Modeling and Verifying Distributed

Systems with Petri Nets :

Place-Transition Nets and temporal logic

IWAISE |

Souheib Baarir, Fabrice Kordon

First.last@lip6.fr

Labrotaoire d’Informatique de Paris 6

References (1/2)

INFORMATIQUE

ET SYSTEMES
D' INFORMATION

Information - Commande - Communication

Méthodes formelles
pour les systémes
répartis et coopératifs

wes b divection de
Serpge Haddad
Fabrice Kordon
Laure Petrucc

_!Iermu Lavoisser

Models and Analysis in

Distributed Systems

Edited by
Serge Haddad, Fabrice Kordon
Laurent Pautet and Laure Petrucci

References (2/2)

[1] E. Clarke, O.Grumberg, and A. Peled. Model Checking. MIT Press, 2000.

[2] M. Diaz. R eseaux de Petri, Modeles fondamentaux. Traité IC2, série
Informatique et systemes d’information. Hermes Science, June 2001.

[3] C. Girault and R. Valk. Petri Nets for Systems Engineering. Springer Verlag -
ISBN: 3-540-41217-4, 2003.

[4] S. Haddad, F. Kordon, and L. Petrucci, editors. Méthodes Formelles pour les
Systemes Répartis et Coopératifs. Traité IC2 - Hermes, 2006.

[5] S. Haddad, F. Kordon, L. Pautet, and L. Petrucci, editors. Models and Analysis in
Distributed Systems. Wiley, 2011.

Context ; Formal verification

Formal Verification is the act of proving or disproving the
correctness of intended systems with respect to a certain
formal specification (property), using formal methods of

mathematics.

Known approaches:
* Deductive verification.

* Program derivation.

* Model checking.

~ Context : Model Checking

Model Checking : consists of a systematically exhaustive
exploration of the mathematical model of the system, to prove
that 1t satisfies (or not) a given property (specification).

Which abstraction for the system ? Which kind of properties ?

From which formalism do we get How to express these properties ?

the desired abstraction ?

. ﬂ property W
: p

@ O -
‘ . model

checking

To represent discrete systems...

* At each instant, the system has a given sfate. In
a given state, some atomic propositions are
satisfied when others are not:

— description of the value of each global variable,
— the calling stack(s),

— the program counter(s),
— the contents of the communicating channels, etc.

 From a given state, a system can reach another
state by executing a transition.

Kripke structure

* When a system can reach only a finite number
of states, the previous requirements are exactly
captured by Kripke structures.

* Let AP be a finite set of atomic propositions
over the system.

* A Kripke structure is a tuple <S»£»%»So> where
- S Is the finite set of states
_1:892" s the labeling function
_ >L8x§ IS the transition relation

Sy €5 is the initial state

Example

Let AP={r,r, a, a,}
Possible interpretation :

-1, : request to the critical section by Process i and
- a; : critical section access by Process i.

- Semantics of a system |

* Two particular semantics are generally admitted:
— the linear time semantics,

— the branching time semantics.

* For the linear time semantics, an execution of the
system is an infinite path in the Kripke structure.

* For the branching time ones, the execution of the

system is represented by the underlying infinite
tree of the Kripke structure.

Linear time semantics |

\() So \tP So
& s & The linear time
semantics of a Kripke
3 s q) structure cqrres_pqn_ds
I to the (possibly infinite)
& ¢ set of all infinite paths
(v)sz (Ssz
Q or

10

Branching time semantics

S; (O D So
53 e 8, S5
Sy QO Ss0O S0 5,0 O Sy OS7 OS7 (S

SR Q9 SiQ Q0 S Q SiQ 0 Sig o)
\ \ 1\ 1\ 1\ 1\ 1\ 1\

\ 1 \ 1 \ 1 \ 1 \ I\ 1 \
\ 1 \ 1 \ 1 \ 1 \ 1 \
\ AN | \ 1 \ 1 \
Wy v X
v

11

Its branching time semantics corresponds to the underlying infinite tree

of the graph rooted in the initial state

Notations (1/2) |

Let (s,/,—,s,) be a Kripke structure.

(s,s") € —=1snoteds —= s :

s is a predecessor of s, and s’ is a successor of s
S* denotes the finite words on S.
S® denotes the infinites words on S.

w=s,...s, IS a path of length n
if we have s, — s, foralli, 0 <i <n.

