
1 

Modeling	  and	  Verifying	  Distributed	  
Systems	  with	  Petri	  Nets	  :	  	  

Place-‐Transi>on	  Nets	  and	  temporal	  logic	  

Souheib Baarir, Fabrice Kordon  

First.last@lip6.fr 

Labrotaoire d’Informatique de Paris 6 



2 

References (1/2)  



[1]	  E.	  Clarke,	  O.Grumberg,	  and	  A.	  Peled.	  Model	  Checking.	  MIT	  Press,	  2000.	  

[2]	  M.	  Diaz.	  R	  ́eseaux	  de	  Petri,	  Modèles	  fondamentaux.	  Traité	  IC2,	  série	  	   	   	   	  	  	  	  
InformaKque	  et	  systèmes	  d’informaKon.	  Hermes	  Science,	  June	  2001.	  

[3]	  C.	  Girault	  and	  R.	  Valk.	  Petri	  Nets	  for	  Systems	  Engineering.	  Springer	  Verlag	  -‐	  	  	  	  	   	  	  	  	  
ISBN:	  3-‐540-‐41217-‐4,	  2003.	  

[4]	  S.	  Haddad,	  F.	  Kordon,	  and	  L.	  Petrucci,	  editors.	  Méthodes	  Formelles	  pour	  les	  	  	  	  	   	  	  	  	  
Systèmes	  RéparKs	  et	  CoopéraKfs.	  Traité	  IC2	  -‐	  Hermes,	  2006.	  

[5]	  S.	  Haddad,	  F.	  Kordon,	  L.	  Pautet,	  and	  L.	  Petrucci,	  editors.	  Models	  and	  Analysis	  in	  	  	   	  	  	  	  
Distributed	  Systems.	  Wiley,	  2011.	  

3 

References (2/2)  



4 

Known approaches: 

•  Deductive verification. 

•  Program derivation. 

•  Model checking. 

Context : Formal verification 

Formal	  VerificaKon	  is	  the	  act	  of	  proving	  or	  disproving	  the	  
correctness	  of	  intended	  systems	  with	  respect	  to	  a	  certain	  
formal	  specifica4on	  (property),	  using	  formal	  methods	  of	  
mathema4cs.	  
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Context : Model Checking 
Model Checking : consists of a systematically exhaustive 

exploration of the mathematical model of the system, to prove 
that it satisfies (or not) a given property (specification). 

system property 

model  
checking 

Which kind of properties ? 
How to express these properties ? 

Which abstraction for the system ? 
From which formalism do we get 

the desired abstraction ? 

Search 
Deduction 

╞═ 



To represent discrete systems…  

•  At each instant, the system has a given state. In 
a given state, some atomic propositions are 
satisfied when others are not: 
– description of the value of each global variable, 
– the calling stack(s),  
– the program counter(s), 
– the contents of the communicating channels, etc. 

•  From a given state, a system can reach another 
state by executing a transition.  
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Kripke structure 

•  When a system can reach only a finite number 
of states, the previous requirements are exactly 
captured by Kripke structures. 

•  Let AP be a finite set of atomic propositions 
over the system.  

•  A Kripke structure is a tuple                    where 
–  S        is the finite set of states 
–                      is the labeling function 
–                      is the transition relation 
–                   is the initial state 



Example 
 Let AP = {r1, r2, a1, a2} 
 Possible interpretation :  
 - ri  : request to the critical section by Process i and  

- ai  : critical section access by Process i. 

{r1} 

∅ 

{r2} 

{a1} {a2} 

{r1, r2} 

{a1, r2} {r1, a2} 

s0 

s1 

s4 s3 s5 

s2 

s7 s6 



Semantics of a system 
•  Two particular semantics are generally admitted:  

–  the linear time semantics, 

–  the branching time semantics. 

•  For the linear time semantics, an execution of the 
system is an infinite path in the Kripke structure. 

