing

Load Management

Illustration: TP Monitors

Remote
Site

IWAISE’2008 APRIL 2008 1-25

Main Functions (1)
• Security

• The TP monitor must check that the service request from a
user owns the right to be processed (authentication, access
right lists, integrity and privacy management).

• Routing
• Scheduling mechanism similar to that used in an operating

system
• Lookup for local availability then for remote availability,
• Lookup for a local server instance,
• If no instance, launching of a new server instance or queuing.

• Load management
• Used if more than one server may satisfy the service request.
• Two strategies

• Minimize response times (load balancing),
• Maximize system throughput (load sharing).

IWAISE’2008 APRIL 2008 1-26

Main Functions (2)
• Transaction management

– Used for commitment and recovery,
– Atomic commitment, logging, recovery procedures.

• Service management
– Ensures transactional execution of the service requests,
– Transaction context management, service association to

a server.
• Communication management

– Ensures transactional communication,
– Transaction context propagation, communication

paradigm support (request/response, conversational,
asynchronous processing).

IWAISE’2008 APRIL 2008 1-27

Conclusion on Procedures

• Assets
• Interface Definition Language (IDL),
• Application Programmatic Interface (API).

• Advantages
• “Natural” distribution of processing,
• Transactional execution.

• Limits
• Tightly-coupled systems,
• Interoperability between domains still difficult.

IWAISE’2008 APRIL 2008 1-28

Bibliography on Procedures

• DCE: Remote Procedure Call.
X/Open CAE Specification. C309.
X/Open Company Limited, 1994.

• DTP : Distributed Transaction
Processing Reference Model,
Version 3. G307. X/Open Company
Limited, 1996.

IWAISE’2008 APRIL 2008 1-29

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-30

Object-oriented Approach

• The system is viewed as interacting objects.
When the objects are running on remote
machines, middleware supports distribution.

• Main standards
• CORBA : Common Object Request Broker Architecture,
• COM : Common Object Model.

• Main realizations
• Object Brokers.

IWAISE’2008 APRIL 2008 1-31

Object

• Definition
• Entity containing as well data (attributes) as

processing (methods) accessible through an
interface.

• Used in a lot of domains
• Modeling methodologies,
• Programming languages,
• Databases,
• Distributed environments.

IWAISE’2008 APRIL 2008 1-32

Basic Principles

• Wrapping
• Object description is separated from its

realization.

• Composition
• Multiple objects may be combined to form one

object.

• Inheritance
• Relationship between objects that permits to

define new objects by using characteristics of
existing objects.

IWAISE’2008 APRIL 2008 1-33

Assets

• Evolution support
• Replacement or modification of a component with

no impact on its environment (wrapping).

• Legacy integration
• Mixing of existing and new applications (wrapping

and composition).

• Extension support
• New components may be built from existing objects

(composition and inheritance).

IWAISE’2008 APRIL 2008 1-34

Illustration : CORBA

• OMG: Object Management Group
– International consortium composed of

hardware manufacturers, software editors
and users.

– Produce specifications for the design of
distributed object-oriented software
applications.

• OMG specifications
– CORBA (Common Object Request Broker

Architecture)
– OMA (Object Management Architecture)

IWAISE’2008 APRIL 2008 1-35

CORBA Architecture (1)

• ORB: Object Request Broker
• Vehicle for requests between objects.

Client

ORB

Object

IWAISE’2008 APRIL 2008 1-36

ORB Main Components

• IDL : Interface Definition Language
• Language used to describe object interfaces.
• Related to portability support.

• IIOP : Internet Inter-ORB Protocol
• Request/response communication paradigm.
• Related to interoperability support.

IWAISE’2008 APRIL 2008 1-37

CORBA Architecture (2)

• Static invocation
• Client and server interfaces that ensure marshalling/unmarshalling

functions related to object interactions.

• Object adapter
• Routing function in the server side,
• i.e. Establish the link between CORBA object references and

implementation object references (servants).

Client

ORB

Object

object adapter

static
invocation
interface

staticskeletoninterface

IWAISE’2008 APRIL 2008 1-38

CORBA Architecture (3)

• Dynamic invocation
• Permits to send and to receive requests

on objects unknown at compile time.

• Interface repository
• Contains IDL definitions.

Client

ORB

dynamic
skeleton
interface

Object

object adapter

interface
repository

dynamicskeletoninterface

IWAISE’2008 APRIL 2008 1-39

CORBA Architecture (4)

Client

ORB

ORB
interface

Object

• ORB interface
• Services for object reference management and

initialization.

• Implementation repository
• Contains object implementations.

implementation
repository

IWAISE’2008 APRIL 2008 1-40

CORBA Architecture (5)

Client

ORB

dynamic
invocation
interface

ORB
interface

Object

object adapter

static
invocation
interface

staticskeletoninterface
dynamicskeletoninterface

• A global view ...

interface
repository

implementation
repository

IWAISE’2008 APRIL 2008 1-41

OMA Architecture

General service interfaces

Non-standardized
application-specific interfaces

Vertical
domain-specific interfaces

Horizontal
facility interfaces

Application Objects Domain Objects CORBAfacilities

CORBAservices

Object Request Broker

IWAISE’2008 APRIL 2008 1-42

Conclusion on Objects

• Assets
• Unification of information and control flow.

