Modeling and Verifying Distributed

Systems with Petri Nets :

Coloured Petri Nets

IWAISE |

Souheib Baarir, Fabrice Kordon

Firstlast@lip6.fr

Labrotaoire d’Informatique de Paris 6

Why High level Petri Nets ? (1/3)

* Problem:
n process in mutual exlusion on one ressource

:j Idle(Pl) Idle(P2) :

—

n-= 2 Access(P1) Ressource@Access(PZ)

y Ot
Release(P1l) Release(P2)

Why High level Petri Nets ? (2/3)

* Problem : n, process in mutuel exclusion on
n, ressources

Why High level Petri Nets ? (3/3)

* Ordinary Petri (P/T) Nets:
— do not capture symmetries of problems,
— do not associate information to tokens,

— do not allow parameterisation of solutions to
problems

= Use of a concise and parameterized notation
of Petri Nets:

_ 4

Informal definition

Each place p is characterized by a colour
domain C(p).

A token of p is an element of C(p).

Each transition t is characterized by a colour
domain C(t).

The colour domain of a transition
characterizes the signature of the transition.

The colour functions on arcs determine the
instances of token that are consumed and
produced during the firing of a transition.

P PZ

An example

* n processes of class C={p,, ..., p,}, in Idle
mutual exclusion on a untyped / fz
resource. :g

t]
. . !y

A processis eitherin an Idle state, or ") Waiting

in a Waiting state, or in a Busy state. 7

the Busy state, a process needs the
resource.
N

<

v
* To move from the Waiting state to / éBusy Res

C(Idle) = C(Waiting) = C(Busy) = C f: C—=C
C(Res) = {&} X=X
C)=C()=C;)=C M,(dle) = C. All ,

An other example

n, processes of class C={p,, ..., p,.}, IN
mutual exclusion on n, ressources of class

C,={ry ..., L}

To move from Waiting to Busy, a process p,
needs a resource r;.

C(Idle) = C(Waiting) = C, f:C;xC,—=C,
C(Res) =C, (X5 X;) = X4
C(Busy) = C,x C, g:C,xC,—C,

(X1, X5) = X,
Ck)=C,

C(t,) = C(t;) = C, x C,

M,dle) = C, . All
M,(Res) = C, . All

Recall : multisets (bags)

* Let A be anonempty finite set.

e AbagaonAisafunction:

a: A—IN
X — a(x)

a(x) denotes the number of occurrences of x in a.

* We note:

a= E A x).x

 Bag(A) denotes the set of multisets of A.

Recall : functions on multisets

f: Bag(C,) — Bag(C,)
g : Bag(C')) — Bag(C',)

h: Bag(C) — Bag(C,)

< f, > : Bag(C,) x Bag(C',) — Bag(C,) x Bag(C',)
x,y) = <f(x), g(y)>

foh : Bag(C) — Bag(C,)
x = f (h(x))

10

Formal definition: the structure (1/2)

A Coloured Petri Net (CPN) is a tuple : <P, T, C, W-, W*, M >

* Pisthe set of places, T is the set transitions (PN T=@, PUT # @).

e (Cdefines for each place and transition a colour domain.

e W (=Pre) (resp. W*= Post), indexed on P x T, is backward (resp. forward)

incidence matrix of the net.

e W-(p,t) and W*(p, t) are linear colour functions defined from
Bag(C(t)) to Bag(C(p))

11

Formal definition: the structure (2/2)

* M, is the initial marking of the net:
Mo(p) € Bag(C(p))

* Transitions may be guarded by functions:
Bag(C(t)) - {0, 1}

* Colour domains are generally Cartesian products.