•  For the branching time ones, the execution of the 
system is represented by the underlying infinite 
tree of the Kripke structure. 
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Linear time semantics 

The linear time 
semantics of a Kripke 
structure corresponds 

to the (possibly infinite) 
set of all infinite paths   

s0 

s1 

s3 

s1 

s3 

s0 

s0 

s2 

s5 

s2 

s5 

s0 

s0 

s1 

s3 

s2 

s5 

s0 

… 
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Branching time semantics 

Its branching time semantics corresponds to the underlying infinite tree 
of the graph rooted in the initial state 

s1 

s0 

s2 

s3 s5 s4 

s7 s6 

s1 

s0 

s2 s1 

s0 

s2 

s4 

s6 s7 s7 s6 

s2 s2 s2 s1 s1 s1 
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Notations (1/2) 
•  Let                    be a Kripke structure. 

–   (s,s’) ∈ → is noted s → s’ :  

•  s is a predecessor of s’, and s’ is a successor of s 

–  S* denotes the finite words on S. 

–  Sω denotes the infinites words on S. 

–   w = s0 … sn is a path of length n  
     if we have si → si+1 for all i, 0 ≤ i < n. 
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Notations (2/2) 
– s →* s’ means a path from s to s’ 

–  s →+ s’ means a path from s to s’ of positive length 

– ρ = s0 s1 … is a run if we have si → si+1 for all i, 0 ≤ i.  

– ρ(i)  the ith state of ρ and,  
ρi  the suffix of ρ starting at ρ(i) 

– For a run ρ = s0 s1 …,  
   (ρ) is the ω-word (s0)(s1)… over 2AP 

13 



Kripke structure generators 
•  A Kripke structure can be generated from many kinds of 
 formalisms. 
   

– A program, 
– An algebraic composition of processes, 
– A synchronized product of automata, 

– A bounded Petri net (i.e. with a finite number of markings) 
– Etc. 

∅ {ri} {ai} 

i=1..2 



• Modeling the system 
– Petri Net Formalism 

•  Specifying of the system 
– Linear Time Logic (LTL) 
– Computation Time Logic (CTL)  

15 

Outlines 
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Modeling the system:  
The case of Finite and Discrete Event Systems 



•  Problem: modelling a producer/consumer 
asynchronous system with infinite buffer.  
– If the buffer is not empty, the consumer can consume 

independently from the state of the producer. 

17 

From Automata to Petri Nets 

Consumer Producer 

a : produce a message 

b : put a message 

d : consume a message 

e : treat a message 



•  Possible Sequences: 
– The sequence (de)* is acceptable…! 
– The consumer can execute indefinitely…! 

•  Need of conditions on certain actions: 
– add of rectangles on arcs, to synchronise actions.  
– Represent environment elements: the buffer.  

18 

Semantics of the model   



•  Two types of nodes : 
– Conditions are represented by cercles (Boolean holders).  
– Events are represented by rectangles. 

•  The Producer/Consumer model 

19 

Condition/Event Model 



•  We note : 
•n   the set of predecessors of a node n 
n•  the set of successors of a node n 

•  If n is an event, we call  
•n   the set of pre-conditions of n 
n•  the set of post-conditions of n 

•  Examples: 
•d = {c3, c5}  the pre-conditions of d are c3 et c5 
b• = {c1, c5}  the post-conditions of b are c1 et c5 

20 

Notations 



•  A step in C/E model is defined by: 
  
 where, C1 and C2 are condition subsets and λ is an 

event e, such that: 
1)  • λ  ⊆ C1           

2)  C2 = ( C1 \ • λ  ) ∪  λ •  

•  Example: the Producer/Consumer model  

21 

Semantics of a C/E Model (1/2) 

C1 C2  
λ	


C0   = { c1, c3 } 

C0 C1 
a 
•a = { c1 } 

⇒ With  C1 = (C0 \ •a)  ∪ a• 

a• = { c2 } 

C1 = ({ c1, c3 } \ { c1 })  ∪  { c2 }  =  { c2, c3 } 

•a ⊆ C0 



•  A sequence of a C/E model is defined by:     

    w = λ 1 λ 2 ... λ n 

 such that for each i ∈ {1,…,n},  
    

•  C0 is the subset of conditions representing the initial state. 
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Semantics of a C/E model (2/2) 

is a step in the C/E system. 

C i - 1 C i!
λ	
 i 



•  ab is a sequence of the C/E model of the Producer/Consumer. 

