Modeling and Verifying Distributed Systems with Petri Nets: Coloured Petri Nets

Souheib Baarir, Fabrice Kordon

First.last@lip6.fr

Labrotaoire d'Informatique de Paris 6

Why High level Petri Nets? (1/3)

• Problem:

n process in mutual exlusion on one ressource

Why High level Petri Nets? (2/3)

 Problem: n₁ process in mutuel exclusion on n₂ ressources

Why High level Petri Nets? (3/3)

- Ordinary Petri (P/T) Nets:
 - do not capture symmetries of problems,
 - do not associate information to tokens,
 - do not allow parameterisation of solutions to problems

Use of a concise and parameterized notation of Petri Nets:

High level Petri Nets

Coloured Petri Nets

Informal definition

- Each place p is characterized by a colour domain C(p).
- A token of p is an element of C(p).
- Each transition t is characterized by a colour domain C(t).
- The colour domain of a transition characterizes the signature of the transition.
- The colour functions on arcs determine the instances of token that are consumed and produced during the firing of a transition.

An example

- n processes of class C = {p₁, ..., p_n}, in mutual exclusion on a untyped resource.
- A process is either in an Idle state, or in a Waiting state, or in a Busy state.
- To move from the Waiting state to the Busy state, a process needs the resource.

$$C(Idle) = C(Waiting) = C(Busy) = C$$
 $C(Res) = \{\epsilon\}$
 $C(t_1) = C(t_2) = C(t_3) = C$

$$f: \mathbf{C} \to \mathbf{C}$$

$$\mathbf{x} \to \mathbf{x}$$

$$\mathbf{M}_0(Idle) = \mathbf{C}. \mathbf{All}$$

An other example

- n₁ processes of class C = {p₁, ..., p_{n1}}, in mutual exclusion on n₂ ressources of class C₂ = {r₁, ..., r_{n2}}
- To move from Waiting to Busy, a process p_i needs a resource r_i.

 $\mathbf{C}(t_2) = \mathbf{C}(t_3) = \mathbf{C}_1 \times \mathbf{C}_2$

$$C(Idle) = C(Waiting) = C_1$$

$$C(Res) = C_2$$

$$C(Busy) = C_1 \times C_2$$

$$C(t_1) = C_1$$

$$f: C_1 \times C_2 \rightarrow C_1$$

$$(x_1, x_2) \rightarrow x_1$$

$$g: C_1 \times C_2 \rightarrow C_2$$

$$(x_1, x_2) \rightarrow x_2$$

$$M_0(Idle) = C_1 . All$$

 $M_0(Res) = C_2 . All$

Recall: multisets (bags)

- Let A be a non empty finite set.
- A bag a on A is a function:

$$a: A \rightarrow IN$$

 $x \rightarrow a(x)$

a(x) denotes the number of occurrences of x in a.

• We note:

$$a = \sum_{x \in A} a(x).x$$

Bag(A) denotes the set of multisets of A.

Recall: functions on multisets

```
f: Bag(C_1) \rightarrow Bag(C_2)
g: Bag(C'_1) \rightarrow Bag(C'_2)
h: Bag(C) \rightarrow Bag(C_1)
\langle f, g \rangle : Bag(C_1) \times Bag(C'_1) \rightarrow Bag(C_2) \times Bag(C'_2)
                                       (x, y) \rightarrow \langle f(x), g(y) \rangle
 foh: Bag(C) \rightarrow Bag(C<sub>2</sub>)
                      x \rightarrow f(h(x))
```

Formal definition: the structure (1/2)

- A Coloured Petri Net (CPN) is a tuple : <P, T, C, W⁻, W⁺, M₀>
- P is the set of places, T is the set transitions $(P \cap T = \emptyset, P \cup T \neq \emptyset)$.
- C defines for each place and transition a colour domain.
- W^- (= Pre) (resp. W^+ = Post), indexed on P x T, is backward (resp. forward) incidence matrix of the net.
- W⁻(p, t) and W⁺ (p, t) are linear colour functions defined from Bag(C(t)) to Bag(C(p))

Formal definition: the structure (2/2)

M₀ is the initial marking of the net:

$$M_0(p) \in Bag(C(p))$$

Transitions may be guarded by functions:

Bag(C(t))
$$\rightarrow$$
 {0, 1}

Colour domains are generally Cartesian products.