12

Notations (2/2)

—s —" s’ means a path from s fo s’
— s —* s’ means a path from s to s’ of positive length
—-p=s,s,..I1sarunif we haves, —s. , foralli 0 <i.

— o(i) the i"" state of p and,
O the suffix of p starting at p(i)

—Forarunp=s,s, ...,
/(p) is the w-word /(s,)/s,)... over 24F

Kripke structure generators

* A Kripke structure can be generated from many kinds of
formalisms.

— A program,
— An algebraic composition of processes,
— A synchronized product of automata,

& {r} {a;}
\Q\ O————0 1.2
VsE S —(a ra,)

— A bounded Petri net (i.e. with a finite number of markings)
— Etc.

Outlines

* Modeling the system
— Petri Net Formalism

» Specifying of the system
— Linear Time Logic (LTL)
— Computation Time Logic (CTL)

Modeling the system:

The case of Finite and Discrete Event Systems

From Automata to Petri Nets

* Problem: modelling a producer/ consumer

asynchronous system with infinite buffer.

— If the buffer is not empty, the consumer can consume

independently from the state of the producer.

a : produce a message

b : put a message

Producer

e

Consumer

d : consume a message

¢ : treat a message

Semantics of the model }

* Possible Sequences:

— The sequence (de)* is acceptable. . .!

— The consumer can execute indefinitely. .

* Need

of conditions on certain actions:

—add of rectangles on arcs, to synchronise actions.

— Re:

bresent environment elements: the buffer.

Condition/Event Model

* Two types of nodes :
— Conditions are represented by cercles (Boolean holders).

— Events are represented by rectangles.

* The Producer/Consumer model

cl

Notations

* We note :
°n the set of predecessors of a node n
ne the set of successors of a node n

* [fnisan event, we call

°n the set of pre—conditions of n

ne the set of post—conditions of n

o Examples:

°d = {c3,c5} the pre-conditions of d are c; et c.

be = {c1,c5} the post-conditions of b are ¢, et c;

Semantics of a C/E Model (1/2)

* A step in C/E model is defined by:

C A C

where, C, and C, are condition subsets and A is an

I 2

event e, such that:

1) «x CC,
2) C,=(C,*A)U A

. Example: the Producer/ Consumer model

Co =1{cpc) *a={c | a*={c, |

wCC, = C C, With C,=(C,*a) U a®

Ci=({cpesf\ic) U {c) = {cyes)

Semantics of a C/E model (2/2)

* A sequence of a C/E model is defined by:
WA AL,
such that for eachi € {1,...,n}

b/

A

Ci. C

1s a step in the C/E system.

* C,is the subset of conditions representing the initial state.

Example de sequence]

ab is a sequence of the C/E model of the Producer/Consumer.

23

Limits of the C/E model]

e Producer / Consumer:

cl C. ——» C

mais C, = {c;, c;}, donc, G, ;é’

2 productions vs. 1 consumption!

Must use a non Boolean model : Petri Nets (PN)

24

PN model of the Producer/Consumer]

o Representation:

cl

Conditions — Places

Events — Transitions

« State of the PN = Marking M = z M p).p

peEP
where, M(p) 1s the number of tokens in place p.

Example : after the execution of sequence abab, M = 1.¢; + 1.c; + 2. ¢

25

Formal definition of a PN

€ APNRis tuple <P, T, Pre, Post> such that:

— P: is a finite set of places (P # J)
— T: is a finite set of transitions (T# <, P NT = &)

— Pre:PxT —IN
Pre(p,t) =n (n>0) <

the firing of a transition t is conditioned by the presence of n resources in p

— Post : P xT — IN
Post(p,t) =n (n>0) <

the firing of t produce n resources in p

@ A marked net <R, My> has an initial marking M, € IN*

{ A Petri Net - Example |

The initial marking is M,

/®
\@
<
I

S OB W

27

Firing a transition

@ The firing rule :
* t ET is enabled in M iff: V p € P, M(p) = Pre(p,t).

* if t is enabled, then its firing leads to the marking M' :
\4 p € P, M'(p) = M(p) - Pre(p,t) + Post(p,t)

€ The firing of tisnoted : M [t> M'.