12

Formal definition: the dynamic (1/2)

Let CN =<P, T, C, W, W*¥, M,> be a CPN.
A marking M of CN is a vector: M(p) € Bag(C(p))

* Atransition tis enabled for an instance c, € C(t)
and a marking M iff:

— Either t is not guarded, or the guard evaluates to
true (for c,), and

—V p € P, M(p) 2 W(p, t)(c,)

13

Formal definition: the dynamic (2/2)

* M’, the reached marking after the firing of t for
an instance c,, from the marking M is defined by:

V p €P, M'(p) = M(p) - W(p, t)(c,) + W*(p, t)(c,)

We note :
M [(t, c,)> M’

(t, c)

M > M’

14

Example of firing (1/2)

X, (X7, X5)=x;
=%,
cz
X: X
<X7,X2>

Letx, €C, x, €C,

t is enabled for (x4, x,) iff:
1) P1is marked by a token of colour x,
2) P2 is marked by a token of colour x,

If t is fired for (x, x,) then:

1) A token of colour x, is removed from P1

2) A token of colour x, is removed from P2

3) A token of colour <x,, x,> is produced in
P31 <Xy, X5> (X, X5) = <Xy, X,>

15

Example of firing (2/2)

t(a, o) ,
7] x C2
<X7,X2>

16

Basic colour functions (1/2)

A colour domain constructed
on top of a Cartesian product of
colour classes, in which C
appears e; times.

* |dentity/Projection :

— Noted by a variable: X, Y, or X;, or X;%, or p, q, ...
Xi(c)=c/ Y(<x,y>) =y
q(<p,q,r>) =q

17

Basic colour functions (2/2)

* Successor (on a circularly ordered C)
Noted X++ or (X. @ 1) or X!

le++(c) = successor(clf) The successor relation is defined

par the enumeration order of
elements in class C;

* Diffusion / Synchronization (on C)
Noted C.All or S,
C.All(c) =),

xEC}-

18

The Trains Problem (TP)

Problem :

* n, trains distributed on a circularly way,
decomposed into n, sections.

* For security reasons, a train can enter a
section only if this section and the next one

are free.

19

TP: models ?

e Colour Domains:
—C, ={tr_1, ..., tr_ng}

—C,={sc_1, ..., sc_n,}

* The dynamic:

— The system state is given by a set of associations < train n®, section n°>
— place Tr_Sc

— A free section is a resource that allows the move of a train
—> place Sc_Dispo

— A transition representing the progression of a train.
20

TP: first models

C7 x CZ

QSC Dispo
Ccz

<t, s>

<s> + <y> #
<y++> <y++>
Sc Dispo

cz

21

TP: an other model

22

Tr Sc

@ C7 x CZ
<t, s> Q
<t,s++>
C7 x CZ
<s--> <S++>

Sc Dispo

Now, s represents the requested
section

Take care of the initial marking !

Unfolding a Coloured Net (1/2)

To obtain an ordinary P/T Net, having the same behaviour
than the CPN:

— for each place or transition, we create a number of
instances equals to the number of elements in the colour
domain.

— The connexions are obtained by « unfolding » the colour
functions.

Some times, it is the only way to get results on the model.

— However, we do not know how to express theses results on the
original model.

Easy to automatize.

23

Unfolding a Coloured Net (2/3)

Let CN =<P, T, C, W, W*¥, M,>be a CPN. The underling P-T
Net is defined by CN, = <P, T,, C,, W, W*,, M,,>, where,

* Py= U) isthe setof places.
PEP.c,EC(p)
°* Ty= U (t,c,) is the set of transitions.
t€T ,c, €C(1)

* Moy (p, c,) = My (p)(c,) is the initial marking.

24

Unfolding a Coloured Net (3/3)

* W (p, c)t c) =W (p, t)(c,)(c,) is the backward
incidence matrix

* W (p, c)(t, c) = W*(p, t)(c))(c,) is the forward
incidence matrix

Proposition :

M[(t,c)>xM < M[(t,c)>naM 4

where, M,(p, c) = M(p)(c)

25

Unfolding example (1/4)

p (P,1) (P,2) (P,3)

O'% O O Q
X
EE . Unfoldiflg (t'l)I:EI (t'Z)I:EI (t,3)|:EI
c >
X

e 01X @2 @30
C

26

Unfolding example (2/4)

p (P,1)
Oe
X
‘ Unfoldiflg (t,1)
EEIC >
X++

ng (0,1)
C

27

Unfolding example (3/4)

éQ (0,1)
C

28

Unfolding example (4/4)

p 0 (P,1) (Q,2) (9,3) (P,3) (Q,1) (P,2)

X C.All1-X

UnfOldlflg (t,l) (t,3) \4 (t,2)

X++ C.All-X++

O ¢ ‘/606

(R,2) (5,3) (5,1) (R,1) (5,2) (R,3)

c = {1, 2, 3}

C(P)= C(Q)= C(R)=

c(s)= C
29

Coloured inhibitor arcs

* To test the emptiness of a place:

P r
O——
* To test that a place does note contain a colour a:
P r
O——]
[X = a]

* The sets of colours must be finite!

