
1

Modeling	 and	 Verifying	 Distributed	
Systems	 with	 Petri	 Nets	 :	 	

Place-‐Transi>on	 Nets	 and	 temporal	 logic	

Souheib Baarir, Fabrice Kordon

First.last@lip6.fr

Labrotaoire d’Informatique de Paris 6

2

References (1/2)

[1]	 E.	 Clarke,	 O.Grumberg,	 and	 A.	 Peled.	 Model	 Checking.	 MIT	 Press,	 2000.	

[2]	 M.	 Diaz.	 R	 ́eseaux	 de	 Petri,	 Modèles	 fondamentaux.	 Traité	 IC2,	 série	 	 	 	 	 	 	 	
InformaKque	 et	 systèmes	 d’informaKon.	 Hermes	 Science,	 June	 2001.	

[3]	 C.	 Girault	 and	 R.	 Valk.	 Petri	 Nets	 for	 Systems	 Engineering.	 Springer	 Verlag	 -‐	 	 	 	 	 	 	 	 	
ISBN:	 3-‐540-‐41217-‐4,	 2003.	

[4]	 S.	 Haddad,	 F.	 Kordon,	 and	 L.	 Petrucci,	 editors.	 Méthodes	 Formelles	 pour	 les	 	 	 	 	 	 	 	 	
Systèmes	 RéparKs	 et	 CoopéraKfs.	 Traité	 IC2	 -‐	 Hermes,	 2006.	

[5]	 S.	 Haddad,	 F.	 Kordon,	 L.	 Pautet,	 and	 L.	 Petrucci,	 editors.	 Models	 and	 Analysis	 in	 	 	 	 	 	 	
Distributed	 Systems.	 Wiley,	 2011.	

3

References (2/2)

4

Known approaches:

•  Deductive verification.

•  Program derivation.

•  Model checking.

Context : Formal verification

Formal	 VerificaKon	 is	 the	 act	 of	 proving	 or	 disproving	 the	
correctness	 of	 intended	 systems	 with	 respect	 to	 a	 certain	
formal	 specifica4on	 (property),	 using	 formal	 methods	 of	
mathema4cs.	

5

Context : Model Checking
Model Checking : consists of a systematically exhaustive

exploration of the mathematical model of the system, to prove
that it satisfies (or not) a given property (specification).

system property

model
checking

Which kind of properties ?
How to express these properties ?

Which abstraction for the system ?
From which formalism do we get

the desired abstraction ?

Search
Deduction

╞═

To represent discrete systems…

•  At each instant, the system has a given state. In
a given state, some atomic propositions are
satisfied when others are not:
– description of the value of each global variable,
– the calling stack(s),
– the program counter(s),
– the contents of the communicating channels, etc.

•  From a given state, a system can reach another
state by executing a transition.

6

Kripke structure

•  When a system can reach only a finite number
of states, the previous requirements are exactly
captured by Kripke structures.

•  Let AP be a finite set of atomic propositions
over the system.

•  A Kripke structure is a tuple where
–  S is the finite set of states
–  is the labeling function
–  is the transition relation
–  is the initial state

Example
 Let AP = {r1, r2, a1, a2}
 Possible interpretation :
 - ri : request to the critical section by Process i and

- ai : critical section access by Process i.

{r1}

∅

{r2}

{a1} {a2}

{r1, r2}

{a1, r2} {r1, a2}

s0

s1

s4 s3 s5

s2

s7 s6

Semantics of a system
•  Two particular semantics are generally admitted:

–  the linear time semantics,

–  the branching time semantics.

•  For the linear time semantics, an execution of the
system is an infinite path in the Kripke structure.

•  For the branching time ones, the execution of the
system is represented by the underlying infinite
tree of the Kripke structure.