Enabling- example

t4 — t)

P5

t, and ¢, are enabled in M,,, we note M, [t,> and M, [t,>

29

Firing — exemple (1/2)
| %\/@

P4 P3 -

t5

]
1
The firing of ¢, from M,, produces the marking M, = | 2
6
0

We note, M,, [t,> M,

Firing — exemple (2/2)

PI P2 P3

2

2 3 2
3
tl = 12 3 4 5
6 3
2 3
P4 P5

The firing of ¢, from M,, produces the marking M, =
We note M, [t,> M,

T 1
W O O W W

[Firing Sequence |

A tiring sequence from M, to M, is a word ¢,...t,_; such that it exists a
set of markings My,...,M, ; where : My [t,> M, ... M, [t, ;> M,

t,t,t; 1s a firing sequence
P P2 P3 starting from M,,:

2 3 2 M, [t,> M, [t,> M, [t; > M,

t5

t1 52 13 t4
6 3
2 3
P4 P5 B

32

The Reader/Writer: example

Proc R{
P (sem)
Read 1n file
V (sem)

Proc W({
P (sem)
Wrtite to file
V (sem)

R_Idle

/—>®

R_Read

L]

(=

\4
——

R_P(Sem)

R_V(Sem)

\ 4
/—>S
‘—x sem é W_Write

W_Idle

O

W_P(Sem)

\4

[]
W_V(Sem)

{ 2 Readers / 1 Writer: example (1/2)]

Proc RI1{
P (sem)
Read in file
V(sem) Proc W{
J P (sem*2)
Wrtite to file
V (sem*2)
}
Proc R2{
P (sem)

Read in file
V (sem)

34

2 Readers / 1 Writer: example (2/2)

(e) RI_Idle Wdle (o)<

R1_P(Sem) J l

W_P(Sem, 2)
R1_Read
W_Writ
R1_V(Sem
I:I []
W_V(Sem, 2)
R2_Idle

{ PN Matrix Representation

* Graphical Representation
P3 Q%[

PzQ

* Matrix Representation

Pl |
P2 3
P3 0

0

P4

Pl
P2
P3
P4

Pre = Post =

Incidence Matrix

@ Definition :
Let R be a PN.
We define C, the Incidence Matrix of R by:
C = Post - Pre
@ Firing:

Let M[t>M'". We have:
M'(p) = M(p) + Post(p, t) - Pre(p, t) = M(p) + C(p, t)

Characteristic vector and equation

@ Definition : Parikh vector (Characteristic vector)
Let s be a firing sequence. The Parikh vector s of s is an integer vector, indexed
by transitions. The t entry represents the number of occurrences of t in s.

.
s=t t,t,t, = §= 1

0
1

@ Definition : Characteristic equation

Let M [s> M', then M' an be deduced from M by applying the characteristic
equation:

M'=M+C.s

Reachability Graph

@ Definition : The Reachability Graph (RG) of marked PN
<R, My>, noted RG(R, My), is a transitions system
<Q, A, A, q, > such that:

" Q is the set of reachable markings in from M,
Q={M|MEIN’ A dOET*, My[0> M }

" A is the set of arcs connecting two markings reachable from M,

A={(q,) EQXQ | tET, qi[t> q,}

= A isalabel function, that associates to each arcs in A, the name
of the transition that have been fired.

AA =T

"qo— M,

Reachability Graph Construction Algorithm]

RG.Q = {Mo}; RG.A = @; RG.g0 = Mo ;
States = {Mo};

While (States <> @) {
s = pick a state in States ;
States = States \ {s};
for each t &€ T {
if (s[t>) {
s [t> ns ;
if (ns & RG.Q) {
RG.Q = RG.Q U {ns} ;
States = States U {ns} ;
}
RG.A = RG.A U { (s, ns)} ;
RG.A(s, ns) =t ;

}
Return RG;

40

Reachability Graph — Example

R1 _Idle W_Idle

, 2)

1, 2) [Rl_Idle + W Write + R2_Idle]

R2_Idle R2_Read W_P(Sem,2) W V(Sem,2)
O——1—0
R2_P(Sem) R2_V(Sem)
R1_Idle + W_Idle + R2_Idle R1_P(Sem) R1_Read + W_Idle + R2_Idle
+ 2.Sem > + Sem
<
A R1 V(Sem) A
R2_V(Sem) R2_P(Sem) R2_V(Sem) R2_P(Sem)
v v
R1 _P(Sem)
[Rl_Idle + W_Idle + R2_ReadJ > | R1 Read + W Idle + R2 ReadJ
+ Sem £ - - —
R2_V(Sem)

41

Reachability Graph — Remarks

* The RG depends on both R and M,,.