30

Unfolding inhibitor arcs

C={a,b,c}

31

Peterson’s Algorithm

* Peterson algorithm - mutual exclusion of two processes.
— The two processes are symmetrical.

— A shared memory contains the variables: turn, demp and

dem,

* Code of process p:

A : dem, = true
B : turn = q
C : wait (turn == p [[dem, == false)
D : < Section critique >
E : dem, = false; goto A
— Initially : 32

. demp :demq= false

Peterson’s Algorithm:

generalization to N processes (1/2)

Principal :
— Stairs of (N-1) levels

— A process can move from level j to j+1 if:

* Itis not the last to get to the level j

* It is the only process in the level j and

all higher levels are free.

= Only one process can get beyond the level

N-1
» Critical section

33

Peterson’s Algorithm:

generalization to N processes (2/2)

Process x (x==1..N-1)
Flag[x] = 0;
While (1) {
For (j=1; Jj<N; j++) {
Flag[x] = J;
Turn[]] = X;
wait until
((V y = %, (Flag[ly]l < J)) || (Turn[j] = x))
}

<Section critique>
Flag[x] = 0;

34

Analyse of a CPN

* The precedent models are they conform to the
specification ?

* Possibility of answers thanks to:

— The construction of the reachability graph
— Linear invariants

— The reduction theory

* Try to take benefits from the structure of the
model induced by the colour functions.

35

Why limit the colour function ?

e To preserve the readability of the model
— Each Petri Net can be represented...

f

Like that ! (O]

g

* Because the properties of the functions allow the
automatic construction of graph of classes
instead of an ordinary graph

36

Example of simple critical section

Idle C= {CI » €2, Cj‘}
) M(Idle) = C .All
X
tl
Xi M,
() Wait Idle(c,+ c,+ c;) + Res
X
t N
: (t]) C]) / (t], C3)
XgAcces ? Res / (1), ¢5) \
X)i j idle(c, + c3) idle(c; + c,)
_ v b + Res + Wait(c,) + Res + Wait(c;)
M, v M;

Idle(c; + ¢;)
+ Res + Wait(c,)
M, 37

Towards the use of symmetry (1/2)

* Intheinitial Marking, t, is enabled for each colour instance marking the
place Idle.

* |If we apply a permutation on the transition colour, the obtained
marking are identical up to this permutation.

M,
Repos(c;+ c,+ ¢;) + Res

(t;,¢;) -

Repos(c, + c3) 7 ~. Repos(c; + ¢,)

+ Res + Att(c;) + Res + Att(c;)
M, M;

(t;, c3)

38

Towards the use of symmetry (2/2)

* We can represent this set of firings using
variables :

idle(x+y+z) + Res
X,y z2€C,
(11, 2) XZY#Z2Z

Idle(x + y) + Wait(z) + Res

* Then, we obtain the actual firings by testing all
possible instantiations for x, y et z.

* |sitgeneral ?

39

Permutations on a Bag

 Let A be aset, sapermutation on A, and a a bag of A.

S.a= S(E a(x).x) = E A x).5(x)

xeA xeAd

* In particular: s.a(s.x) = a(x) (‘notation : s.c = s(c))
 Example:
M(p)=c; +2.c, $.C; = C; $.C, = C $.C;3 = C,

s.M(p)(s.c;) = M(p)(c;) = 1 s-M(p)(s.c;) = M(p)(c,) = 2

s.M(p) =c;+2.c,

40

Enabling and firing equivalence

(t, c,) is enabled in M < (t, s.c,) is enabled from s.M

(t,c)

t,s.
M » M < sM (se),

s.M’

41

Markings Equivalence

e Set of symmetries.