23 

Example de sequence 
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Limits of the  C/E model 
•    Producer / Consumer: 

avec C2 = {c1 , c3 , c5 } 

C0 C2 
ab 

avec C3  = {c1 , c3 , c5 } 

C2 C3 
ab 

C4 
d 

2 productions vs. 1 consumption! 

C3 C4 
de 

mais C4 = {c1 , c3},    donc, 

Must use a non Boolean model : Petri Nets (PN) 



•  Representation: 
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PN model of the Producer/Consumer 

Conditions →  Places 

Events → Transitions 

•   State of the PN = Marking M =  

where, M(p) is the number of tokens in place p. 

Example : after the execution of sequence abab, M = 1.c1 + 1.c3 + 2. c5 



 A PN R is tuple <P, T, Pre, Post> such that: 

–  P: is a finite set of places (P ≠ ∅) 
–  T: is a finite set of transitions (T ≠ ∅, P ∩ T = ∅) 

–  Pre : P × T → IN  
  Pre(p, t) = n  (n > 0)   ⇔	
 	

  the firing of a transition t is conditioned by the presence of n resources in p   
  

–  Post  : P × T →  IN  
  Post(p, t) = n  (n > 0)   ⇔	
 	

  the firing of t produce n resources in p  

 A marked net <R, M0> has an initial marking  M0  ∈ INP 

26 

Formal definition of a PN 



A Petri Net - Example 
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The initial marking is M0 

M0 = 

3 
4 
2 
0 
0 

• • • • 
• • • • 

• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 



 The firing rule :  

 • t ∈ T is enabled in M iff: ∀ p ∈ P, M(p) ≥ Pre(p,t). 

 • if t is enabled, then its firing leads to the marking M' : 
  ∀ p ∈ P, M'(p) = M(p) - Pre(p,t) + Post(p,t) 

 The firing of t is noted  : M [t> M'. 
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Firing a transition 



Enabling- example 
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t2 and t4 are enabled in M0, we note M0 [t2 > and M0 [t4 > 

• • • • 
• • • • 

• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 



Firing – exemple (1/2) 
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The firing of  t2 from M0 produces the marking M1 =  

We note, M0 [t2 > M1 

1 
1 
2 
6 
0 

• • • • 
• • • • 

• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 

t5 

• •• 

• • 

• • • 

• • 

P1 P2 P3 

t1 t2 t3 t4 

3 2 
3 

2 

3 
2 

6 
3 

P4 P5 

t5 



Firing – exemple (2/2) 
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We note M0 [t4 > M2 

3 
3 
0 
0 
3 

The firing of  t4 from M0 produces the marking M2 =  

• • • • 
• • • • 

• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 

t5 

• • • 
• • • • 

• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 

t5 

• • • 



 A firing sequence from M0 to Mn is a word t0...tn-1 such that it exists a 
set of markings M1,...,Mn-1 where : M0 [t0> M1 ... Mn-1 [tn-1> Mn 
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Firing Sequence 

t2 t4 t3  is a firing sequence  
starting from M0: 

M0 [t2 > M1 [t4 > M3 [t3 > M4 
• • • • 

• • • • 
• 

P1 P2 P3 

P4 P5 

t1 t2 t3 t4 t5 

3 2 
3 

2 

3 
2 

6 
3 

1 
0 
0 
6 
3 

M3 = 

1 
1 
0 
3 
2 

M4 = 
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The Reader/Writer: example 

Proc R{ 
 P(sem) 
 Read in file 
 V(sem) 
} 

Proc W{ 
 P(sem) 
 Wrtite to file 
 V(sem) 
} 

R_Idle 

•! •!
W_Idle 

R_P(Sem) 

R_Read 

R_V(Sem) 

sem •!

W_P(Sem) 

W_V(Sem) 

W_Write 



2 Readers / 1 Writer: example (1/2) 
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Proc R1{ 
 P(sem) 
 Read in file 
 V(sem) 
} 

Proc W{ 
 P(sem*2) 
 Wrtite to file 
 V(sem*2) 
} 

Proc R2{ 
 P(sem) 
 Read in file 
 V(sem) 
} 
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2 Readers / 1 Writer: example (2/2) 
•! •!

R2_P(Sem) 

•!•!