* A finite RG can contain iz*gﬁnite sequences.
* Existence of cycles.

* The RG can be infinite! Pl

Properties : infinite sequence

Let <R, M,> be a marked PN. s =t.t,...t ... |,
where t, €T is an infinite sequence, iff, for each

finite prefix s’ of s, s’ is a firing sequence of

<R, M,>, 1.e.,

. ..., then for all i,
if's;, = t,.....t;, then M[s;>

if' s =t.t,.t

n

P

<R, M,>: / x
a b

abababab.....

Properties : the pseudo-aliveness

A PN <R, M,> is pseudo-alive it
VM eRGR,M,),dteT: M[t>

p
<R, M,>: 2 RG(R, M) :
a
: o P

44

Properties : the quasi-aliveness

A PN <R, M,> is quasi-alive if
VteT,dM e RGR, M) : M[t>

<R, M,> <R’, My>

45

Properties : the aliveness

A PN <R, M,> is alive if :
V M € RG(R, M), <R, M> is quasi-alive

<R, M~

RG(R, M) :

46

Properties : the home state]

M is a Home State of <R, M > if:

V M e RG(R, M,), 3 a sequence s : M[s>M .

<R, M, > RG(R, M,)

p1 (o) at (o) colaqls

aa C Y b / \

a
<p2+q9l> <pl+q9g2>
ré N %
p2 92 <p2+02>
d

<r>

47

Properties : the boundedness]

A PN <R, M,> is not bounded it :
VneN,AMeRGR,M,)),dpePs.t.: M(p) >n

The RG 1s infinite

48

Relations between properties

* If <R, M,> is pseudo-alive or not bounded, then

<R, M,> admits an infinite sequence.

* It <R, M,> is alive, then it is quasi-alive and pseudo-

alive.

* If <R, M,> is quasi-live and admits M, as a home
state, then<R, M,> is alive.

Peterson Algorithm Model (PAM)

* Peterson algorithm - mutual exclusion of two processes.

— The two processes are symmetrical.

— A shared memory contains variables: turn, dem, and dem,,

* Code of process p:

A dem, = true
B turn = g
C wait (turn == p || dem, == false)
D < Section critique >
E dem, = false; goto A
— Initially :

. demp :demq= false

PAM : execution of the first instruction

A : demp = true

Q patA

Move p from A to B: p-A

%
Q patB
Potentially, modifies the value of dem,,:

dem, == false Q
\

[PAM : execution of the second instruction

B : turn = q

52

PAM : the waiting model

wait (turn == p || dem, == faux)

q == faux

PAM : the critical section exit

< Section critique >
dem, = faux; goto A

PAM : putting all together

dmm,==wm_(wm==q dem, == faux
®
patA patC patD
patB patE

dmnpimg;k\\\\iﬂnp
L)

First Practice.

Specification of the system:

the temporal logic.

What kinds of properties ?

= Safety : No unwanted situation is reached

= Liveness : Wanted situation are eventually reached

= Fairness : Particular liveness properties

Any property 1s the conjunction of safety and liveness (Lamport 77)

Why a temporal logic ?

* Propositional logic is not sufficient!

— It addresses the properties which are
local to some state.

« A formalism to express properties,

— 0N a sequence of states (program
states, system states) or,

— on a sequence of actions (instructions)

59

[A mutual exclusion algorithm]

Initial state : P=1; Q=1;reqp, =0, reqg = 0 (2 global variables)

- Prop1: In any case, there is at most one process
In the critical section

* Prop2: Any process requiring the critical section will
eventually reaches it

* Prop3: The order of entrances in the critical section
must respect the order of the requests.

60

{ Kripke Structure of the previous algorithm]

{P=1,req,;=0,0=1,reqy,=0}

61

[Property Prop1

* The property is satisfied!

* |t can be checked by using the set of
reachable states.