— For each unordered class C, we associate a
permutation group S,

— For each ordered class C,, we associate a rotation
group S

— The symmetries of the Net are defined by the set
S: S={<s4, ..., 5,> | 5; €S}

 Markings equivalence (=) :
M=M <dse S, M =s.M

42

Classes of markings

* For each marking M, we define CI(M):
CI(M)={M’ | dse S, M =s.M}

 Fundamental properties of CI(M) :

(t.c), 1, 5. ,
M W = VsesS sM “%wm

—If M, is symmetric (V'se S, s.M,=M,), and M is reachable, then
VYM’ &CI(M), M’ is reachable
—V'se S suchthats.M =M,
(t,_C)» (t,s.c)
M M =M s.M’
Thus, we can define classes of firings.

43

* By defining an adequate representation for marking classes,
— Dynamic Subclasses
— Symbolic marking

* By defining a firing rule that applies directly on this
representation,

— Symbolic firing rule

v' We can construct directly a quotient graph that represents the
set of reachable markings.

44

Dynamic subclasses for unordered class

 We group in a set (dynamic subclass) the
objects of C, that have the same marking.

* Example:
M = Idle(c;+c,) + Wait(c;) + Res

- Idle(x + y) + Wait(z) + Res

M(x) = M(y)

mZ1 1Z1]=2

M(z) # M(x) et M(z) 2 M(y) "™ Z2, 1Z2|=1

I {

Idle(Z') + Wait(Z?) + Res,
1Z11=2,1Z21=1

|

Idle(c,+c;) + Wait(c;) + Res
Idle(c;+c;) + Wait(c,) + Res
Idle(c;+c,) + Wait(c;) + Res

45

Informal example

Idle(Z) + Res 7 classs instead of

121=3 ((2) 20 markings
) |

1(Z?)
Idle(Z!) + Wait(Z2) + Res - > Idle(Z!) + Acces(Z?)
171 =2,1 721 =1 171 =2,1 721 =1
t(Z?
l](Z]) l N
. t)(Z?) .
Idle(Z") + Wait(Z?) + Res > Idle(Z') + Acces(Z?) + Wait(Z?)
1 Z1 | =1,1721 =2 |1 Z =172 =17°1=1
t(Z') j \W’)
t(Z?) .
Idle(Z?) + Res > Wait(Z?) + Acces(Z')

17?1 =3 1211 =1,17221=2

46

Firing rule

Before firing, we decompose the dynamic sub-classes to isolate the
objects that are used to instantiate the colour functions.

Example :
Repos(Z) + Res . Repos(Z! + Z'°) + Res
1Z1=3 1Z11=2,1Z'%1=1

Z%0 contains the chosen object to instantiate X, Z! those that are not
participating to the firing.

We then apply the classical firing rule.

After the firing, we must group the resulting subclasses...
47

What does the Symbolic Reachability Graph

preserve ?

Each marking represented by a class (a symbolic marking)
is reachable.

* Each reachable marking is represented by a class.

* Each firing sequence of the RG is represented in the SRG.

* To each sequence of the symbolic graph corresponds a
sequence of the RG.

48

Then, what is missing ?

* We can not distinguish the following situations :

cim,)
O

Cl(M)

Ci(M’) ()

m» Miss of information on the home state.

49

Can we represent any P-T Petri net ?

Yes, but...

— No interest if the representation is not reduced...

The presented model imposes that all objects of the same class
behave identically,

— A class groups a set of objects that have the same nature

We must be able to divide the class in subclasses of elements that
can evolve differently: C. = D! U D?

— Elements of D;! evolve differently from those of D.?
— The Diffusion functions are defined at the level of subclasses : D.1.All

50

Conclusion

* The construction of symbolic graphs applies on
any coloured Petri net, but

— Its efficiency depends directly from the symmetries...

— The structuration of the model is necessary to have a
direct and automatic construction.

* Almost all properties of interest can be checked
on the symbolic graph.

51

