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Computing the global minimum of a polynomial function f on a semi-
algebraic set is a di�cult but important problem, with many applications.
A relaxation approach was proposed in [6] which approximates this problem
by a sequence of �nite dimensional convex optimization problems. These op-
timization problems can be formulated in terms of linear matrix inequalities
on moment matrices associated to the set of monomials of degree ≤ t ∈ N
for increasing values of t. They can be solved by Semi-De�nite Programming
(SDP) techniques. The sequence of minima converges to the actual minimum
f ∗ of the function under some hypotheses [6]. In some cases, the sequence
even reaches the minimum f ∗ in a �nite number of steps [8, 16, 10, 2, 4, 14].
This approach proved to be particularly fruitful in many problems [7]. In
contrast with numerical methods such as gradient descent methods, which
converge to a local extremum but with no guaranty for the global solution,
this relaxation approach can provide certi�cates for the minimum value f ∗

in terms of sums of squares representations.
From an algorithmic and computational perspective, some issues need

however to be considered.
� How to reduce the size of the moment matrices ? The size of the SDP
problems to be solved is a bottleneck of the method. This size is related
to the number of monomials of degree ≤ t and is increasing exponen-
tially with the number of variables and the degree t. Many SDP solvers
are based on interior point methods which provide an approximation of
the optimal moment sequence within a given precision in a polynomial
time [13]. Thus reducing the size of the moment matrices or the num-
ber of parameters can improve signi�cantly the performance of these
relaxation methods. We address this issue using polynomial reduction
with border basis due to their numerical stability [11, 12].
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� When is the minimum reached ? A new stopping criteria is given to
detect when the relaxation sequence reaches the minimum, using a �at
extension criteria from [9]. We also provide a new algorithm to recons-
truct a �nite sum of weighted Dirac measures from a truncated sequence
of moments. This reconstruction method can be used in other problems
such as tensor decomposition [1] and multivariate sparse interpolation
[3]

� How to recover the minimizer ideal ? Computing the points where this
minimum is reached if they exist, is critical in many applications. De-
termining when and how these minimizer points can be computed from
the relaxation sequence is a problem that has been adressed for instance
in [5, 15] using of kernel of full moment matrices

We present a new algorithm to obtain the minimum of a real polynomial
function f in a semialgebraic set G = (G0, G+) where G0 is a set of equalities
and G+ is a set of inequalities non negatives and we suppose that the numbers
of minimizer points is �nite. We compare our algorithm with the full moment
matrix relaxation algorithm (implemented in c++ in the same environment
that our algorithm) described in [7], which is also implemented in the package
Gloptipoly of Matlab developed by D. Henrion and J.B. Lasserre.

When there are equality constraints, the border basis computation re-
duces the size of the moment matrices, as well as the localization matrices
associated to the inequalities. This speeds up the SDP computation. In the
case where there are only inequalities, the size of the moments matrices is the
same but the algorithm which veri�es the �at extension and the algorithm
which computes the minimizers are more e�cient and quicker than the re-
construction algorithm used in the full moment matrix relaxation approach.
The performance is not the only issue : numerical problems can also occur
due to the bigger size of the moment matrices in the �at extension test and
the reconstruction of minimizers.

The experiments show that when the size of the SDP problems becomes
signi�cant, most of the time is spent during sdpa computation and the border
basis time and reconstruction time are negligible. In all the examples, the
new border basis relaxation algorithm outperforms the full moment matrix
relaxation method.
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