62

[Property Prop2 |

* The property is not satisfied!

from {P=2,reqp =1, Q =2, reqq = 1}
there is no more reachable state (deadlock)
in particular those satisfying (P=3).

* |ts verification requires the reachability
graph (states are not enough).)

[Property Prop3 |

* The property is not satisfied !

from the state {P=2, reqp=1, Q=1, reqy=0}
there exists a path in which (P=3) is never satisfied

64

Linear time properties

~ Recall : Linear time semantics

5, The linear time
semantics of a Kripke

o
& &
s, i q) structure corresponds
e O
Q Q

- to the (possibly infinite)
% set of all infinite paths

66

Logics to express linear time properties

* LTL = Linear-time Temporal Logic

o Syntax:
Let AP be a set of atomic propositions.
— a € AP is an LTL formula
— If ¢, and ¢, are LTL formulae then so are

- @y O N Oy X ¢, ¢, U ¢,

where X stands for « next » and U for « until »

Semantics of LTL

* To each LTL formula ¢, we associate a language £
(¢) of w-words over 247 (i.e. we have £(¢) C (247)®).

« Let o €24F),

o E /a) <
occL-~¢ <=
oOE L(¢; A Q) <=
occeqX¢p <
oce ¢, U¢p,) =

a € o(0)

-0 E L)

oE LP,) N L)

ol € ¢

di:odefp) \Vk<i, o€ L(¢)

Syntactic complements

 The previous slides defined only a minimal
version of the syntax.

 |n practice, we will make use of the following
abbreviations:

s pTveg2 = =(=¢1Tr-¢P2) « F¢ = trueU¢

c p1=¢2 = - ¢1vg2 + G¢ = -F-¢

. true = -ava c o We, = (p,Ugy) vG oy
. false = - true * 1 Rop, = - (-9, U= ¢y

where F- stands for « finally », G for « globally »,
W for « weak until » and R for « release »

|

lllustration of the semantics

a
X ¢
¢ U ¢,
F¢
G ¢
ps W g,
¢ R ¢,

O O O O O O === >
O O O O O Yo S—— >
e O O O O O - === >
O O O O O O - oo >
® O O O O O === >
O O O O O @ ------- >
e O O O O O - === >
e O O O O @- - >
o O O = O O - >

Examples of LTL formulae (1/3)

* Reachability
G =(a, A a,): It always holds that a, and a, do
not appear together. Assuming an appropriate
valuation, this expresses the mutex property:
Two processes never enter their critical sections
at the same time.

« Safety

(-x) W y. x does not occur before the first
occurrence of y. Note: y may not occur at all, in
which case x also does not occur.

e [jveness

(-x) U y. x does not occur before the first
occurrence of y, and y does eventually occur.

Examples of LTL formulae (2/3)

« GFp
p appears infinitely often.

« G(r,=Fa,)
When interpreted on a mutex algorithm:
Whenever process 1 requests to enter its
critical section, it will eventually succeed.

[

Examples of LTL formulae (3/3) 1

* Prop1

G-P=3AN0=3)

* Prop2

G(P=2)= F(P=3)

* Prop3

G(P=2r0=1)= (-0=3)UP=3))

73

Interpretation of LTL on Kripke structures

» Let K =(S,0,—,s,)be a Kripke structure

* Arun p of K satisfies an LTL formula ¢
(written p = ¢) Iff /(p) € £(9).

* By extension, we say that K satisfies ¢
(written K = ¢) iff for each run p starting
at s, (i.e. those with p(0) = s,) we have

P = 9.

Branching time properties

~ Recall : Branching time semantics

So QO
S1 83 2 92
53 S5 S} 54 R S5
So 3 S6Q SsQ 570 OS5 QS7 OS5z 250
S1 28 2 2Q SIQ SQ SiQ SiQ SiQ 52
\
1 1 1 l’ ‘\ l’ 1 1 \ 1
llllll] \
\ 1 1 1 v 1 \
| ¥ Yy Ay Xy ¥y v ¥y X Y v 3

The branching time semantics of a Kripke structure

corresponds to the underlying infinite tree

76

Logics to express the branching time properties

« CTL = Computational Tree Logic
« CTL versus LTL

— LTL describes properties of individual executions.
— |ts semantics is defined as a set of executions.