9

Linear time semantics

The linear time
semantics of a Kripke
structure corresponds

to the (possibly infinite)
set of all infinite paths

s0

s1

s3

s1

s3

s0

s0

s2

s5

s2

s5

s0

s0

s1

s3

s2

s5

s0

…

10

Branching time semantics

Its branching time semantics corresponds to the underlying infinite tree
of the graph rooted in the initial state

s1

s0

s2

s3 s5 s4

s7 s6

s1

s0

s2 s1

s0

s2

s4

s6 s7 s7 s6

s2 s2 s2 s1 s1 s1

11

Notations (1/2)
•  Let be a Kripke structure.

–  (s,s’) ∈ → is noted s → s’ :

•  s is a predecessor of s’, and s’ is a successor of s

–  S* denotes the finite words on S.

–  Sω denotes the infinites words on S.

–  w = s0 … sn is a path of length n
 if we have si → si+1 for all i, 0 ≤ i < n.

12

Notations (2/2)
– s →* s’ means a path from s to s’

–  s →+ s’ means a path from s to s’ of positive length

– ρ = s0 s1 … is a run if we have si → si+1 for all i, 0 ≤ i.

– ρ(i) the ith state of ρ and,
ρi the suffix of ρ starting at ρ(i)

– For a run ρ = s0 s1 …,
 (ρ) is the ω-word (s0)(s1)… over 2AP

13

Kripke structure generators
•  A Kripke structure can be generated from many kinds of
 formalisms.

– A program,
– An algebraic composition of processes,
– A synchronized product of automata,

– A bounded Petri net (i.e. with a finite number of markings)
– Etc.

∅ {ri} {ai}

i=1..2

• Modeling the system
– Petri Net Formalism

•  Specifying of the system
– Linear Time Logic (LTL)
– Computation Time Logic (CTL)

15

Outlines

16

Modeling the system:
The case of Finite and Discrete Event Systems

•  Problem: modelling a producer/consumer
asynchronous system with infinite buffer.
– If the buffer is not empty, the consumer can consume

independently from the state of the producer.

17

From Automata to Petri Nets

Consumer Producer

a : produce a message

b : put a message

d : consume a message

e : treat a message

•  Possible Sequences:
– The sequence (de)* is acceptable…!
– The consumer can execute indefinitely…!

•  Need of conditions on certain actions:
– add of rectangles on arcs, to synchronise actions.
– Represent environment elements: the buffer.

18

Semantics of the model

•  Two types of nodes :
– Conditions are represented by cercles (Boolean holders).
– Events are represented by rectangles.

•  The Producer/Consumer model

19

Condition/Event Model

•  We note :
•n the set of predecessors of a node n
n• the set of successors of a node n

•  If n is an event, we call
•n the set of pre-conditions of n
n• the set of post-conditions of n

•  Examples:
•d = {c3, c5} the pre-conditions of d are c3 et c5
b• = {c1, c5} the post-conditions of b are c1 et c5

20

Notations

•  A step in C/E model is defined by:

 where, C1 and C2 are condition subsets and λ is an

event e, such that:
1)  • λ ⊆ C1

2)  C2 = (C1 \ • λ) ∪ λ •

•  Example: the Producer/Consumer model

21

Semantics of a C/E Model (1/2)

C1 C2
λ	

C0 = { c1, c3 }

C0 C1
a
•a = { c1 }

⇒ With C1 = (C0 \ •a) ∪ a•

a• = { c2 }

C1 = ({ c1, c3 } \ { c1 }) ∪ { c2 } = { c2, c3 }

•a ⊆ C0

•  A sequence of a C/E model is defined by:

 w = λ 1 λ 2 ... λ n

 such that for each i ∈ {1,…,n},

•  C0 is the subset of conditions representing the initial state.

22

Semantics of a C/E model (2/2)

is a step in the C/E system.

C i - 1 C i!
λ	
 i

•  ab is a sequence of the C/E model of the Producer/Consumer.