2 

2 

•!
R2_V(Sem) 

W_Idle 

Sem 

W_Write 

W_P(Sem, 2) 

W_V(Sem, 2) 

R1_V(Sem) 

R1_P(Sem) 

R1_Read 

R2_Read 

R1_Idle 

R2_Idle 
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•  Graphical Representation 

•  Matrix Representation 

Pre =  

PN Matrix Representation  

P1 

2 

P2 

P3 

P4 

t1 t2 

3 

 t1 t2 
P1 1 0 
P2 3 0 
P3 0 1 
P4 0 0 

Post =  

 t1 t2 
P1 0 0 
P2 0 0 
P3 2 0 
P4 1 0 
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 Definition : 
 Let  R be a PN.  
 We define C, the Incidence Matrix of R by: 

C = Post - Pre 

 Firing:  
 Let M[t>M'. We have: 

 M'(p) = M(p) + Post(p, t) - Pre(p, t) = M(p) + C(p, t) 

Incidence Matrix  
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Characteristic vector and equation   

 Definition : Parikh vector (Characteristic vector) 
Let s be a firing sequence. The Parikh vector s of s is an integer vector, indexed 

by transitions. The t entry represents the number of occurrences of t in s. 

    s = t1 t2 t1 t4     ⇒     s = 

 Definition : Characteristic equation  
Let M [s> M', then M' an be deduced from M by applying the characteristic 

equation:  
M' = M + C.s 

2 
1 
0 
1 



  Definition : The Reachability Graph (RG) of marked PN 
<R, M0>, noted RG(R, M0), is a transitions system  
   < Q, Δ, λ, q0 > such that: 

 Q is the set of reachable markings in from M0 
  Q = { M | M ∈ INP  ∧  ∃σ ∈ T* ,  M0 [σ> M } 

 Δ is the set of arcs connecting two markings reachable from M0 
   Δ = {(q1, q2) ∈ Q × Q | t ∈ T, q1[t> q2} 

 λ  is a label function, that associates to each arcs in  Δ, the name 
of the transition that have been fired. 

	
  λ : Δ   T  	


 q0 = M0 

39 

Reachability Graph 



RG.Q = {Mo}; RG.Δ = ø; RG.q0 = Mo ; 
States = {Mo}; 

While (States <> ø) {  
   s = pick a state in States  ; 
 States  = States \ {s}; 
   for each  t ∈ T { 
      if (s[t>) { 
         s [t> ns ;  
         if (ns ∉ RG.Q) { 
            RG.Q = RG.Q ∪ {ns} ; 
        States = States ∪ {ns} ; 
         } 
         RG.Δ = RG.Δ ∪ {(s, ns)} ; 
         RG.λ(s, ns) = t ; 
      } 
   } 
} 
Return RG; 

40 

Reachability Graph Construction Algorithm  
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Reachability Graph – Example 

R1_Idle + W_Idle + R2_Idle!
+ 2.Sem!

R1_Idle + W_Write + R2_Idle!

R1_Read + W_Idle + R2_Idle!
+ Sem!

R1_Idle + W_Idle + R2_Read!
+ Sem!

R1_Read + W_Idle + R2_Read!

R2_P(Sem)!R2_V(Sem)!

R1_P(Sem)!

R2_V(Sem)!

R1_P(Sem)!

R1_V(Sem)!

W_V(Sem,2)!W_P(Sem,2)!

R2_P(Sem)!R2_V(Sem)!

•! •!

R2_P(Sem) 

•!•!

2 

2 

•!
R2_V(Sem) 

W_Idle 

Sem 

W_Write 

W_P(Sem, 2) 

W_V(Sem, 2) 

R1_V(Sem) 

R1_P(Sem) 

R1_Read 

R2_Read 

R1_Idle 

R2_Idle 



 • The RG depends on both R and  M0. 

 • A finite RG can contain infinite sequences.   
• Existence of cycles. 

 • The RG can be infinite! 
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Reachability Graph – Remarks 

• 
P1 

2 
P2 P3 

t1 

t2 
t3 

2



 Let <R, M0> be a marked PN. s =t1.t2…tn… , 
where ti ∈T is an infinite sequence, iff,  for each 
finite prefix s’ of s, s’ is a firing sequence of       
<R, M0>, i.e., 

 if s = t1.t2. … .tn. …, then for all i,  
      if si = t1.….ti, then M0[si> 

43 

Properties : infinite sequence 

p 

a b 

•"
<R, M0> : 

abababab….. 