— CTL describes properties of a computation tree:

formulas can reason about many executions at
once. (CTL belongs to the family of branching-
time logics.)

— Its semantics is defined in terms of states.

Syntax of CTL

« CTL Combines temporal operators with
qguantification over runs.

« Syntax:
Let AP be a set of atomic propositions.
— a € AP is a CTL formula
— If ¢, and ¢, are CTL formulae then so are

- ¢; 9N Py EX¢, EG@, ¢;EU ¢,

where X stands for « next », G for
« globally », and U for « until »

Semantics of CTL

- LetK =S, ¢ —, s,) be a Kripke structure.
« To each CTL formula ¢, we associate a set S,(¢) of states w.r.t.
K (i.e. we have s (¢) CS)

s € S(a) < a E/s)

s ES(— @) < 5 Z (P

SE (P NPy <= 5 ES (D) M Si(Ps)
SES(EX @) < ds':s =5 NS ES(P
sESKMEG ¢ <« JarunpofKs.t p) =s

\ Viz=0 p(i) €S (P
s ESx(9, EU ¢,) = Jarunpof Ks.t. p(0) =s A
Fis.t. pi) ES(9,) AVEk<i, ptk) ESi(9,)

» K satisfies a CTL formula ¢ iff s, €S, (¢)

Syntactic complements

 In practice, we will make use of the following
abbreviations:

o 91 v @2 = == A= ¢@2) « EF ¢ = true EU ¢
c Pl =¢2 = - ¢1v¢2 - 9 EW¢, = (9p,EU ¢y v EG ¢,
. true = -ava * Repy = -(-¢;U=-¢)
. false = - lrue
« AX ¢ = -EX-9¢
+ AGp = -EF-¢
« AF ¢ = -EG-f
* ¢, AW ¢, = = (- EU- (¢, v)

* 0, AU¢, = AFg, 2 (¢, AW ¢,)

[

Semantics illustration (1/8)

1

AGp

Semantics illustration (2/8)

|

AF p

|

Semantics illustration (3/8)

|

AX p

[Semantics illustration (4/8) }

q AU p

|

Semantics illustration (5/8)

|

EGp

|

Semantics illustration (6/3)

|

EF p

|

Semantics illustration (7/8)

|

EX p

[Semantics illustration (8/8)]

qEUp

Examples of CTL formulae (1/2)

« Reachability
AG —(a, A a,) . It always holds that a; and a, do
not appear together. Assuming an appropriate
valuation, this expresses the mutex property: Two
processes never enter their critical sections at the
same time.

« Safety

(-=x) AW y . x does not occur before the first
occurrence of y. Note: y may not occur at all, in
which case x also does not occur.

e [jveness

(-=x) AU y : x does not occur before the first
occurrence of y, and y does eventually occur.

Examples of CTL formulae (2/2)

- AGAFp
p appears infinitely often.

» AG(r,=AFa,)
When interpreted on a mutex algorithm:
Whenever process 1 requests to enter its
critical section, it will eventually succeed.

Expressiveness of CTL and LTL (1/3)

« CTL and LTL have a large overlap, i.e. properties
expressible in both logics.

Examples:
* Invariants (e.g., “p never holds.”)
AG -p or G —-p

* Reactivity (e.g. “Whenever p happens,
eventually g will happen.”)

AG (p=AFq) or G{p=Fq)

Expressiveness of CTL and LTL (2/3)

« CTL considers the whole computation tree whereas LTL only
considers individual runs. Thus CTL allows to reason about
the branching behavior, considering multiple possible runs at
once.

« Examples:
— The CTL property AG EF p (“reset property”) is not expressible in LTL.

— The CTL property AF AX p distinguishes the following two systems,
but the LTL property X p does not:

Expressiveness of CTL and LTL (3/3)

« Even though CTL considers the whole computation tree,
its state-based semantics is subtly different from LTL.
Thus, there are also properties expressible in LTL but not
in CTL.

 Example:
The LTL property G p is not expressible in CTL.:

D—O—@n

K =FGp but K LAFAGp

Conclusion

* The expressiveness of CTL and LTL is incomparable;
there is an overlap, and each logic can express
properties that the other cannot.

 Remark: There is a logic, called CTL*, that combines the
expressiveness of CTL and LTL. However, we will not
deal with it in this course.

Second Practice.