23

Example de sequence

24

Limits of the C/E model
•  Producer / Consumer:

avec C2 = {c1 , c3 , c5 }

C0 C2
ab

avec C3 = {c1 , c3 , c5 }

C2 C3
ab

C4
d

2 productions vs. 1 consumption!

C3 C4
de

mais C4 = {c1 , c3}, donc,

Must use a non Boolean model : Petri Nets (PN)

•  Representation:

25

PN model of the Producer/Consumer

Conditions → Places

Events → Transitions

•  State of the PN = Marking M =

where, M(p) is the number of tokens in place p.

Example : after the execution of sequence abab, M = 1.c1 + 1.c3 + 2. c5

 A PN R is tuple <P, T, Pre, Post> such that:

–  P: is a finite set of places (P ≠ ∅)
–  T: is a finite set of transitions (T ≠ ∅, P ∩ T = ∅)

–  Pre : P × T → IN
 Pre(p, t) = n (n > 0) ⇔	
 	

 the firing of a transition t is conditioned by the presence of n resources in p

–  Post : P × T → IN
 Post(p, t) = n (n > 0) ⇔	
 	

 the firing of t produce n resources in p

 A marked net <R, M0> has an initial marking M0 ∈ INP

26

Formal definition of a PN

A Petri Net - Example

27

The initial marking is M0

M0 =

3
4
2
0
0

• • • •
• • • •

•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

 The firing rule :

 • t ∈ T is enabled in M iff: ∀ p ∈ P, M(p) ≥ Pre(p,t).

 • if t is enabled, then its firing leads to the marking M' :
 ∀ p ∈ P, M'(p) = M(p) - Pre(p,t) + Post(p,t)

 The firing of t is noted : M [t> M'.

28

Firing a transition

Enabling- example

29

t2 and t4 are enabled in M0, we note M0 [t2 > and M0 [t4 >

• • • •
• • • •

•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

Firing – exemple (1/2)

30

The firing of t2 from M0 produces the marking M1 =

We note, M0 [t2 > M1

1
1
2
6
0

• • • •
• • • •

•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

t5

• ••

• •

• • •

• •

P1 P2 P3

t1 t2 t3 t4

3 2
3

2

3
2

6
3

P4 P5

t5

Firing – exemple (2/2)

31

We note M0 [t4 > M2

3
3
0
0
3

The firing of t4 from M0 produces the marking M2 =

• • • •
• • • •

•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

t5

• • •
• • • •

•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

t5

• • •

 A firing sequence from M0 to Mn is a word t0...tn-1 such that it exists a
set of markings M1,...,Mn-1 where : M0 [t0> M1 ... Mn-1 [tn-1> Mn

32

Firing Sequence

t2 t4 t3 is a firing sequence
starting from M0:

M0 [t2 > M1 [t4 > M3 [t3 > M4
• • • •

• • • •
•

P1 P2 P3

P4 P5

t1 t2 t3 t4 t5

3 2
3

2

3
2

6
3

1
0
0
6
3

M3 =

1
1
0
3
2

M4 =

33

The Reader/Writer: example

Proc R{
 P(sem)
 Read in file
 V(sem)
}

Proc W{
 P(sem)
 Wrtite to file
 V(sem)
}

R_Idle

•! •!
W_Idle

R_P(Sem)

R_Read

R_V(Sem)

sem •!

W_P(Sem)

W_V(Sem)

W_Write

2 Readers / 1 Writer: example (1/2)

34

Proc R1{
 P(sem)
 Read in file
 V(sem)
}

Proc W{
 P(sem*2)
 Wrtite to file
 V(sem*2)
}

Proc R2{
 P(sem)
 Read in file
 V(sem)
}

35

2 Readers / 1 Writer: example (2/2)
•! •!

R2_P(Sem)

•!•!