A PN <R, M0> is pseudo-alive if  
∀ M ∈ RG(R, M0), ∃ t ∈ T : M[t>    

44 

p 

a b 

•"
<R, M0> : 2 RG(R, M0) : 

p 
a 

Properties : the pseudo-aliveness 
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p 

a b 

•"

<R, M0>  
p 

a b 

•"

<R’, M0>  

2 

Properties : the quasi-aliveness 

A PN <R, M0> is quasi-alive if  
∀ t ∈ T, ∃ M ∈ RG(R, M0) : M[t>    



46 

p 
a 

2.p 
a 

n.p 
a 

b 

b 

b 

b 

• 
• 
• 

RG(R, M0) : 

p 

a b 

•"
<R, M0> : 2 

Properties : the aliveness 

A PN <R, M0> is alive if : 
∀ M ∈ RG(R, M0), <R, M> is quasi-alive  



Ma  is a Home State of <R, M0> if:   

∀ M ∈ RG(R, M0), ∃ a sequence s : M[s>Ma. 
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< p1 + q1 > 

< p2 + q1 > < p1 + q2 > 

< p2 + q2 > 

< r > 

a"

a"

b"

b"

c" d"

RG(R, M0)"

p1" q1"

p2" q2"
r"

a" b"c"

d"

< R, M0 >!

•" •"

Properties : the home state 



 A PN <R, M0> is not bounded if : 

∀ n ∈ N, ∃ M ∈ RG(R, M0), ∃ p ∈ P s.t. : M(p) > n    

48 

Properties : the boundedness 

The RG is infinite 



• If <R, M0>  is pseudo-alive or not bounded, then 
<R, M0>  admits an infinite sequence. 

•  If <R, M0> is alive, then it is quasi-alive and pseudo-
alive. 

• If <R, M0> is quasi-live and admits M0 as a home 
state, then<R, M0> is alive. 
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Relations between properties  



•  Peterson algorithm : mutual exclusion of two processes. 
– The two processes are symmetrical. 
– A shared memory contains variables: turn, demp and demq. 

•  Code of process p:  

–  Initially :  
•  demp = demq = false 

50 

Peterson Algorithm Model (PAM) 

A : ! demp = true!
B : ! turn = q!
C :! wait (turn == p || demq  == false)!
D :! < Section critique >!
E :! demp = false; goto A!



PAM : execution of the first instruction 
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A : ! demp  = true!

Move p from  A  to B: 

Potentially, modifies the value of demp: 

p at A 

p at B 

p.A 

p at B 

p at A 
demp  == false demp  == true 

p.A1 

p.A2 



PAM : execution of the second instruction 

52 

p at C 

p at B 
turn == p turn == q 

p.B1 

p.B2 

B : turn = q!
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C :! wait (turn == p || demq == faux)!

p at D 

p at C 

p.C1 

p.C2 

trun == p demq   == faux 

PAM : the waiting model 
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D :! < Section critique >!
E :! demp = faux; goto A!

p at D 

p at E 

p.D 

p at A 

p.E1 

p.E2 

demp   == false demp   == true 

PAM : the critical section exit 
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p at D 

p at E 

p at A 

p at B 

demp  == faux turn== p 

turn== q demq  == faux demp  == vrai 

• 

• 

• • 

p at C 

PAM  : putting all together 
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First Practice. 
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Specification of the system: 
the temporal logic. 



 Safety  : No unwanted situation is reached 

 Liveness : Wanted situation are eventually reached 

 Fairness : Particular liveness properties   

58 

What kinds of properties ? 

Any property is the conjunction of safety and liveness (Lamport 77) 



•  Propositional logic is not sufficient! 
– It addresses the properties which are 

local to some state.  

•  A formalism to express properties, 
– on a sequence of states (program 

states, system states) or,  
– on a sequence of actions (instructions) 

59 

Why a temporal logic ? 