Formal definition: the dynamic (1/2)

Let $CN = \langle P, T, C, W^-, W^+, M_0 \rangle$ be a CPN.

- A marking M of CN is a vector: M(p) ∈ Bag(C(p))
- A transition t is enabled for an instance $c_t \in C(t)$ and a marking M *iff*:
 - Either t is not guarded, or the guard evaluates to true (for c_t), and
 - $\forall p \in P, M(p) \ge W^{-}(p, t)(c_{t})$

Formal definition: the dynamic (2/2)

• M', the reached marking after the firing of t for an instance c, from the marking M is defined by:

$$\forall p \in P, M'(p) = M(p) - W'(p, t)(c_t) + W'(p, t)(c_t)$$

We note:

$$M [(t, c_t) > M']$$

$$M \xrightarrow{(t, c_t)} M'$$

Example of firing (1/2)

$$X_i(x_1, x_2) = x_i$$

Let $\mathbf{x}_1 \in \mathbf{C}_1$, $\mathbf{x}_2 \in \mathbf{C}_2$

- t is enabled for (x_1, x_2) iff:

 1) P1 is marked by a token of colour x_1 2) P2 is marked by 2) P2 is marked by a token of colour x_2
 - - P3: $\langle X_1, X_2 \rangle (x_1, x_2) = \langle x_1, x_2 \rangle$

Example of firing (2/2)

$$C_1 = \{a, b, c\}$$
 $C_2 = \{\alpha, \beta\}$

Basic colour functions (1/2)

$$C = \prod_{i=1}^{n} \prod_{j=1}^{e_i} C_i$$

A colour domain constructed on top of a Cartesian product of colour classes, in which **C**_i appears **e**_i times.

$$c = \langle c_1^{\ l}, c_1^{\ 2}, ..., c_1^{\ el}, ..., c_n^{\ l}, c_n^{\ 2}, ..., c_n^{\ en} \rangle \in C$$

Identity/Projection :

- Noted by a variable: X, Y, or X_1 , or X_1^1 , or P, Q, ...

$$X_i^j(c) = c_i^j \qquad Y(\langle x, y \rangle) = y$$
$$q(\langle p, q, r \rangle) = q$$

Basic colour functions (2/2)

Successor (on a circularly ordered C_i)

Noted
$$X_i++$$
 or $(X_i \oplus 1)$ or $X_i!$

$$X_i^j + +(c) = successor(c_i^j)$$

The successor relation is defined par the enumeration order of elements in class C_i

Diffusion / Synchronization (on C_i)

Noted C_i.All or S_{Ci}

$$C_i.All(c) = \sum_{x \in C_i} x$$

The Trains Problem (TP)

Problem:

- n₁ trains distributed on a circularly way, decomposed into n₂ sections.
- For security reasons, a train can enter a section only if this section and the next one are free.

TP: models?

Colour Domains:

• The dynamic:

- The system state is given by a set of associations < train n°, section n°>
 → place Tr_Sc
- A free section is a resource that allows the move of a train
 → place Sc_Dispo
- A transition representing the progression of a train.

TP: first models

TP: an other model

- Now, s represents the requested section
- Take care of the initial marking!

Unfolding a Coloured Net (1/2)

- To obtain an ordinary P/T Net, having the same behaviour than the CPN:
 - for each place or transition, we create a number of instances equals to the number of elements in the colour domain.
 - The connexions are obtained by « unfolding » the colour functions.
- Some times, it is the only way to get results on the model.
 - However, we do not know how to express theses results on the original model.
- Easy to automatize.

Unfolding a Coloured Net (2/3)

Let $CN = \langle P, T, C, W^-, W^+, M_0 \rangle$ be a CPN. The underling P-T Net is defined by $CN_d = \langle P_d, T_d, C_d, W^-_d, W^+_d, M_{0d} \rangle$, where,

- $P_d = \bigcup_{p \in P, c_p \in C(p)} (p, c_p)$ is the set of places.
- $T_d = \bigcup_{t \in T, c_t \in C(t)} (t, c_t)$ is the set of transitions.
- $M_{0d}(p, c_p) = M_0(p)(c_p)$ is the initial marking.