2

2

•!
R2_V(Sem)

W_Idle

Sem

W_Write

W_P(Sem, 2)

W_V(Sem, 2)

R1_V(Sem)

R1_P(Sem)

R1_Read

R2_Read

R1_Idle

R2_Idle

36

•  Graphical Representation

•  Matrix Representation

Pre =

PN Matrix Representation

P1

2

P2

P3

P4

t1 t2

3

 t1 t2
P1 1 0
P2 3 0
P3 0 1
P4 0 0

Post =

 t1 t2
P1 0 0
P2 0 0
P3 2 0
P4 1 0

37

 Definition :
 Let R be a PN.
 We define C, the Incidence Matrix of R by:

C = Post - Pre

 Firing:
 Let M[t>M'. We have:

 M'(p) = M(p) + Post(p, t) - Pre(p, t) = M(p) + C(p, t)

Incidence Matrix

38

Characteristic vector and equation

 Definition : Parikh vector (Characteristic vector)
Let s be a firing sequence. The Parikh vector s of s is an integer vector, indexed

by transitions. The t entry represents the number of occurrences of t in s.

 s = t1 t2 t1 t4 ⇒ s =

 Definition : Characteristic equation
Let M [s> M', then M' an be deduced from M by applying the characteristic

equation:
M' = M + C.s

2
1
0
1

  Definition : The Reachability Graph (RG) of marked PN
<R, M0>, noted RG(R, M0), is a transitions system
 < Q, Δ, λ, q0 > such that:

 Q is the set of reachable markings in from M0
 Q = { M | M ∈ INP ∧ ∃σ ∈ T* , M0 [σ> M }

 Δ is the set of arcs connecting two markings reachable from M0
 Δ = {(q1, q2) ∈ Q × Q | t ∈ T, q1[t> q2}

 λ is a label function, that associates to each arcs in Δ, the name
of the transition that have been fired.

	
 λ : Δ T 	

 q0 = M0

39

Reachability Graph

RG.Q = {Mo}; RG.Δ = ø; RG.q0 = Mo ;
States = {Mo};

While (States <> ø) {
 s = pick a state in States ;
 States = States \ {s};
 for each t ∈ T {
 if (s[t>) {
 s [t> ns ;
 if (ns ∉ RG.Q) {
 RG.Q = RG.Q ∪ {ns} ;
 States = States ∪ {ns} ;
 }
 RG.Δ = RG.Δ ∪ {(s, ns)} ;
 RG.λ(s, ns) = t ;
 }
 }
}
Return RG;

40

Reachability Graph Construction Algorithm

41

Reachability Graph – Example

R1_Idle + W_Idle + R2_Idle!
+ 2.Sem!

R1_Idle + W_Write + R2_Idle!

R1_Read + W_Idle + R2_Idle!
+ Sem!

R1_Idle + W_Idle + R2_Read!
+ Sem!

R1_Read + W_Idle + R2_Read!

R2_P(Sem)!R2_V(Sem)!

R1_P(Sem)!

R2_V(Sem)!

R1_P(Sem)!

R1_V(Sem)!

W_V(Sem,2)!W_P(Sem,2)!

R2_P(Sem)!R2_V(Sem)!

•! •!

R2_P(Sem)

•!•!

2

2

•!
R2_V(Sem)

W_Idle

Sem

W_Write

W_P(Sem, 2)

W_V(Sem, 2)

R1_V(Sem)

R1_P(Sem)

R1_Read

R2_Read

R1_Idle

R2_Idle

 • The RG depends on both R and M0.

 • A finite RG can contain infinite sequences.
• Existence of cycles.

 • The RG can be infinite!

42

Reachability Graph – Remarks

•
P1

2
P2 P3

t1

t2
t3

2

 Let <R, M0> be a marked PN. s =t1.t2…tn… ,
where ti ∈T is an infinite sequence, iff, for each
finite prefix s’ of s, s’ is a firing sequence of
<R, M0>, i.e.,

 if s = t1.t2. … .tn. …, then for all i,
 if si = t1.….ti, then M0[si>

43

Properties : infinite sequence

p

a b

•"
<R, M0> :

abababab…..

