RETURN ON EXPERIENCE
ABOUT IMPLEMENTING
KNOWLEDGE MANAGEMENT
SYSTEMS IN SOFTWARE
ENGINEERING: MOTIVATIONS,
OPPORTUNITIES AND
CHALLENGES

Presentation Plan

- Overview
- Our Experience
- Motivations
- Opportunities
- Challenges

Overview

Software Engineering

Software Engineering (SE) is the application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software

Software Engineering

People

Tools

Methods

Techniques

Technologies

Activities

Software Engineering

- During SE activities, collaborators produce and consume Knowledge
- SE is a knowledge-intensive activity (Robillard)
- The effective sharing, capture and application of this Knowledge is vital to the competitiveness and the survival of SE organizations

What is Knowledge?

• Knowledge is a justified belief that increases an entity's capacity for effective action. Knowledge is always associated to action and experience (Nonaka)

Knowledge Typology

What is Knowledge Management?

- KM is the collection of processes that govern the creation, dissemination and utilization of knowledge to fulfill organizational objectives
- Knowledge management systems (KMS) refer to a class of information systems applied to managing organizational knowledge. That is, they are IT-based systems developed to support and enhance the organizational processes of knowledge creation, storage/retrieval, transfer, and application

KM Processes

Knowledge Capture Knowledge Storage

Knowledge retrieval

Knowledge Transfer

Knowledge Application

KM and ontologies

- Ontologies are one of the best conceptualization of Knowledge
- It is the foundation on what the KMS represents and stores Knowledge

Our Experience

Our Project

Our Project was about the design and an implementation of a KMS in a software Engineering organization

Our Results

An Ontology

A methodology

AKMS

The Paper Objectives

- Use the capitalized experience in similar projects
- Share the synthesis on the motivations, the challenges and the opportunities of implementing KMS in a SE context

Motivations

Decrease Time and Increase Quality

- Avoid error repetition
- Promote success factor reproduction
- Capture past experiences

Acquire Knowledge Abou New Technologies

- The technology evolution rhythm is very fast
- KM is a good channel that allows the acquisition of knowledge concerning new technologies quickly and efficiently

Access Domain Knowledge

- the acquisition of the domain knowledge is a timeconsuming activity
- KMS provides an infrastructure that facilitates the access to domain knowledge

Quickly Adopt Organization Culture

• KM provides a mean that allow new developers to adopt in a reasonable delays the cultural requirements of their new company and integrate efficiently the active development teams

Skill Identification

If implemented well, KMS will provide the right tool that permits to identify the right person to the right task in an organization

Opportunities

An important part of SE knowledge is explicit

- It is difficult to access tacit knowledge
- More the Knowledge is explicit, the easier is its exploitation.
- Fortunately, in SE a considerable amount of the knowledge assets are already explicit

The SE environment is a friendly environment

■ SE organization do already have the requirements of a KMS infrastructure : networks, servers,...

CASE Tools are extensible

- Most of CASE (Computer-Aided Software Engineering) tools are extensible (API, ...)
- This openness facilitates the integration with the KMS

KMS are not necessarily developed from scratch

- Most of SE organizations have a basis system for the KMS: (intranet system, document management or Enterprise Content Management)
- The adaptation of these systems needs development efforts which are the core of SE

Research is converging to a SE ontology

- Many projects are conducted to the development of an ontology for software engineering
- Most of these projects are based on the SWEBOK project

The knowledge sharing culture is wellestablished

- SE practices encourage Knowledge sharing
- The developers psychology is a pro-sharing psychology

Challenges and propositions

Software Engineering is a vast domain

- This makes the conceptualization difficult
- Many misconceptions and conflicts
- A conceptualization project should be based on a consensus source such as SWEBOK
- Focus on ontology reutilization

Convince software engineers to use the KMS

- Software Engineers are overloaded
- Many reasons hamper knowledge sharing: fear, time, selfishness
- Put strong motivational practices
- Encourage sharing
- Accelerate sharing procedures

KMS impacts are difficult to evaluate

- some metrics have to be developed to measure the impact of the KMS in increasing the product quality and / or decreasing the delays and costs
- Continuous feedback
- Top Management Support

Domain Knowledge Is difficult to integrate

- Software development can target infinite and various domains such as finance, banking, education, healthcare or gaming
- Some efforts have to be considered to target a domain conceptualization
- Encourage reutilization

Knowledge Obsolescence

- Knowledge valid for a certain version of a product or programming language could be very quickly obsolete when later versions are released
- Use metada and feedback

KMS Integration

- SE includes many tools
- It's difficult to integrate these tools with the KMS
- Exploit the open nature of most of CASE tools

The Security

- Knowledge is the organization force or weakness
- This knowledge have to be protected to ensure the value of the organization
- We have integrated the security requirements with the operating system layer (security framework)

The KMS should support software processes

- software process is a set of activities whose goal is the development or evolution of software
- Software projects implement these processes
- It's vital to integrate software processes and KM processes to capture this strategic Knowledge
- We considered Software processes as KM processes too

Thank You!