A mutual exclusion algorithm 

Initial state : P=1 ; Q=1 ; reqP = 0 ; reqQ = 0 (2 global  variables) 

P:  1- reqP := 1      Q:  1- reqQ := 1 
  2- wait (reqQ = 0)      2- wait (reqP = 0) 
  3- critical sect.       3- critical sect. 
  4- reqP := 0; goto 1     4- reqQ := 0; goto 1 
      
•  Prop1:  In any case, there is at most one process  

   in the critical section 

•  Prop2:  Any process requiring the critical section will  
   eventually reaches it 

•  Prop3:  The order of entrances in the critical section  
   must respect the order of the requests. 

60 
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Kripke Structure of the previous algorithm 

{P=2,reqP=1,!
  Q=4,reqQ=1} 

{P=4,reqP=1,!
  Q=2,reqQ=1} 

{P=1,reqP=0,!
  Q=4,reqQ=1} 

{P=2,reqP=1,!
  Q=3,reqQ=1} 

{P=3,reqP=1,!
  Q=2,reqQ=1} {P=4,reqP=1,!

  Q=1,reqQ=0} 

{P=2,reqP=1,!
  Q=2,reqQ=1} {P=1,reqP=0,!

  Q=3,reqQ=1} 
{P=3,reqP=1,!
  Q=1,reqQ=0} 

{P=1,reqP=0,Q=1,reqQ=0} 

{P=2,reqP=1,!
  Q=1,reqQ=0} 

{P=1,reqP=0,!
  Q=2,reqQ=1} 



•  The property is satisfied! 

•  It can be checked by using the set of 
reachable states.  
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Property Prop1 

For each reachable state,  
(P = 3 and Q = 3) does not hold  



•  The property is not satisfied! 
 from  {P = 2, reqP = 1, Q = 2, reqQ = 1} 
 there is no more reachable state (deadlock)  
 in particular those satisfying (P=3). 

•  Its verification requires the reachability 
graph (states are not enough). 63 

Property Prop2 

For each path and for each state visited by this path 
if (P = 2) holds,  
then for each path starting from this state,  
there is a state satisfying (P = 3). 



•  The property is not satisfied ! 
  from the state  {P=2, reqP=1, Q=1, reqQ=0}  
 there exists a path in which (P=3) is never satisfied 
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Property Prop3 

For each path and for each state of this path 
if [(P=2) and (Q=1)] holds,  
then for each path starting from this state,  
(Q=3) does not hold until (P=3) holds. 
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Linear time properties 



Recall : Linear time semantics 

The linear time 
semantics of a Kripke 
structure corresponds 

to the (possibly infinite) 
set of all infinite paths   

s0 

s1 

s3 

s1 

s3 

s0 

s0 

s2 

s5 

s2 

s5 

s0 

s0 

s1 

s3 

s2 

s5 

s0 

… 
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Logics to express linear time properties 

•  LTL = Linear-time Temporal Logic 

•  Syntax: 
Let AP be a set of atomic propositions. 
–  a ∈ AP is an LTL formula 
–  If φ1 and φ2 are LTL formulae then so are 

 ¬ φ1   φ1 ∧ φ2   X φ2    φ2 U φ2 

where X stands for « next » and U for « until » 
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Semantics of LTL 
•  To each LTL formula φ, we associate a language L

(φ) of ω-words over 2AP (i.e. we have L(φ) ⊆ (2AP)ω ). 
•  Let σ  ∈ (2AP)ω. 	


 σ ∈ L(a)   ⇔  a ∈ σ(0) 
 σ ∈ L(¬ φ)   ⇔  ¬σ ∈ L(φ) 
 σ ∈ L(φ1 ∧ φ2) ⇔  σ ∈ L(φ1) ∩ L(φ2)  
 σ ∈ L(X φ)   ⇔  σ1 ∈ L(φ) 
 σ ∈ L(φ1 U φ2) ⇔   ∃	  i : σi ∈ L(φ2) ∧∀ k < i, σk ∈ L(φ1) 
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Syntactic complements 

•  The previous slides defined only a minimal 
version of the syntax. 