A PN <R, M0> is pseudo-alive if
∀ M ∈ RG(R, M0), ∃ t ∈ T : M[t>

44

p

a b

•"
<R, M0> : 2 RG(R, M0) :

p
a

Properties : the pseudo-aliveness

45

p

a b

•"

<R, M0>
p

a b

•"

<R’, M0>

2

Properties : the quasi-aliveness

A PN <R, M0> is quasi-alive if
∀ t ∈ T, ∃ M ∈ RG(R, M0) : M[t>

46

p
a

2.p
a

n.p
a

b

b

b

b

•
•
•

RG(R, M0) :

p

a b

•"
<R, M0> : 2

Properties : the aliveness

A PN <R, M0> is alive if :
∀ M ∈ RG(R, M0), <R, M> is quasi-alive

Ma is a Home State of <R, M0> if:

∀ M ∈ RG(R, M0), ∃ a sequence s : M[s>Ma.

47

< p1 + q1 >

< p2 + q1 > < p1 + q2 >

< p2 + q2 >

< r >

a"

a"

b"

b"

c" d"

RG(R, M0)"

p1" q1"

p2" q2"
r"

a" b"c"

d"

< R, M0 >!

•" •"

Properties : the home state

 A PN <R, M0> is not bounded if :

∀ n ∈ N, ∃ M ∈ RG(R, M0), ∃ p ∈ P s.t. : M(p) > n

48

Properties : the boundedness

The RG is infinite

• If <R, M0> is pseudo-alive or not bounded, then
<R, M0> admits an infinite sequence.

• If <R, M0> is alive, then it is quasi-alive and pseudo-
alive.

• If <R, M0> is quasi-live and admits M0 as a home
state, then<R, M0> is alive.

49

Relations between properties

•  Peterson algorithm : mutual exclusion of two processes.
– The two processes are symmetrical.
– A shared memory contains variables: turn, demp and demq.

•  Code of process p:

–  Initially :
•  demp = demq = false

50

Peterson Algorithm Model (PAM)

A : ! demp = true!
B : ! turn = q!
C :! wait (turn == p || demq == false)!
D :! < Section critique >!
E :! demp = false; goto A!

PAM : execution of the first instruction

51

A : ! demp = true!

Move p from A to B:

Potentially, modifies the value of demp:

p at A

p at B

p.A

p at B

p at A
demp == false demp == true

p.A1

p.A2

PAM : execution of the second instruction

52

p at C

p at B
turn == p turn == q

p.B1

p.B2

B : turn = q!

53

C :! wait (turn == p || demq == faux)!

p at D

p at C

p.C1

p.C2

trun == p demq == faux

PAM : the waiting model

54

D :! < Section critique >!
E :! demp = faux; goto A!

p at D

p at E

p.D

p at A

p.E1

p.E2

demp == false demp == true

PAM : the critical section exit

55

p at D

p at E

p at A

p at B

demp == faux turn== p

turn== q demq == faux demp == vrai

•

•

• •

p at C

PAM : putting all together

56

First Practice.

57

Specification of the system:
the temporal logic.

 Safety : No unwanted situation is reached

 Liveness : Wanted situation are eventually reached

 Fairness : Particular liveness properties

58

What kinds of properties ?

Any property is the conjunction of safety and liveness (Lamport 77)

•  Propositional logic is not sufficient!
– It addresses the properties which are

local to some state.

•  A formalism to express properties,
– on a sequence of states (program

states, system states) or,
– on a sequence of actions (instructions)

59

Why a temporal logic ?

A mutual exclusion algorithm

Initial state : P=1 ; Q=1 ; reqP = 0 ; reqQ = 0 (2 global variables)

P: 1- reqP := 1 Q: 1- reqQ := 1
 2- wait (reqQ = 0) 2- wait (reqP = 0)
 3- critical sect. 3- critical sect.
 4- reqP := 0; goto 1 4- reqQ := 0; goto 1

•  Prop1: In any case, there is at most one process

 in the critical section

•  Prop2: Any process requiring the critical section will
 eventually reaches it

•  Prop3: The order of entrances in the critical section
 must respect the order of the requests.