• Advantages
• Evolutivity and extensibility,
• Standardization of horizontal functions (services)

and vertical functions (facilities, domain objects).

• Limits
• Tightly-coupled systems,
• Programmation and management still complex.

IWAISE’2008 APRIL 2008 1-43

Bibliography on Objects

• OMG, The Common Object Request
Broker: Architecture and
Specification. Version 3.0, July 2002.

• M. Henning, S. Vinoski, Advanced
CORBA Programming with C++,
Addison-Wesley, 1999.

IWAISE’2008 APRIL 2008 1-44

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-45

Component-based Approach

• The system is the result of the assembly of its
components. When the components are
running on remote machines, middleware
supports distribution.

• Main standards
• CCM : CORBA Component Model,
• EJB : Enterprise JavaBeans,

• COM+ : Common Object Model.

• Main realizations
• Application Servers.

IWAISE’2008 APRIL 2008 1-46

Component (1)
• Software development may vary between

two options
– Specific software programming

+ Satisfaction of user requirements,
- Expensive realization and maintenance,
- Long time-to-market.

– Generic software tuning
+ Cost and risk decrease,
- Adaptation to user requirements harder,
- Loss of local control.

• Software component approach is a
compromise between these two options.

IWAISE’2008 APRIL 2008 1-47

Component (2)

100 %

cost reductio
n

0 %

flexibility

« Make-All » and « Buy-All » spectrum

• Characteristics
– Configuration,
– Reuse,
– Assembly.

% bought

Source : Component Software, Clemens Szyperski, Addison-Wesley

IWAISE’2008 APRIL 2008 1-48

Configuration

• A component is designed and
developed independently of
applications that will use it.

• Adaptation of a component to its
usage environment is called tuning
or configuration

• Application tuning,
• System tuning.

IWAISE’2008 APRIL 2008 1-49

Reuse

• Reuse permits the decrease in costs of
realization and maintenance.

• Reuse implies strict design rules
(design for and by reuse) and an
adequate organization (reusable
component repository).

IWAISE’2008 APRIL 2008 1-50

Assembly

• Assembly enables effective usage of a
software application in a given execution
environment

• At the level of a component: building constraints
including what is required by the component.

• At the level of a set of components: combine constraints
including binding descriptions.

IWAISE’2008 APRIL 2008 1-51

Illustration : Enterprise JavaBean
• Java component composed of two interfaces:

EJBhome and EJBobject et one class:
EnterpriseBean.
– EJBhome corresponds to factory functions,
– EJBobject represents the component interface,
– EnterpriseBean constitutes the component

implementation.

Bean

EJB home

EJB object

Enterprise Bean
instance

IWAISE’2008 APRIL 2008 1-52

Container
• Set of Java interfaces and

classes related to one
category of component
and linking the
component and its
hosting server.

• The component
requirements in terms of
environment are
described in an XML
deployment descriptor.

Container

Bean 1

Enterprise Bean
instance

EJB home

EJB object

Bean 2

Enterprise Bean
instance

EJB home

EJB object

IWAISE’2008 APRIL 2008 1-53

Server
• Execution environment fore one or more containers.
• Access to transaction, security, persistence and notification

services.
• The server is generic and is not developed by the programmer.

Container

BeanClient

Transaction Security Persistence Notification

Server : developed
and specific
: generated
and specific

: generic
runtime

IWAISE’2008 APRIL 2008 1-54

Component Categories

• Session : component dedicated to one client
– Without client context management (stateless session bean),
– With client context management (stateful session bean).

• Entity : component shared among multiple clients
– Managing by itself its persistence (bean-managed persistence),
– Persistence management is delegated to container (container-managed

persistence).

• Message-driven : component that is triggered by
message receipts.

IWAISE’2008 APRIL 2008 1-55

Conclusion on Components

• Assets
• Standard containers.

• Advantages
• Better separation between functional and technical

concerns,
• Declarative approach (descriptors).

• Limits
• Limited choice of supporting functions and of lifecycle

policies,
• Some architectures are restricted to one programming

language (EJB) or one operating system (COM+).

IWAISE’2008 APRIL 2008 1-56

Bibliography on Components

• “ Enterprise JavaBeansTM Specification,
Version 2.1 ”. Sun Microsystems, 2003.

• Clemens SZYPERSKI, « Component
Software – Beyond Object-Oriented
Programming ». Addison-Wesley, 1998.

IWAISE’2008 APRIL 2008 1-57

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-58

Service-oriented Approach

• The system is designed as a market of services
with offers and demands that may match.
When the services are running on remote
machines, middleware supports distribution.