•  In practice, we will make use of the following 
abbreviations: 

•  φ1 ∨ φ2   ≡   ¬(¬ φ1 ∧ ¬ φ2 ) 

•  φ1 ⇒ φ2   ≡   ¬ φ1 ∨ φ2  
•  true     ≡   ¬ a ∨ a 

•  false    ≡   ¬ true 

•    F φ    ≡   true U φ 

•   G φ    ≡   ¬ F ¬φ  
•   φ1 W φ2  ≡    (φ1 U φ2) ∨ G φ1 

•   φ1 R φ2  ≡   ¬ (¬ φ1 U ¬ φ2) 

where F stands for « finally », G for « globally »,  
W for « weak until » and R for « release » 
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Illustration of the semantics 

•   a 

•   X φ	


•   φ1 U φ2 

•   F φ 

•   G φ 

•   φ1 W φ2 

•   φ1 R φ2 
70 



Examples of LTL formulae (1/3) 
•  Reachability 

G ¬(a1 ∧ a2 ): It always holds that a1 and a2 do 
not appear together. Assuming an appropriate 
valuation, this expresses the mutex property: 
Two processes never enter their critical sections 
at the same time. 

•  Safety  
(¬x) W y: x does not occur before the first 
occurrence of y. Note: y may not occur at all, in 
which case x also does not occur. 

•  Liveness  
(¬x) U y: x does not occur before the first 
occurrence of y, and y does eventually occur. 
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• GF p 
p appears infinitely often. 

• G(r1 ⇒ F a1) 
When interpreted on a mutex algorithm: 
Whenever process 1 requests to enter its 
critical section, it will eventually succeed. 
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Examples of LTL formulae (2/3) 



•  Prop1  
G ¬ (P = 3 ∧ Q = 3) 

•  Prop2  
G ((P = 2) ⇒  F (P = 3)) 

•  Prop3 
G ((P = 2 ∧ Q = 1) ⇒  (¬ Q = 3) U (P = 3)) 
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Examples of LTL formulae (3/3) 



Interpretation of LTL on Kripke structures 

•  Let                      be a Kripke structure 

•  A run ρ of Κ satisfies an LTL formula φ 
(written ρ ╞═ φ) iff (ρ) ∈ L(φ). 

•  By extension, we say that Κ satisfies φ 
(written Κ╞═ φ) iff for each run ρ  starting 
at s0 (i.e. those with ρ(0) = s0) we have  
ρ ╞═ φ. 
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Branching time properties 



Recall : Branching time semantics 

The branching time semantics of a Kripke structure 
corresponds to the underlying infinite tree       

s1 

s0 

s2 

s3 s5 s4 

s7 s6 

s1 

s0 

s2 s1 

s0 

s2 

s4 

s6 s7 s7 s6 

s2 s2 s2 s1 s1 s1 
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Logics to express the branching time properties 

•  CTL = Computational Tree Logic 
•  CTL versus LTL 

– LTL describes properties of individual executions. 
– Its semantics is defined as a set of executions. 

– CTL describes properties of a computation tree: 
formulas can reason about many executions at 
once. (CTL belongs to the family of branching-
time logics.) 

– Its semantics is defined in terms of states. 
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Syntax of CTL 

•  CTL Combines temporal operators with 
quantification over runs. 

•  Syntax: 
Let AP be a set of atomic propositions. 
–  a ∈ AP is a CTL formula 
–  If φ1 and φ2 are CTL formulae then so are 

¬ φ1  φ1 ∧ φ2   EX φ1   EG φ1  φ1 EU φ2 

where X stands for « next », G for 
« globally », and U for « until » 
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Semantics of CTL 
•  Let K = 〈S, , →, s0〉 be a Kripke structure. 
•  To each CTL formula φ, we associate a set SK(φ) of states w.r.t. 

K  (i.e. we have SK(φ) ⊆ S )	


 s ∈ SK(a)   ⇔  a ∈ (s) 
 s ∈ SK(¬ φ)   ⇔  s ∉ SK(φ) 
 s ∈ SK(φ1 ∧ φ2)  ⇔  s ∈ SK(φ1) ∩ SK(φ2)  

 s ∈ SK(EX φ)  ⇔  ∃ s’ : s → s’ ∧ s’ ∈ SK(φ) 
 s ∈ SK(EG φ)  ⇔  ∃ a run ρ of K s.t. ρ(0) = s 
∧              ∀ i ≥ 0, ρ(i) ∈ SK(φ) 

 s ∈ SK(φ1 EU φ2) ⇔ ∃ a run ρ of K s.t. ρ(0) = s ∧ 
       ∃ i s.t. ρ(i) ∈ SK(φ2) ∧∀ k < i, ρ(k) ∈ SK(φ1) 