Unfolding a Coloured Net (3/3)

• $W_d^-(p, c_p)(t, c_t) = W^-(p, t)(c_t)(c_p)$ is the backward incidence matrix

• $W_d^+(p, c_p)(t, c_t) = W_b^+(p, t)(c_t)(c_p)$ is the forward incidence matrix

Proposition:

$$M[(t, c_t) >_{CN} M' \Leftrightarrow M_d[(t, c_t) >_{CNd} M'_d]$$

where, $M_d(p, c) = M(p)(c)$

Unfolding example (1/4)

$$C = \{1, 2, 3\}$$

Unfolding example (2/4)

$$C = \{1, 2, 3\}$$

Unfolding example (3/4)

$$C = \{1, 2, 3\}$$

Unfolding example (4/4)

Coloured inhibitor arcs

To test the emptiness of a place:

To test that a place does note contain a colour a:

$$\begin{array}{ccc}
P & t \\
X & \downarrow \\
 & \downarrow \\
 & [X = a]
\end{array}$$

The sets of colours must be finite!

Unfolding inhibitor arcs

$$C = \{a, b, c\}$$

Peterson's Algorithm

- Peterson algorithm: mutual exclusion of two processes.
 - The two processes are symmetrical.
 - A shared memory contains the variables: turn, dem_p and dem_q .
- Code of process p:

```
A: dem_p = true

B: turn = q

C: wait (turn == p || dem_q == false)

D: < Section critique >

E: dem_p = false; goto A
```

```
— Initially:
```

• $dem_p = dem_q = false$

Peterson's Algorithm: generalization to N processes (1/2)

- Principal :
 - Stairs of (N-1) levels
 - A process can move from level j to j+1 if:
 - It is not the last to get to the level j
 - It is the only process in the level j and all higher levels are free.
 - →Only one process can get beyond the level N-1
 - ➤ Critical section

Peterson's Algorithm: generalization to N processes (2/2)

```
Process x (x == 1..N-1)
Flag[x] = 0;
While (1) {
  For (j=1; j<N; j++) {
   Flag[x] = j;
   Turn[j] = x;
   wait until
       ((\forall y \neq x, (Flag[y] < j)) \mid | (Turn[j] \neq x))
  <Section critique>
  Flag[x] = 0;
```

Analyse of a CPN

- The precedent models are they conform to the specification?
- Possibility of answers thanks to:
 - The construction of the reachability graph
 - Linear invariants
 - The reduction theory
- Try to take benefits from the structure of the model induced by the colour functions.

Why limit the colour function?

- To preserve the readability of the model
 - Each Petri Net can be represented...

Like that!

 Because the properties of the functions allow the automatic construction of graph of classes instead of an ordinary graph

Example of simple critical section

$$C = \{c_{1}, c_{2}, c_{3}\}$$

$$M_{0}(Idle) = C.All$$

$$M_{0}$$

$$Idle(c_{1} + c_{2} + c_{3}) + Res$$

$$(t_{1}, c_{1}) \qquad (t_{1}, c_{2})$$

$$idle(c_{2} + c_{3}) \qquad idle(c_{1} + c_{2}) \qquad + Res + Wait(c_{3})$$

$$M_{1} \qquad M_{3}$$

$$Idle(c_{1} + c_{3}) \qquad + Res + Wait(c_{2})$$

$$M_{2} \qquad 37$$

Towards the use of symmetry (1/2)

- In the initial Marking, t_1 is enabled for each colour instance marking the place *Idle*.
- If we apply a permutation on the transition colour, the obtained marking are identical up to this permutation.

Towards the use of symmetry (2/2)

 We can represent this set of firings using variables :

$$idle(x+y+z) + Res$$

$$x, y, z \in C,$$

$$x \neq y \neq z$$

$$Idle(x+y) + Wait(z) + Res$$

- Then, we obtain the actual firings by testing all possible instantiations for x, y et z.
- Is it general?