60

61

Kripke Structure of the previous algorithm

{P=2,reqP=1,!
 Q=4,reqQ=1}

{P=4,reqP=1,!
 Q=2,reqQ=1}

{P=1,reqP=0,!
 Q=4,reqQ=1}

{P=2,reqP=1,!
 Q=3,reqQ=1}

{P=3,reqP=1,!
 Q=2,reqQ=1} {P=4,reqP=1,!

 Q=1,reqQ=0}

{P=2,reqP=1,!
 Q=2,reqQ=1} {P=1,reqP=0,!

 Q=3,reqQ=1}
{P=3,reqP=1,!
 Q=1,reqQ=0}

{P=1,reqP=0,Q=1,reqQ=0}

{P=2,reqP=1,!
 Q=1,reqQ=0}

{P=1,reqP=0,!
 Q=2,reqQ=1}

•  The property is satisfied!

•  It can be checked by using the set of
reachable states.

62

Property Prop1

For each reachable state,
(P = 3 and Q = 3) does not hold

•  The property is not satisfied!
 from {P = 2, reqP = 1, Q = 2, reqQ = 1}
 there is no more reachable state (deadlock)
 in particular those satisfying (P=3).

•  Its verification requires the reachability
graph (states are not enough). 63

Property Prop2

For each path and for each state visited by this path
if (P = 2) holds,
then for each path starting from this state,
there is a state satisfying (P = 3).

•  The property is not satisfied !
 from the state {P=2, reqP=1, Q=1, reqQ=0}
 there exists a path in which (P=3) is never satisfied

64

Property Prop3

For each path and for each state of this path
if [(P=2) and (Q=1)] holds,
then for each path starting from this state,
(Q=3) does not hold until (P=3) holds.

65

Linear time properties

Recall : Linear time semantics

The linear time
semantics of a Kripke
structure corresponds

to the (possibly infinite)
set of all infinite paths

s0

s1

s3

s1

s3

s0

s0

s2

s5

s2

s5

s0

s0

s1

s3

s2

s5

s0

…

66

Logics to express linear time properties

•  LTL = Linear-time Temporal Logic

•  Syntax:
Let AP be a set of atomic propositions.
–  a ∈ AP is an LTL formula
–  If φ1 and φ2 are LTL formulae then so are

 ¬ φ1 φ1 ∧ φ2 X φ2 φ2 U φ2

where X stands for « next » and U for « until »

67

Semantics of LTL
•  To each LTL formula φ, we associate a language L

(φ) of ω-words over 2AP (i.e. we have L(φ) ⊆ (2AP)ω).
•  Let σ ∈ (2AP)ω. 	

 σ ∈ L(a) ⇔ a ∈ σ(0)
 σ ∈ L(¬ φ) ⇔ ¬σ ∈ L(φ)
 σ ∈ L(φ1 ∧ φ2) ⇔ σ ∈ L(φ1) ∩ L(φ2)
 σ ∈ L(X φ) ⇔ σ1 ∈ L(φ)
 σ ∈ L(φ1 U φ2) ⇔ ∃	 i : σi ∈ L(φ2) ∧∀ k < i, σk ∈ L(φ1)

68

Syntactic complements

•  The previous slides defined only a minimal
version of the syntax.