•  K satisfies a CTL formula φ iff s0 ∈ SK(φ)  79 



Syntactic complements 

•  In practice, we will make use of the following 
abbreviations: 

•  φ1 ∨ φ2   ≡   ¬(¬ φ1 ∧ ¬ φ2 ) 

•  φ1 ⇒ φ2   ≡   ¬ φ1 ∨ φ2  
•  true     ≡   ¬ a ∨ a 

•  false    ≡   ¬ true 

•   EF φ    ≡   true EU φ 

•   φ1 EW φ2  ≡    (φ1 EU φ2) ∨ EG φ1 

•   φ1 R φ2   ≡   ¬ (¬ φ1 U ¬ φ2) 

•  AX φ    ≡    ¬ EX ¬ φ	


•  AG φ    ≡    ¬ EF ¬ φ	

•  AF φ    ≡    ¬ EG ¬ f 

•  φ1 AW φ2  ≡    ¬ (¬ φ2 EU ¬ (φ1 ∨ φ2)) 
•  φ1 AU φ2   ≡    AFφ2 ∧ (φ1 AW φ2) 
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Semantics illustration (1/8) 

AG p 
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AF p 
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Semantics illustration (2/8) 



AX p 
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Semantics illustration (3/8) 



q AU p 
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Semantics illustration (4/8) 



EG p 
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Semantics illustration (5/8) 



EF p 
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Semantics illustration (6/8) 



EX p 
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Semantics illustration (7/8) 



q EU p 
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Semantics illustration (8/8) 



Examples of CTL formulae (1/2) 

•  Reachability 
AG ¬(a1 ∧ a2 ) : It always holds that a1 and a2 do 
not appear together. Assuming an appropriate 
valuation, this expresses the mutex property: Two 
processes never enter their critical sections at the 
same time. 

•  Safety  
(¬x) AW y : x does not occur before the first 
occurrence of y. Note: y may not occur at all, in 
which case x also does not occur. 

•  Liveness  
(¬x) AU y : x does not occur before the first 
occurrence of y, and y does eventually occur. 

89 



•  AG AF p 
p appears infinitely often. 

•  AG(r1 ⇒ AF a1) 
When interpreted on a mutex algorithm: 
Whenever process 1 requests to enter its 
critical section, it will eventually succeed. 
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Examples of CTL formulae (2/2) 



Expressiveness of CTL and LTL (1/3) 

•  CTL and LTL have a large overlap, i.e. properties 
expressible in both logics. 

Examples: 
•  Invariants (e.g., “p never holds.”) 

AG ¬p    or    G ¬p 

•  Reactivity (e.g. “Whenever p happens, 
        eventually q will happen.”) 

AG (p ⇒ AF q)    or    G(p ⇒ Fq) 
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•  CTL considers the whole computation tree whereas LTL only 
considers individual runs. Thus CTL allows to reason about 
the branching behavior, considering multiple possible runs at 
once.  

•  Examples: 
–  The CTL property AG EF p (“reset property”) is not expressible in LTL. 
–  The CTL property AF AX p distinguishes the following two systems, 

but the LTL property FX p does not: 

∅ ∅ {p} 

∅ {p} 

∅ ∅ 

{p} ∅ 

∅ {p} 

∅ ∅ 

92 

Expressiveness of CTL and LTL (2/3) 



•  Even though CTL considers the whole computation tree, 
its state-based semantics is subtly different from LTL.  
Thus, there are also properties expressible in LTL but not 
in CTL.  

•  Example: 
 The LTL property FG p is not expressible in CTL: 

K ╞═ FG p    but     K ╞═ AF AG p 

∅ {p} {p} 
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Expressiveness of CTL and LTL (3/3) 



•  The expressiveness of CTL and LTL is incomparable; 
there is an overlap, and each logic can express 
properties that the other cannot. 

•  Remark: There is a logic, called CTL*, that combines the 
expressiveness of CTL and LTL. However, we will not 
deal with it in this course. 
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Conclusion  
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Second Practice. 