Permutations on a Bag

Let A be a set, s a permutation on A, and a a bag of A.

$$s.a = s.\left(\sum_{x \in A} a(x).x\right) = \sum_{x \in A} a(x).s(x)$$

- In particular: s.a(s.x) = a(x) (notation: s.c = s(c))
- Example :

$$M(p) = c_1 + 2.c_2$$
 $s.c_1 = c_3$ $s.c_2 = c_1$ $s.c_3 = c_2$

$$s.M(p)(s.c_1) = M(p)(c_1) = 1$$
 $s.M(p)(s.c_2) = M(p)(c_2) = 2$

$$s.M(p) = c_3 + 2.c_1$$

Enabling and firing equivalence

 (t, c_t) is enabled in M \Leftrightarrow $(t, s.c_t)$ is enabled from s.M

$$M \xrightarrow{(t, c_t)} M' \Leftrightarrow s.M \xrightarrow{(t, s.c_t)} s.M'$$

Markings Equivalence

- Set of symmetries.
 - For each unordered class C_i, we associate a permutation group S_i
 - For each ordered class C_i, we associate a rotation group S_i
 - The symmetries of the Net are defined by the set $S: S = \{\langle s_1, ..., s_n \rangle \mid s_i \in S_i \}$
- Markings equivalence (≡):

$$M \equiv M' \Leftrightarrow \exists s \in S, M' = s.M$$

Classes of markings

• For each marking M, we define Cl(M): $Cl(M) = \{ M' \mid \exists s \in S, M' = s.M \}$

Fundamental properties of Cl(M):

$$-M$$
 $\stackrel{(t,c)}{M}$ \Rightarrow \forall $s \in S$, $s.M$ $\stackrel{(t,s.c)}{\leq}.M$

- -If M_0 is symmetric ($\forall s \in S$, $s.M_0 = M_0$), and M is reachable, then $\forall M' \in Cl(M)$, M' is reachable
- $-\forall s \in S \text{ such that s.M} = M,$ $M \xrightarrow{(t,c)} M' \Rightarrow M \xrightarrow{(t,s.c)} s.M'$

Thus, we can define classes of firings.

What else?

- By defining an adequate representation for marking classes,
 - Dynamic Subclasses
 - Symbolic marking
- By defining a firing rule that applies directly on this representation,
 - Symbolic firing rule
- ✓ We can construct directly a quotient graph that represents the set of reachable markings.

Dynamic subclasses for unordered class

- We group in a set (dynamic subclass) the objects of C_i that have the same marking.
- Example :

$$M = Idle(c_1 + c_2) + Wait(c_3) + Res$$

$$Idle(x + y) + Wait(z) + Res$$

$$M(x) = M(y) \qquad Z^1, |Z^1| = 2$$

$$M(z) \neq M(x) \text{ et } M(z) \neq M(y) \qquad Z^2, |Z^2| = 1$$

$$Idle(Z^{1}) + Wait(Z^{2}) + Res,$$

$$|Z^{1}| = 2, |Z^{2}| = 1$$

$$Idle(c_2+c_3) + Wait(c_1) + Res$$

 $Idle(c_1+c_3) + Wait(c_2) + Res$
 $Idle(c_1+c_2) + Wait(c_3) + Res$

Informal example

Firing rule

- Before firing, we decompose the dynamic sub-classes to isolate the objects that are used to instantiate the colour functions.
- <u>Example</u>:

$$Repos(Z) + Res$$
 $|Z| = 3$ $Repos(Z^1 + Z^{1,0}) + Res$ $|Z^1| = 2, |Z^{1,0}| = 1$

 $Z^{1,0}$ contains the chosen object to instantiate X, Z^1 those that are not participating to the firing.

- We then apply the classical firing rule.
- After the firing, we must group the resulting subclasses...

What does the Symbolic Reachability Graph preserve?

- Each marking represented by a class (a symbolic marking) is reachable.
- Each reachable marking is represented by a class.
- Each firing sequence of the RG is represented in the SRG.
- To each sequence of the symbolic graph corresponds a sequence of the RG.

Then, what is missing?

We can not distinguish the following situations:

Miss of information on the home state.

Can we represent any P-T Petri net?

- Yes, but...
 - No interest if the representation is not reduced...
- The presented model imposes that all objects of the same class behave identically,
 - A class groups a set of objects that have the same nature
- We must be able to divide the class in subclasses of elements that can evolve differently: $C_i = D_i^1 \cup D_i^2$
 - Elements of D_i¹ evolve differently from those of D_i²
 - The Diffusion functions are defined at the level of subclasses: D_i¹.All

Conclusion

- The construction of symbolic graphs applies on any coloured Petri net, but
 - Its efficiency depends directly from the symmetries...
 - The structuration of the model is necessary to have a direct and automatic construction.

 Almost all properties of interest can be checked on the symbolic graph.