• Main standards
• SOA: Service Oriented Architecture,
• Web Services.

• Main realizations
• Enterprise Service Bus.

IWAISE’2008 APRIL 2008 1-59

Service Oriented Architecture

• Definition
• Enables matching of service requests and offers.

• Characteristics
• Take benefits of analogy with business services

(easy mapping to organizational decomposition),
• Externalize coordination functions (orchestration of

services, loosely-coupling),
• Better handle requester constraints (contract-based

approach).

IWAISE’2008 APRIL 2008 1-60

Loosely Coupling

• A service does not invoke directly another
service…

FORBIDDEN

Service A Service B

Orchestration

• …but delegates invocation to an external
processing (orchestration).

Service A

Service B

SOA

COMPLIANT + Stateless

[Pierre Bonnet, Orchestra Networks]

IWAISE’2008 APRIL 2008 1-61

Service Contract

• Collaboration
between
service
provider and
service
consumer.

• Management of several usage contracts,
• Administration of variants and of versions.

[Pierre Bonnet, Orchestra Networks]

IWAISE’2008 APRIL 2008 1-62

Illustration : Web Services

• In a first step, WebServices are used as access
solutions to IS through Web techniques.

• Then, they should enable development of simple
interaction mechanisms between applications
through Internet.

• In the mid-term, scenarios more elaborated among
several WebServices will imply sophisticated
cooperation mechanisms.

IWAISE’2008 APRIL 2008 1-63

Architecture (1)

Server ApplicationClient Application

Description

search

use

registration

DescriptionName Service

SOAP

SOAP : Simple Object Access Protocol
WSDL : Web Service Description Language
XML : eXtended Markup Language
UDDI : Universal Description Discovery and Integration

WSDLWSDL

WS ServerWS Client

UDDI

IWAISE’2008 APRIL 2008 1-64

Architecture (2)

• Interaction models
: WebService

Legend

Client

Client

soap

soap

Web Server

WS client

UDDI

WS server

WS server

presentation

presentation

WS client

Document model

RPC model

IWAISE’2008 APRIL 2008 1-65

Service Description (1)

• A WSDL document contains seven sections:

• Types : data type definitions.

• Message : exchanged message definitions.

• Operation : operation definitions.

• Port Type : set of operations reachable on one or more access

points (endpoints).

IWAISE’2008 APRIL 2008 1-66

Service Description (2)

• Binding : communication protocol and data format used on a given

port type.

• Port : access point defined as a combination of a « binding » and

a network address.

• Service : set of related access points.

IWAISE’2008 APRIL 2008 1-67

Web Service Level Agreement

IWAISE’2008 APRIL 2008 1-68

Conclusion on Services

• Assets
• Adaptation to various usage contexts.

• Advantages
• Decoupling between usage and realization
• Possible evolution to cooperative applications

• Peer-to-peer interactions,
• Complex multi-peer interactions.

• Limits
• Web Services still highly influenced by their technical basis

• Web techniques,
• XML techniques.

IWAISE’2008 APRIL 2008 1-69

Bibliography on Services

• OASIS, « Reference Model for Service Oriented

Architecture 1.0 ». soa-rm-cs, August 2006.

• W3C, « Web Services Architecture». wsa, February

2004.

IWAISE’2008 APRIL 2008 1-70

Contents

• Basic principles

• Procedural approach

• Object-oriented approach

• Component-based approach

• Service-oriented approach

• Conclusion

IWAISE’2008 APRIL 2008 1-71

Standards and Products (1)

• Great diversity but four main approaches
• Procedural • Object-oriented
• Component-based • Service-oriented

IWAISE’2008 APRIL 2008 1-72

Standards and Products (2)

• Procedural approach
• TP Monitors,
• DTP model -> Xa interface,
• Tuxedo from BEA, CICS from IBM.

• Object-oriented approach
• Object brokers,
• CORBA,
• Orbix from IONA, Visibroker from Borland.

IWAISE’2008 APRIL 2008 1-73

Standards and Products (3)

• Component-based approach
• Application servers,
• EJB,
• WebLogic from BEA, WebSphere from IBM.

• Service-oriented approach
• SOA : Service Oriented Architecture,
• Web Services,
• .Net from Microsoft.

IWAISE’2008 APRIL 2008 1-74

Techniques (1)

• Classification
• Communication
• Coordination
• Conversion
• Facilitation

IWAISE’2008 APRIL 2008 1-75

Techniques (2)

• Communication functions
• Control flow with direct binding,
• Information flow with indirect binding.

• Coordination functions
• Transaction strategy,
• Workflow strategy.

IWAISE’2008 APRIL 2008 1-76

Techniques (3)

• Conversion functions
• Generic framework,
• Platform abstraction
… to « modelware ».

• Facilitation functions
• Quality of Service management
… to « autonomic » systems.

IWAISE’2008 APRIL 2008 1-77

Thanks for your attention !

Any questions?