•  In practice, we will make use of the following
abbreviations:

•  φ1 ∨ φ2 ≡ ¬(¬ φ1 ∧ ¬ φ2)

•  φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2
•  true ≡ ¬ a ∨ a

•  false ≡ ¬ true

•  F φ ≡ true U φ

•  G φ ≡ ¬ F ¬φ
•  φ1 W φ2 ≡ (φ1 U φ2) ∨ G φ1

•  φ1 R φ2 ≡ ¬ (¬ φ1 U ¬ φ2)

where F stands for « finally », G for « globally »,
W for « weak until » and R for « release »

69

Illustration of the semantics

•  a

•  X φ	

•  φ1 U φ2

•  F φ

•  G φ

•  φ1 W φ2

•  φ1 R φ2
70

Examples of LTL formulae (1/3)
•  Reachability

G ¬(a1 ∧ a2): It always holds that a1 and a2 do
not appear together. Assuming an appropriate
valuation, this expresses the mutex property:
Two processes never enter their critical sections
at the same time.

•  Safety
(¬x) W y: x does not occur before the first
occurrence of y. Note: y may not occur at all, in
which case x also does not occur.

•  Liveness
(¬x) U y: x does not occur before the first
occurrence of y, and y does eventually occur.

71

• GF p
p appears infinitely often.

• G(r1 ⇒ F a1)
When interpreted on a mutex algorithm:
Whenever process 1 requests to enter its
critical section, it will eventually succeed.

72

Examples of LTL formulae (2/3)

•  Prop1
G ¬ (P = 3 ∧ Q = 3)

•  Prop2
G ((P = 2) ⇒ F (P = 3))

•  Prop3
G ((P = 2 ∧ Q = 1) ⇒ (¬ Q = 3) U (P = 3))

73

Examples of LTL formulae (3/3)

Interpretation of LTL on Kripke structures

•  Let be a Kripke structure

•  A run ρ of Κ satisfies an LTL formula φ
(written ρ ╞═ φ) iff (ρ) ∈ L(φ).

•  By extension, we say that Κ satisfies φ
(written Κ╞═ φ) iff for each run ρ starting
at s0 (i.e. those with ρ(0) = s0) we have
ρ ╞═ φ.

74

75

Branching time properties

Recall : Branching time semantics

The branching time semantics of a Kripke structure
corresponds to the underlying infinite tree

s1

s0

s2

s3 s5 s4

s7 s6

s1

s0

s2 s1

s0

s2

s4

s6 s7 s7 s6

s2 s2 s2 s1 s1 s1

76

Logics to express the branching time properties

•  CTL = Computational Tree Logic
•  CTL versus LTL

– LTL describes properties of individual executions.
– Its semantics is defined as a set of executions.

– CTL describes properties of a computation tree:
formulas can reason about many executions at
once. (CTL belongs to the family of branching-
time logics.)

– Its semantics is defined in terms of states.

77

Syntax of CTL

•  CTL Combines temporal operators with
quantification over runs.

•  Syntax:
Let AP be a set of atomic propositions.
–  a ∈ AP is a CTL formula
–  If φ1 and φ2 are CTL formulae then so are

¬ φ1 φ1 ∧ φ2 EX φ1 EG φ1 φ1 EU φ2

where X stands for « next », G for
« globally », and U for « until »

78

Semantics of CTL
•  Let K = 〈S, , →, s0〉 be a Kripke structure.
•  To each CTL formula φ, we associate a set SK(φ) of states w.r.t.

K (i.e. we have SK(φ) ⊆ S)	

 s ∈ SK(a) ⇔ a ∈ (s)
 s ∈ SK(¬ φ) ⇔ s ∉ SK(φ)
 s ∈ SK(φ1 ∧ φ2) ⇔ s ∈ SK(φ1) ∩ SK(φ2)

 s ∈ SK(EX φ) ⇔ ∃ s’ : s → s’ ∧ s’ ∈ SK(φ)
 s ∈ SK(EG φ) ⇔ ∃ a run ρ of K s.t. ρ(0) = s
∧ ∀ i ≥ 0, ρ(i) ∈ SK(φ)

 s ∈ SK(φ1 EU φ2) ⇔ ∃ a run ρ of K s.t. ρ(0) = s ∧
 ∃ i s.t. ρ(i) ∈ SK(φ2) ∧∀ k < i, ρ(k) ∈ SK(φ1)

•  K satisfies a CTL formula φ iff s0 ∈ SK(φ) 79

Syntactic complements

•  In practice, we will make use of the following
abbreviations:

•  φ1 ∨ φ2 ≡ ¬(¬ φ1 ∧ ¬ φ2)

•  φ1 ⇒ φ2 ≡ ¬ φ1 ∨ φ2
•  true ≡ ¬ a ∨ a

•  false ≡ ¬ true

•  EF φ ≡ true EU φ

•  φ1 EW φ2 ≡ (φ1 EU φ2) ∨ EG φ1

•  φ1 R φ2 ≡ ¬ (¬ φ1 U ¬ φ2)

•  AX φ ≡ ¬ EX ¬ φ	

•  AG φ ≡ ¬ EF ¬ φ	

•  AF φ ≡ ¬ EG ¬ f

•  φ1 AW φ2 ≡ ¬ (¬ φ2 EU ¬ (φ1 ∨ φ2))
•  φ1 AU φ2 ≡ AFφ2 ∧ (φ1 AW φ2)

80

Semantics illustration (1/8)

AG p

81

AF p

82

Semantics illustration (2/8)

AX p

83

Semantics illustration (3/8)

q AU p

84

Semantics illustration (4/8)

EG p

85

Semantics illustration (5/8)

EF p

86

Semantics illustration (6/8)

EX p

87

Semantics illustration (7/8)

q EU p

88

Semantics illustration (8/8)

Examples of CTL formulae (1/2)

•  Reachability
AG ¬(a1 ∧ a2) : It always holds that a1 and a2 do
not appear together. Assuming an appropriate
valuation, this expresses the mutex property: Two
processes never enter their critical sections at the
same time.

•  Safety
(¬x) AW y : x does not occur before the first
occurrence of y. Note: y may not occur at all, in
which case x also does not occur.

•  Liveness
(¬x) AU y : x does not occur before the first
occurrence of y, and y does eventually occur.

89

•  AG AF p
p appears infinitely often.

•  AG(r1 ⇒ AF a1)
When interpreted on a mutex algorithm:
Whenever process 1 requests to enter its
critical section, it will eventually succeed.

90

Examples of CTL formulae (2/2)

Expressiveness of CTL and LTL (1/3)

•  CTL and LTL have a large overlap, i.e. properties
expressible in both logics.

Examples:
•  Invariants (e.g., “p never holds.”)

AG ¬p or G ¬p

•  Reactivity (e.g. “Whenever p happens,
 eventually q will happen.”)

AG (p ⇒ AF q) or G(p ⇒ Fq)

91

•  CTL considers the whole computation tree whereas LTL only
considers individual runs. Thus CTL allows to reason about
the branching behavior, considering multiple possible runs at
once.

•  Examples:
–  The CTL property AG EF p (“reset property”) is not expressible in LTL.
–  The CTL property AF AX p distinguishes the following two systems,

but the LTL property FX p does not:

∅ ∅ {p}

∅ {p}

∅ ∅

{p} ∅

∅ {p}

∅ ∅

92

Expressiveness of CTL and LTL (2/3)

•  Even though CTL considers the whole computation tree,
its state-based semantics is subtly different from LTL.
Thus, there are also properties expressible in LTL but not
in CTL.

•  Example:
 The LTL property FG p is not expressible in CTL:

K ╞═ FG p but K ╞═ AF AG p

∅ {p} {p}

93

Expressiveness of CTL and LTL (3/3)

•  The expressiveness of CTL and LTL is incomparable;
there is an overlap, and each logic can express
properties that the other cannot.

•  Remark: There is a logic, called CTL*, that combines the
expressiveness of CTL and LTL. However, we will not
deal with it in this course.

94

Conclusion

95

Second Practice.

